用户名: 密码: 验证码:
几种无机负载催化剂的制备、表征及其在有机合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发负载型催化剂是解决均相催化剂较难分离、回收以及重复使用等问题的主要策略之一。无机载体来源广泛、价廉易得以及具有良好的机械强度和热稳定性,受到广泛关注。其中,硅基材料和硅胶包裹的氧化铁系磁性纳米粒子由于表面(或孔道)具有大量可修饰的羟基存在,对于硅烷功能化的有机分子易于通过缩合反应进行锚定,实现有机分子固载化。此外,磁性纳米粒子独特的磁性能为其固载化的有机分子提供了迅速高效分离的可能。鉴于离子液体和贵金属钯在有机催化领域的重要应用价值及其使用量大、回收困难等缺点,开发新型的具有高催化活性且可重复使用的负载型离子液体和钯催化剂具有十分重要的意义。
     本论文设计合成了几种新型无机负载催化剂,包括无定形硅胶和磁性纳米粒子负载离子液体催化剂、介孔硅胶负载钯络合物以及磁性纳米粒子负载纳米钯催化剂,考察了这些催化剂在有机合成反应中的应用情况。
     以廉价的无定形硅胶为载体,通过表面羟基与硅烷化的酸性离子液体进行缩合反应,制备了新型硅胶负载酸性离子液体催化剂,并将其应用于酯化、缩醛化、多组分缩合制备氨烷基萘酚类和4H-吡喃类化合物的反应中,表现出优良的酸催化活性,而且反应条件温和,产率较高。催化剂只需经过简单的过滤、洗涤、干燥即可回收再生,简化了操作过程,并且重复使用多次,仍能保持较高的催化活性。
     以硅胶包裹的四氧化三铁纳米粒子作载体,制备了磁性纳米粒子负载酸性和碱性离子液体两种新型固体催化剂。考察了无溶剂条件下,磁性纳米粒子负载酸性离子液体催化醛、2-萘酚和环状双甲酮类化合物的三组分缩合,制备相应的氧杂蒽类化合物。在90℃下,催化剂用量为1.5mol%,反应时间为30-60min,产率可达80-94%。将磁性纳米粒子负载碱性离子液体催化剂应用于室温条件下芳醛、乙酰乙酸乙酯、5,5-二甲基-1,3-环己二酮和醋酸铵的非对称Hantzsch反应,催化剂用量为3.6mol%,反应时间为1.5-3.5h,产率可达76-88%。催化剂可经磁分离方便回收,重复使用5次,活性没有明显下降。
     以介孔硅胶MCM-41为载体,经新型长链硅烷化亚胺吡啶配体化学改性后与钯盐配位,制备了新型负载钯络合物催化剂,并将其应用于Suzuki反应中。在温和的反应条件下,该催化剂可有效地催化多种溴代芳烃和芳基硼酸的Suzuki反应,50℃反应1.0-4.5h,产率可达86-98%。催化剂可通过简单过滤来回收,经洗涤、干燥后,可至少循环使用5次且催化活性没有明显下降。
     在介孔硅胶负载钯络合物的基础上,制备了磁性纳米粒子负载钯络合物催化剂,并将其应用于Heck反应中。碘代芳烃和含有吸电基的溴代芳烃显示了较高的反应活性,100-120℃反应1-4h,产率可达80-98%。催化剂可在外磁场条件下与反应体系快速分离,方便回收使用,其重复使用性能受到反应用碱的影响,当三乙胺为碱时,催化剂循环使用6次,产率仍可高达92%;而当碳酸钾为碱时,催化剂重复使用3次后,催化活性下降明显。
     通过点击化学策略制备了一种新型磁性纳米粒子负载纳米钯催化剂,并将其应用于Suzuki反应中,可有效地催化多种卤代芳烃和芳基硼酸的Suzuki反应,60℃反应3-8h,产率可达80-99%。催化剂可在外磁场条件下与反应体系进行快速分离,方便回收使用,其重复使用性能受到反应体系中水含量的显著影响,当以95%EtOH作溶剂时,催化剂可至少循环使用6次且催化活性没有明显下降。
The development of supported catalysts is an elegant way to solve the problem of the separation, recovery and reuse of homogeneous catalysts. Inorganic matrixes have many advantages, such as abundant source, low cost, and excellent stability, so the inorganic supported catalysts have attracted wide attention. Among them, the silicon-based materials and silica coated ferric oxide magnetic nanoparticles are often chosen as supports, because there are a lot of hydroxyl groups on their surfaces or pores, some silane functionalized organic molecules can be easily immobilized via condensation reactions with the hydroxyl groups of supports. Moreover, due to the attractive magnetic property, the magnetic nanoparticles supported molecules can be rapidly and efficiently separated from the mixture. Considering the great value of ionic liquids (ILs) and noble metal palladium in the field of organic catalysis, and the disadvantage of high dosage and difficult recovery, it's very significant to develop some novel supported ionic liquid and palladium catalysts.
     Herein, some new inorganic supported catalysts were prepared, including amorphous silica and magnetic nanoparticles supported IL catalyst, mesoporous silica supported Pd complex, and magnetic nanoparticles supported nano-Pd catalyst. In addition, their applications in the organic reactions were investigated.
     An amorphous silica supported acid ionic liquid was prepared via condensation reaction with silane functionalized IL and silica hydroxyl group. It could effectively catalyze the esterification, acetalation, and one-pot synthesis of amidoalkyl naphthols and benzopyrans by multicomponent reactions under mild conditions. The catalyst was simply recovered by filtration, and it could be used several times without significant loss of activity.
     The silica coated Fe3O4was chosen as the support, and another two supported IL catalyst were then prepared by the similar method. The as-prepared supported acid ionic liquid was found to be an efficient catalyst for the one-pot synthesis of benzoxanthenes by a three-component condensation of dimedone with aldehyde and2-naphthol under solvent-free conditions. The reaction could be well carried out within30-60min at90℃under a low catalyst loading (1.5mol%), and good to excellent yields (80-94%) were obtained. The supported basic IL catalyst prepared in a similar way, could effectively catalyze unsymmetrical Hantzsch reaction of aryl aldehyde, ethyl acetoacetate, dimedone and ammonium acetate at room temperature. The reaction proceeded within1.5-3.5h under3.6mol%catalyst loading to afford the corresponding products in high yields (76-88%). The catalyst could be easily recovered by an external magnet and reused five times without remarkable loss of efficiency.
     A new mesoporous silica supported palladium imino-pyridine complex was successfully prepared by attaching palladium acetate to a novel imino-pyridine ligand functionalized MCM-41. It was found to be an efficient catalyst for Suzuki reactions under mild conditions, and the reactions of various aryl bromides with arylboronic acids could proceed well within1.0-4.5h at50℃to give excellent yields of coupling products (86-98%). The catalyst was simply recovered by filtration, and it could be used five times without significant loss of activity.
     A magnetic nanoparticle-supported palladium imino-pyridine complex was prepared by a similar process and was applied for Heck reactions. Aryl iodides and aryl bromides with electron-withdrawing groups could undergo smooth transformation during1-4h at100-120℃to give excellent yields of products (80-98%). The catalyst could be simply recovered by magnetic separation, and its reusability was affected by the base used in the reactions. When triethylamine was used as the base, the yield was still as high as92%after the sixth run. However, the catalytic activity was obviously reduced after three times, when potassium carbonate was chosen as the base.
     A novel magnetic nanoparticle-supported nano-palladium catalyst was successfully prepared via a "click" route and evaluated in Suzuki reactions. It was found to be highly efficient for the reactions of various aryl halides with arylboronic acids. The reactions proceeded well within3-8h at60℃to give high yields of products (80-99%). The catalyst could be simply recovered by magnetic separation, and its reusability was affected by the water in the solvent. It could be reused six times without significant loss of activity when95%EtOH was used as the solvent.
引文
[1]吴越.催化化学[M].北京:科学出版社,1998.
    [2]Kuntz E G. Homogeneous Catalysis in Water[J]. Chemtech,1987,17(12):570-575.
    [3]Cole-Hamilton D J. Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling[J]. Science,2003,299(5613):1702-1706.
    [4]Cornils B, Herrmann W A. Aqueous-Phase Organometallic Catalysis[M]. Weinheim: Wiley-VCH,2004.
    [5]Wassercheid P. Ionic Liquids-New "solutions" Transition Metal Catalysis[J]. Angew Chem Int Ed,2000,39(21):3772-3789.
    [6]Gordon C M. New Developments in Catalysis Using Ionic Liquids[J]. Applied Catal A: General,2001,222(1-2):101-117.
    [7]Horvath I T, Rabai J. Catalyst Separation Without Water:Fluorous Biphase Hydroformylation of olefins[J]. Science,1994,266(5182):72-73.
    [8]Cornils B. Fluorous Biphase Systems-The New Phase-Separation and Immobilization Technique[J]. Angew Chem Int Ed,1997,36(19):2057-2059.
    [9]Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J].Science,1998,279(5350):548-552.
    [10]Komura K, Nakano Y, Koketsu M. Mesoporous Silica MCM-41 as a Highly Active, Recoverable and Reusable Catalyst for Direct Amidation of Fatty Acids and Long-chain Amines[J]. Green Chem,2011,13(4):828-831.
    [11]Yang H Q, Han X J, Li G, et al. N-Heterocyclic Carbene Palladium Complex Supported on Ionic Liquid-modified SBA-16:an Efficient and Highly Recyclable Catalyst for the Suzuki and Heck reactions[J]. Green Chem,2009,11(8):1184-1193.
    [12]Yang H Q, Ma Z C, Qing Y, et al. A Periodic Mesoporous Hybrid Material with a Built-in Palladium Complex:an Efficient Catalyst for the Suzuki Coupling and Alcohol Oxidation[J]. Appl Catal A:Gen,2010,382(2):312-321.
    [13]Moreau J. J. E., Chi Man M. W. The Design of Selective Catalysts from Hybrid Silica-based Materials[J]. Coord Chem Rev,1998,178-180(2):1073-1084.
    [14]王波,顾彦龙,杨立明,等.有机/无机杂化材料负载金属配合物催化剂—Sol-gel技术的新利用[J].分子催化,2003,17(6):468-480.
    [15]室井高城.工业贵金属催化剂—实用金属催化剂的反应和实例[M].北京:化学工业出版社,2012.
    [16]王春雷,马丁,包信和.碳纳米材料及其在多相催化中的应用[J].化学进展,2009, 21(9):1705-1721.
    [17]Ghiaci M, Ansari F, Sadeghi Z, et al. Efficient Clay Supported Pd Nanoparticles as Heterogeneous Catalyst for Arylation of Alkenes[J]. Catal Commun,2012,21(1): 82-85.
    [18]柳彦从,胥月兵,陆江银.ZSM-5催化乙醇制低碳烯烃[J].化学进展,2010,22(4):754-759.
    [19]赵尹,王海彦,魏民,马俊.磷改性p沸石催化剂上催化裂化轻汽油的醚化[J].燃料化学学报,2004,(2):225-229.
    [20]Shylesh S, Schunemann V, Thiel W R. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis[J]. Angew Chem Int Ed,2010, 49(20):3428-3459.
    [21]Zhu Y H, Stubbs L P, Ho F, Liu R, Ship C P, Maguire J A, Hosmane N S. Magnetic Nanocomposites:A New Perspective in Catalysis[J]. ChemCatChem,2010,2(4): 365-374.
    [22]Polshettiwar V, Luque R, Fihri A, Zhu H, Basset J M. Magnetically Recoverable Nanocatalysts[J]. Chem Rev,2011,111(5):3036-3075.
    [23]Lu A H, Salabas E L, Schuth F. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application[J]. Angew Chem Int Ed,2007,46(8):1222-1244.
    [24]Latham A H, Williams M E. Controlling Transport and Chemical Functionality of Magnetic Nanoparticles[J]. Acc Chem Res,2008,41(3):411-420.
    [25]Ranganath K V S, Glorius F. Superparamagnetic Nanoparticles for Asymmetric Catalysis-a Perfect Match[J]. Catal Sci Technol,2011,1(1):13-22.
    [26]Liu J, Qiao S Z, Hu Q H, et al. Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications[J]. Small,2011,7(4):425-443.
    [27]Nasir R B, Varma R S. Magnetically Retrievable Catalysts for Organic Synthesis[J]. Chem Commun,2013,49(8):752-770.
    [28]Abu-Reziq R, Alper H, Wang D, et al. Metal Supported on Dendronized Magnetic Nanoparticles:Highly Selective Hydroformylation Catalysts[J]. J Am Chem Soc,2006, 128(15):5279-5282.
    [29]Schaetz A, Zeltner M, Michl T D, et al. Magnetic Silyl Scaffold Enables Efficient Recycling of Protecting Groups[J]. Chem Eur J,2011,17(38):10566-10573.
    [30]Zeltner M, Schatz A, Hefti M L, et al. Magnetothermally Responsive C/Co@PNIPAM-Nanoparticles Enable Preparation of Self-separating Phase-Swithing Palladium Catalysts[J]. J Mater Chem,2011,21(9):2991-2996.
    [31]Wittmann S, Schatz A, Grass R N, et al. A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water[J]. Angew Chem Int Ed,2010,49(19):1867-1870.
    [32]Schatz A, Long T R, Grass R N, et al. Immobilization on a Nanomagnetic Co/C Surface using ROM Polymerization:Generation of a Hybrid Material as Support for a Recyclable Palladium Catalyst[J]. Adv Funct Mater,2010,20(24):4323-4328.
    [33]Dalaigh C O, Corr S A, Gun'ko Y, et al. A Magnetic-Nanoparticle Supported 4-N,N-dialkylaminopyridine Catalyst:Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability[J]. Angew Chem Int Ed,2007,46(23): 4329-4332.
    [34]Phan N T S, Gill C S, Nguyen J V, et al. Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst[J]. Angew Chem Int Ed,2006,45(14):2209-2212.
    [35]Baleizao C, Corma A, Garcia H, et al. Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water[J]. J Org Chem,2004,69(2):439-446.
    [36]Crudden C M, Sateesh M, Lewis R. Mercaptopropyl-Modified Mesoporous Silica:A Remarkable Support for the Preparation of a Reusable Heterogeneous Palladium Catalyst for Coupling Reactions [J]. J Am Chem Soc,2005,127(28):10045-10050.
    [37]Trilla M, Pleixats R, Chi Man M W, et al. Hybrid Organic-Inorganic Silica Materials Containing Di(2-pyridyl)methylamine-Palladium Dichloride Complex as Recyclable Catalysts for Suzuki Cross-Coupling Reactions[J]. Tetrahedron Lett,2006,47(14): 2399-2403.
    [38]Trilla M, Pleixats R, Chi Man M W, et al. Hybrid Organic-Inorganic Materials from Di-(2-pyridyl)methyl-amine-Palladium Dichloride Complex as Recoverable Catalysts for Suzuki, Heck and Sonogashira Reactions[J]. Adv Synth Catal,2008,350(4): 577-590.
    [39]Lv G H, Mai W P, Jin R, et al. Immobilization of Dipyridyl Complex to Magnetic Nanoparticle via Click Chemistry as a Recyclable Catalyst for Suzuki Cross-Coupling Reactions[J]. Synlett,2008, (9):1418-1422.
    [40]Scheuermann G M, Rumi L, Steurer P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Grapheme Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction[J]. J Am Chem Soc,2009,131(23):8262-8270.
    [41]Wang L, Reis A, Seifert A, et al. A Simple Pprocedure for the Covalent Grafting of Triphenylphosphine Ligands on Silica:Application in the Palladium Catalyzed Suzuki Reaction[J]. Dalton Trans,2009,3315-3320.
    [42]Shylesh S, Wang L, Thiel W R. Palladium(Ⅱ)-Phosphine Complexes Supported on Magnetic Nanoparticles:Filtration-Free, Recyclable Catalysts for Suzuki-Miyaura Cross Coupling Reactions[J]. Adv Synth Catal,2010,352(2-3):425-432.
    [43]Karimi B, Elhamifar D, Clark J H, et al. Ordered Mesoporous Organosilica with Ionic-Liquid Framework:An Efficient and Reusable Support for the Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction in Water[J]. Chem Eur J, 2010,16(27):8047-8053.
    [44]Jin M Y, Lee D H. A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides[J]. Angew Chem Int Ed, 2010,49(6):1119-1122.
    [45]Saha A, Leazer J, Varma R S. O-Allylation of Pphenols with Allylic Acetates in Aqueous Media using a Magnetically Separable Catalytic System[J]. Green Chem, 2012,14(1):67-71.
    [46]Zhang L, Li P H, Li H, et al. Recyclable Magnetic Nanoparticles Supported Palladium Catalyst for the Hiyama Reaction of Aryltrialkyloxysilanes with Aryl Halides[J]. Catal Sci Technol,2012,2(9):1859-1864.
    [47]Zhu Y H, Loo K, Ng H, et al. Magnetic Nanoparticle Supported Second Generation Hoveyda-Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters[J]. Adv Synth Catal,2009,351(16):2650-2656.
    [48]Li B, Gao L F, Bian F L, et al. A New Recoverable Au(Ⅲ) Catalyst Supported on Magnetic Polymer Nanocomposite for Aromatic Bromination[J]. Tetrahedron Lett, 2013,54(9):1063-1066.
    [49]Abu-Reziq R, Wang D, Post M, et al. Platinum Nanoparticles Supported on Ionic Liquid-Modified Magnetic Nanoparticles:Selective Hydrogenation Catalysts[J]. Adv Synth Catal,2007,349(13):2145-2150.
    [50]Zeng T Q, Yang L, Hudson R, et al. Fe3O4 Nanoparticle-Supported Copper Pybox Catalyst:Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines[J]. Org Lett,2011,13(3):442-445.
    [51]Parvulescu V I, Hardacre C. Catalysis in Ionic Liquids[J]. Chem Rev,2007,107(6): 2615-2665.
    [52]Gu Y L, Li G X. Ionic Liquids-Based Catalysis with Solids:State of the Art[J]. Adv Synth Catal,2009,351(6):817-847.
    [53]Plaquevent J C, Levillain J, Guillen F, et al. Ionic Liquids:New Targets and Media for r-Amino Acid and Peptide Chemistry[J]. Chem Rev,2008,108(12):5035-5060.
    [54]Welton T. Ionic liquids in Catalysis[J]. Coord Chem Rev,2004,248(21-24): 2459-2477.
    [55]Rogers R D, Seddon K R. Ionic Liquids-Solvents of the Future?[J]. Science,2003, 302(5646):792-793.
    [56]Giernoth R. Task-Specific Ionic Liquids[J]. Angew Chem Int Ed,2010,49(16): 2834-2839.
    [57]Olivier-Bourbigou H, Magna L. Morvan D. Ionic Liquids and Catalysis:Recent Progress from Knowledge to Applications[J]. Appl Catal A:Gen,2010,373(1):1-56.
    [58]Hallet J P, Welton T. Room-Temperature Ionic Liquids:Solvents for Ssynthesis and Catalysis[J]. Chem Rev,2011,111(5):3508-3576.
    [59]Valkenberg M H, deCastro C, Holderich W F. Immobilisation of Ionic Liquids on Solid Supports[J]. Green Chem,2002,4(2):88-93.
    [60]Mehnert C P, Cook R A, Dispenziere N C, et al. Supported Ionic Liquid Catalysis-A New Concept for Homogeneous Hydroformylation Catalysis[J]. J Am Chem Soc, 2002,124(44):12932-12933.
    [61]Mehnert C P, Mozeleski E J, Cook R A. Supported Ionic Liquid Catalysis Investigated for Hydrogenation Reactions[J]. Chem Commun,2002, (24):3010-3011.
    [62]Qiao K, Hagiwara H, Yokoyama C. Acidic Ionic Liquid Modified Silica Gel as Novel Solid Catalysts for Esterification and Nitration Reactions[J]. J Mol Catal A:Chem, 2006,246(1):65-69.
    [63]Chrobok A, Baj S, Pudlo W, et al. SupportedHydrogensulfate Ionic Liquid Catalysis in Baeyer-Villiger Reaction[J]. Appl Catal A:Gen,2009,366(1):22-28.
    [64]Yamaguchi K, Yoshida C, Uchida S, et al. Peroxotungstate Immobilized on Ionic Liquid-modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide[J]. J Am Chem Soc,2005,127(2):530-531.
    [65]Sasaki T, Zhong C, Tada M, et al. Immobilized Metal Ion-Containing Ionic Liquids: Preparation, Structure and Catalytic Performance in Kharasch Addition Reaction[J]. Chem Commun,2005, (19):2506-2508.
    [66]Li P H, Wang L, Zhang Y, et al. Silica Gel Supported Pyrrolidine-Based Chiral Ionic Liquid as Recyclable Organocatalyst for Asymmetric Michael Addition to Nitrostyrenes[J]. Tetrahedron,2008,64(32):7633-7638.
    [67]Zhang Y, Zhao Y W, Xia C G. Basic Ionic Liquids Supported on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanocrystallites:An Efficient Magnetic and Recyclable Heterogeneous Catalyst for Aqueous Knoevenagel Condensation[J]. J Mol Catal A:Chem,2009,306(1-2):107-112.
    [68]Zhang Y, Xia C G Magnetic Hydroxyapatite-Encapsulated y-Fe2O3 Nanoparticles Functionalized with Basic Ionic Liquids for Aqueous Knoevenagel Condendation[J]. Appl Catal A:Gen,2009,366(1):141-147.
    [69]Sahoo S, Kumar P, Lefebvre F, et al. Oxidative Kinetic Resolution of Alcohols using Chiral Mn-salen Complex Immobilized onto Ionic Liquid Modified Silica[J]. Appl Catal A:Gen,2009,354(1):17-25.
    [70]Taher A, Kim J B, Jun J Y, et al. Highly Active and Magnetically Recoverable Pd-NHC Catalyst Immobilized on Fe3O4 Nanoparticle-Ionic Liquid Matrix for Suzuki Reaction in Water[J]. Synlett,2009, (15):2477-2482.
    [71]Wang J, Xu B, Sun H, et al. Palladium Nanoparticles Supported on Functional Ionic Liquid Modified Magnetic Nanoparticles as Recyclable Catalyst for Room Temperature Suzuki Reaction[J]. Tetrahedron Lett,2013,54(3):238-241.
    [72]Ciriminna R, Hesemann P, Moreau J J E, et al. Aerobic Oxidation of Alcohols in Carbon Dioxide with Silica-Supported Ionic Liquids Doped with Perruthenate[J]. Chem Eur J,2006,12(20):5220-5224.
    [73]Shi X Y, Wei J F. Selective Oxidation of Sulfide Catalyzed by Peroxotungstate Immobilized on Ionic Liquid-Modified Silica with Aqueous Hydrogen Peroxide[J]. J Mol Catal A:Chem,2008,280(1-2):142-147.
    [74]Shin J Y, Kim Y S, Lee Y, et al. Impact of Anions on Electrocatalytic Activity in Palladium Nanoparticles Supported on Ionic Liquid-Carbon Nanotube Hybrids for the Oxygen Reduction Reaction[J]. Chem Asian J,2011,6(8):2016-2021.
    [75]Zhang Y, Jiao Q, Zhen B, et al. Transesterification of Glycerol Trioleate Catalyzed by Basic Ionic Liquids Immobilized on Magnetic Nanoparticles:Influence of Pore Diffusion Effect[J]. Appl Catal A:Gen,2013,45(1-2):327-333.
    [1]Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chem Rev,1999,99(8):2071-2083.
    [2]Wasserscheid P, Keim W. Ionic Liquids-New "Solutions" for Transition Metal Catalysis[J]. Angew Chem Int Ed,2000,39(21):3772-3789.
    [3]Parvulescu V I, Hardacre C. Catalysis in Ionic Liquids[J]. Chem Rev,2007,107(6): 2615-2665.
    [4]Giernoth R. Task-Specific Ionic Liquids[J]. Angew Chem Int Ed,2010,49(16): 2834-2839.
    [5]Wilkes J S. Properties of Ionic Liquid Solvents for Catalysis[J]. J Mol Catal A:Chem, 2004,214(1):11-17.
    [6]Liu X M, Liu M, Guo X W, et al. SO3H-Functionalized Ionic Liquids for Selective Alkylation of m-Cresol with tert-Butanol[J]. Catal Commun,2008,9(1):1-7.
    [7]Wang Y Y, Gong X, Wang Z, et al. SO3H-Functionalized Ionic Liquids as Efficient and Recyclable Catalysts for the Synthesis of Pentaerythritol Diacetals and Diketals[J]. J Mol Catal A:Chem,2010,322(1-2):7-16.
    [8]Cole A C, Jensen J L, Ntai I, et al. Novel Br(?)nsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts[J]. J Am Chem Soc,2002,124,962
    [9]Fang D, Zhou X, Ye Z, et al. Br(?)nsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts for Fischer Esterifications[J]. Ind Eng Chem Res,2006,45(24): 7982-7984.
    [10]Zhao D, Liao Y, Zhang Z. Toxicity of Ionic Liquids[J]. Clean,2007,35(1):42-48.
    [11]Valkenberg M H, deCastro C, Holderich W F. Immobilisation of Ionic Liquids on Solid Supports[J]. Green Chem,2002,4(2):88-93.
    [12]Mehnert C P. Supported Ionic Liquid Catalysis[J]. Chem Eur J,2005,11(1):50-56.
    [13]deCastro C, Sauvage E, Valkenberg M H, et al. Immobilized Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene[J]. J Catal, 2000,196(1):86-94.
    [14]Qiao K, Hagiwara H, Yokoyama C. Acidic Ionic Liquid Modified Silica Gel as Novel Solid Catalysts for Esterification and Nitration reactions [J]. J Mol Catal A:Chem, 2006,246(1-2):65-69.
    [15]Chrobok A, Baj S, Pudlo W, et al. Supported Hydrogensulfate Ionic Liquid Catalysis in Baeyer-Villiger Reaction[J]. Appl Catal A:Gen,2009,366(1):22-28.
    [16]Sugimura R, Qiao K, Tomida D, et al. Immobilized of Acidic Ionic Liquids by Copolymerization with Styrene and Their Catalytic Use for Acetal Formation[J]. Catal Commun,2007,8(5):770-772.
    [17]Amarasekara A S, Owereh O S. Synthesis of a Sulfonic Acid Functionalized Acidic Ionic Liquid Modified Silica Catalyst and Applications in the Hydrolysis of Cellulose[J]. Catal Commun,2010,11(13):1072-1075.
    [18]Lazarin A M, Gushikem Y, de Castro S C. Cellulose Aluminium Oxide Coated with Organofunctional Groups Containing Nitrogen Donor Atoms[J]. J Mater Chem,2000, 10(11):2526-2531.
    [19]Bordoloi A, Sahoo S, Lefebvre F, et al. Heteropoly Acid-Based Supported Ionic Liquid-Phase Catalyst for the Selective Oxidation of Alcohols[J]. J Catal,2008,259(2): 232-239.
    [20]Miyatake K, Iyotani H, Yamamoto K, et al. Synthesis of Poly(phenylene sulfite sulfonic acid) via Poly(sulfonium cation) as a Thermostable Pproton-Conducting Polymer[J]. Macromolecules,1996,29(21):6969-6971.
    [21]Langner R, Zundel G.FT-IR Investigation of Polarizable, Strong Hydrogen Bonds in Sulfonic Acid Sulfoxide, Phosphine Oxide, and Arsine Oxide Complexes in the Middle- and Far-Infrared Region[J]. J Phys Chem,1995,99(32):12214-12219.
    [22]Arasawa H, Odawara C, Yokoyama R, et al. Grafting of Zwitterion-Type Polymers onto Silica Gel Surface and Their Properties[J]. React & Funct Polym,2004,61(2): 153-161.
    [23]Cooks R G, Chen H, Eberlin M N, et al. Polar Acetalization and Transacetalization in the Gas phase:The Eberlin Reaction[J]. Chem Rev,2006,106(1):188-211.
    [24]Greene T W, Wuts P G M. Protective Groups in Organic Synthesis[M]. John Wiley & Sons, New York,1991.
    [25]Leonard N M, Oswald M C, Freiberg D A. A Simple and Versatile Method for the Synthesis of Acetals from Aldehydes and Ketones using Bismuth Triflate[J]. J Org Chem,2002,67(15):5202-5207.
    [26]Srivastava P, Srivastava R. A Novel Method for the Protection of Amino Alcohols and Carbonyl Compounds over a Heterogeneous, Reusable Catalyst[J]. Catal Commun, 2008,9(5):645-649.
    [27]刘玉平,孙宝国,谢建春,等.固体超强酸催化合成香草醛1,2-丙二醇缩醛[J].精细化工,2004,(11):831-832.
    [28]刘飞,罗金岳.固体超强酸催化合成香草醛1,2-丙二醇缩醛[J].精细化工,2010,(2):155-159.
    [29]Dai Y, Li B D, Quan H D, et al. [Hmim]3PW12O40:A High-Efficient and Green Catalyst for the Acetalization of Carbonyl Compounds[J]. Chin Chem Lett,2010, 21(6):678-681.
    [30]Fang D, Gong K, Shi Q R, et al. A Green Procedure for the Protection of Carbonyls Catalyzed by Novel Task-Specific Room-Temperature Ionic Liquid[J]. Catal Commun, 2007,8(10):1463-1466.
    [31]Shen A Y, Tsai C T, Chen C L. Synthesis and Cardiovascular Evaluation of N-substituted 1-Aminomethyl-2-Naphthols[J]. Eur J Med Chem,1999,34(10): 877-882.
    [32]Kantevari S, Vuppalapati S V N, Nagarapu L. Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent Free Conditions[J]. Catal Commun,2007,8(11):1857-1862.
    [33]Khodaei M M, Khosropour A R, Moghanian H. A Simple and Efficient Procedure for the Synthesis of Amidoalkyl Naphthols by p-TSA in Solution or under Solvent-Free Conditions[J]. Synlett,2006, (6):916-920.
    [34]Das B, Laxminarayana K, Ravikanth B, et al. Iodine Catalyzed Preparation of Amidoalkyl Naphthols in Solution and under Solvent-Free Conditions [J]. J Mol Catal A:Chem,2007,261(2):180-183.
    [35]Shaterian H R, Yarahmadi H, Ghashang M. An Efficient, Simple and Expedition Synthesis of 1-Amidoalkyl-2-Naphthols as 'Drug like' Molecules for Biological Screening[J]. Bioorg Med Chem Lett,2008,18(2):788-792.
    [36]Nagarapu L, Baseeruddin M, Apuri S, et al. Potassium Dodecatungstocobaltate Trihydrate (K5CoW12O40·3H2O):A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under Solvent-Free Conditions [J]. Catal Commun,2007,8(11):1729-1734.
    [37]Shaterian H R, Yarahmadi H, Ghashang M. Silica Supported Perchloric Acid (HClO4-SiO2):An Efficient and Recyclable Heterogeneous Catalyst for the One-Pot Synthesis of Amidoalkyl Naphthols[J]. Tetrahedron,2008,64(7):1263-1269.
    [38]Patil S B, Singh P R, Surpur M P, et al. Cation-Exchanged Resins:Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amidoalkyl-2-Nanphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes, and 2-Naphthol[J]. Synth Commun,2007,37(10):1659-1664.
    [39]Srihari G, Nagaraju M, Murthy M M. Solvent-Free One-Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid[J]. Helv Chim Acta,2007,90(8): 1497-1504.
    [40]Lei M, Ma L, Hu L. Thiamine Hydrochloride as a Efficient Catalyst for the Synthesis of Amidoalkyl Naphthols[J]. Tetrahedron Lett,2009,50(46):6393-6397.
    [41]Kundu D, Majee A, Hajra A. Zwitterionic-Type Molten Salt:An Efficient Mild Organocatalyst for Synthesis of 2-Amidoalkyl and 2-Carbamatoalkyl Naphthols[J]. Catal Commun,2010,11(14):1157-1159.
    [42]Hajipour A R, Ghayeb Y, Sheikhan N, et al. Bronsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst for One-Pot Synthesis of 1-Amidoalkyl 2-Naphthols under Solvent-Free Conditions [J]. Tetrahedron Lett,2009,50(40):5649-5651.
    [43]Rashinkar G, Salunkhe R. Ferrocene Labeled Supported Ionic Liquid Phase(SILP) Containing Organocatalytic Anion for Multicomponent Synthesis[J]. J Mol Catal A: Chem,2010,316(1-2):146-152.
    [44]余富朝,严胜骄,林军.无溶剂反应在杂环合成中的应用进展[J].有机化学,2010,30(10):1421-1430.
    [45]Singh K, Singh J, Singh H. A Synthetic Entry into Fused Pyran Derivatives through Carbon Transfer Reactions of 1,3-Oxazinanes and Oxazolidines with Carbon Nucleophiles[J]. Tetrahedron,1996,52(45):14273-14280.
    [46]Hatakeyama S, Ochi N, Mumata H. A New Route to Substituted 3-Methoxy-carbonyldihyropyrans[J]. J Chem Soc, Chem Commun,1988, (17): 1202-1204.
    [47]Armesto D, Horspool W M, Martin N. Synthesis of Cyclotutenes by the Novel Photochemical Ring Contraction of 4-Substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans[J]. J Org Chem,1989,54(13):3069-3072.
    [48]Wang L M, Shao J H, Tian H, et al. Rare Earth Perfluorooctanoate [RE(PFO)3] Catalyzed One-Pot Synthesis of Benzopyrans Derivatives [J]. J Fluor Chem,2006, 127(1):97-100.
    [49]Balalaie S, Sheikh-Anmadi M, Bararujanian M. Tetra-methyl Ammonium Hydroxide: An Efficient and Versatile Catalyst for the One-Pot Synthesis of Tetrahedrobenzo[b]pyran Derivatives in Aqueous Media[J]. Catal Commun,2007, 8(11):1724-1728.
    [50]Jin T S, Wang A Q, Wang X, et al. A Clean One-Pot Synthesis of Ttrahedrobenzo[Z>]pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aquesou Media[J]. Synlett,2004, (5):871-874.
    [51]Devi I, Bhuyan P J. Sodium Bromide Catalyzed One-Pot Synthesis of Tetrahydrobenzo[b]pyrans via a Three-Component Cyclocondensation under Microwave Irradiation and Solvent Free Conditions [J]. Tetrahedron Lett,2004,45(47): 8625-8627.
    [52]Balalaie S, Bararjanian M, Amani A M. (S)-Proline as a Neutral and Efficient Catalyst for the One-Pot Synthesis of Tetrahedrobenzo[b]pyran Derivatives in Aqueous Media[J]. Synlett,2006, (2):263-267.
    [53]Hekmatshoar R, Majedi S, Bakhtiari K. Sodium Selenate Catalyzed Simple and Efficient Synthesis of Tetrahedrobenzo[b]pyran Derivatives[J]. Catal Commun,2008, 9(2):307-310.
    [54]Saini A, Kumar S, Sandhu J S. A New LiBr-Catalyzed, Facile and Efficient Method for the Synthesis of 14-Alkyl or Aryl-14H-dibenzo[a,j]xanthenes and Tetrahedrobenzo[b]pyrans under Solvent-Free Conventional and Microwave Heating[J]. Synlett,2006, (12):1928-1932.
    [55]屠树红,蒋虹,庄启亚等.超声辐射下一步法合成2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-5,6,7,8-4H-苯并[b]吡喃[J].有机化学,2003,23(5):488-490.
    [56]Rong L C, Li X Y, Wang H Y. Efficient Synthesis of Tetrahedrobenzo[b]pyrans under Solvent-Free Conditions at Room Temperature[J]. Synth Commun,2006,36(16): 2363-2369.
    [57]Zhi H Z, Lv C X, Zhang Q, et al. A New PEG-1000-Based Dicationic Ionic Liquid Exhibiting Temperature-Dependent Phase Behavior With Ttoluene and Its Application in One-Pot Synthesis of Benzopyrans[J]. Chem Commun,2009, (20):2878-2880.
    [1]Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J]. Chem Rev,1995,95(7):2457-2483.
    [2]Corbet J P, Mignani G. Selected Patented Cross-Coupling Reaction Technologies[J]. Chem Rev,2006,106(7):2651-2710.
    [3]Martin R, Buchwald S L. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands[J]. Acc Chem Res,2008, 41(11):1461-1473.
    [4]Fihri A, Bouhrara M, Nekoueishahraki B, et al. Nanocatalysts for Suzuki cross-coupling reactions[J]. Chem Soc Rev,2011,40(10):5181-5203.
    [5]Leroux F. Atropisomerism, Biphenyls, and Fluorine:A Comparison of Rotational Barriers and Twist Angles [J]. ChemBioChem,2004,5(5):644-649.
    [6]Dickson S E, Crudden C M. Transformable Periodic Mesoporous Organosilica Materials[J]. Chem Commun,2010,46(12):2100-2102.
    [7]Lightowler S, Hird M. Monodisperse Aromatic Oligomers of Defined Structure and Large Size through Selective and Sequential Suzuki Palladium-Catalyzed Cross-Coupling Reactions[J]. Chem Mater,2005,17(22):5538-5549.
    [8]Fu G C. The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands[J]. Acc Chem Res,2008,41 (11):1555-1564.
    [9]Littke A F, Fu G C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides [J]. Angew Chem Int Ed,2002,41(22):4176-4211.
    [10]Kondolff I, Doucet H, Santelli M. Tetraphosphine/Palladium Catalysed Suzuki Cross-Coupling Reactions of Aryl Halides with Alkylboronic Acids[J]. Tetrahedron, 2004,60(17):3813-3818.
    [11]Marziale A N, Jantke D, Faul S, et al. An Efficient Protocol for the Palladium-Catalysed Suzuki-Miyaura Cross-Coupling [J]. Green Chem,2011,13(1): 169-177.
    [12]Chung K H, So C M, Wong S M, et al. An Efficient Palladium-Benzimidazolyl Phosphine Complex for the Suzuki-Miyaura Coupling of Aryl Mesylates:Facile Ligand Synthesis and Metal Complex Characterization[J]. Chem Commun,2012, 48(14):1967-1969.
    [13]Fraser A W, Besaw J E, Hull L E, et al. Pd(η3-1-PhC3H4)(η5-C5H5), an Unusually Effective Catalyst Precursor for Suzuki-Miyaura Cross-Coupling Reactions Catalyzed by Bis-Phosphine Palladium(0) Compounds [J]. Organometallics,2012,31(6): 2470-2475.
    [14]Botella L, Najera C. A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water[J]. Angew Chem Int Ed,2002,41(1): 179-181.
    [15]Botella L, Najera C. Cross-Coupling Reactions with Boronic Acids in Water Catalysed by Oxime-Derived Palladacycles[J]. J Organomet Chem,2002,663(1-2):46-57.
    [16]Corma A, Garcia H, Leyva A. Polyethyleneglycol as Scaffold and Solvent for Reusable C-C Coupling Homogeneous Pd Catalysts[J]. J Catal,2006,240(2):87-99.
    [17]Alacid E, Najera C. First Cross-Coupling Reaction of Potassium Aryltrifluoroborates with Organic Chlorides in Aqueous Media Catalyzed by an Oxime-Derived Palladacycle[J]. Org Lett,2008,10(21):5011-5014.
    [18]Alacid E, Najera C. General Reaction Conditions for the Palladium-Catalyzed Vinylation of Aryl Chlorides with Potassium Alkenyltrifluoroborates[J]. J Org Chem, 2009,74(21):8191-8195.
    [19]Navarro O, Kaur H, Mahjoor P, et al. Cross-Coupling and Dehalogenation Reactions Catalyzed by (N-Heterocyclic carbene)Pd(allyl)C1 Complexes[J]. J Org Chem,2004, 69(9):3173-3180.
    [20]Wang A E, Xie J H, Wang L X, et al. Triaryl Phosphine-Functionalized N-Heterocyclic Carbene Ligands for Heck Reaction[J]. Tetrahedron,2005,61(1):259-266.
    [21]Kantchev E A B, OBrien C J, Organ M G. Palladium Complexes of N-Heterocyclic Carbenes as Catalysts for Cross-Coupling Reactions—A Synthetic Chemist's Perspective[J]. Angew Chem Int Ed,2007,46(16):2768-2813.
    [22]Ruan J W, Saidi O, Iggo J A, et al. Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis[J]. J Am Chem Soc,2008,130(32):10510-10511.
    [23]Rahimi A, Schmidt A. A Cyclobutene-1,2-Bis(imidazolium) Salt as Efficient Precursor of Palladium-Catalyzed Room-Temperature Suzuki-Miyaura Reactions[J]. Synlett, 2010,(9):1327-1330.
    [24]Valente C, Calimsiz S, Hoi K H, et al. The Development of Bulky Palladium NHC Complexes for the Most-Challenging Cross-Coupling Reactions [J]. Angew Chem Int Ed,2012,51(14):3314-3332.
    [25]Bai L, Wang J X. Reusable, Polymer-Supported, Palladium-Catalyzed, Atom-Efficient Coupling Reaction of Aryl Halides with Sodium Tetraphenylborate in Water by Focused Microwave Irradiation[J]. Adv Synth Catal,2008,350(2):315-320.
    [26]Ogasawara S, Kato S. Palladium Nanoparticles Captured in Microporous Polymers:A Tailor-Made Catalyst for Heterogeneous Carbon Cross-Coupling Reactions[J]. J Am Chem Soc,2010,132(13):4608-4613.
    [27]Yang J, Li P, Wang L. Recyclable Catalysts for Suzuki-Miyaura Cross-Coupling Reactions at Ambient Temperature Based on a Simple Merrifield Resin Supported Phenanthroline-Palladium(II) Complex[J]. Synthesis,2011, (8):1295-1301.
    [28]Zhang D, Zhou C, Wang R. Palladium Nanoparticles Immobilized by Cclick Ionic Copolymers:Efficient and Recyclable Catalysts for Suzuki-Miyaura Cross-Coupling Reaction in Water[J]. Catal Commun,2012,22,83-88.
    [29]Cudden C M, Sateesh M, Lewis R. Mercaptopropyl-Modified Mesoporous Silica:□ A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions[J]. J Am Chem Soc,2005,127(28):10045-10050.
    [30]Karimi B, Elhamifar D, Clark J H, et al. Ordered Mesoporous Organosilica with Ionic-Liquid Framework:An Efficient and Reusable Support for the Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction in Water [J]. Chem Eur J, 2010,16(27):8047-8053.
    [31]Chen W, Li P, Wang L. Silica Supported Palladium-Phosphine Complex:Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reactions at Ambient Temperature [J]. Tetrahedron,2011,67(2):318-325.
    [32]Gruber-Woelfler H, Radaschitz P F, Feenstra P W, et al. Synthesis, Catalytic Activity, and Leaching Studies of a Heterogeneous Pd-Catalyst Including an Immobilized Bis(oxazoline) Ligand[J]. J Catal,2012,286(1):30-40.
    [33]Soomro S S, Rohlich R, Kohler K. Suzuki Coupling Reactions in Pure Water Catalyzed by Supported Palladium-Relevance of the Surface Polarity of the Support[J]. Adv Synth Catal,2011,353(5):767-775.
    [34]Li S Z, Zhang W, So M H, et al. One-Pot Solvothermal Synthesis of Pd/Fe3O4 Nanocomposite and Its Magnetically Recyclable and Efficient Catalysis for Suzuki Reactions[J]. J Mol Catal A:Chem,2012,359(1):81-87.
    [35]Kitamura Y, Sakurai A, Udzu T, et al. Heterogeneous Pd/C-Catalyzed Ligand-Free Suzuki-Miyaura Coupling Reaction using Aryl Boronic Esters[J]. Tetrahedron,2007, 63(43):10596-10602.
    [36]Scheuermann G M, Rumi L, Steurer P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction[J]. J Am Chem Soc,2009,131(23):8262-8270.
    [37]Zhang P P, Zhang X X, Sun H X, et al. Catalytic, Asymmetric Cyanohydrin Synthesis in Propylene Carbonate[J]. Tetrahedron Lett,2009,50(31):4455-4458.
    [38]Zhao D, Fei Z, Geldbach T J, et al. Nitrile-Functionalized Pyridinium Ionic Liquids:□ Synthesis, Characterization, and Their Application in Carbon-Carbon Coupling Reactions[J]. J Am Chem Soc,2004,126(48):15876-15882.
    [39]Miao T, Wang L, Li P H, et al. A Highly Efficient and Recyclable Ionic Liquid Anchored Pyrrolidine Catalyst for Enantioselective Michael Additions [J]. Synthesis, 2008, (23):3828-3834.
    [40]Lombardo M, Chiarucci M, Trombini C. A Recyclable Triethylammonium Ion-Tagged Diphenylphosphine Palladium Complex for the Suzuki-Miyaura Reaction in Ionic Liquids[J]. Green Chem,2009,11(4):574-579.
    [41]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature,1992,359(6): 710-712.
    [42]Mukhopadhyay K, Sarkar B R, Chaudhari R V. Anchored Pd Complex in MCM-41 and MCM-48:□ Novel Heterogeneous Catalysts for Hydrocarboxylation of Aryl Olefins and Alcohols[J]. J Am Chem Soc,2002,124(33):9692-9693.
    [43]Dekamin M, G. Mokntari Z. Highly Efficient and Convenient Strecker Reaction of Carbonyl Compounds and Amines with TMSCN Catalyzed by MCM-41 Anchored Sulfonic acid as a Recoverable Catalyst[J]. Tetrahedron,2012,68(3):922-930.
    [44]Corma A, Garcia H, Leyva A. An Imidazolium Ionic Liquid Having Covalently Attached an Oxime Carbapalladacycle Complex as Ionophilic Heterogeneous Catalysts for the Heck and Suzuki-Miyaura Cross-Coupling[J]. Tetrahedron 2004, 60(38):8553-8560.
    [45]Cai M Z, Xu Q H, Huang Y X. Heterogeneous Suzuki Reaction Catalyzed by MCM-41-Supported Sulfur Palladium(0) Complex[J]. J Mol Catal A:Chem,2007, 271(1-2):93-97.
    [46]Zhao H, Peng J, Xiao R, et al. A Simple, Efficient and Recyclable Phosphine-Free Catalytic System for Suzuki-Miyaura Reaction of Aryl Bromides[J]. J Mol Catal A: Chem,2011,337(1-2):56-60.
    [47]Wang Y, Wu Z, Wang L, et al. A Simple and Efficient Catalytic System for N-Arylation of Imidazoles in Water[J]. Chem Eur J,2009,15(36):8971-8974.
    [48]Tas E, Kilic A, Durgun M, et al. Mono- and Dinuclear Pd(Ⅱ) Complexes of Different Salicylaldimine Ligands as Catalysts of Transfer Hydrogenation of Nitrobenzene with Cyclohexene and Suzuki-Miyaura Coupling Reactions [J]. J Organomet Chem,2009, 694(3):446-454.
    [49]Lu Y, Shi D H, You Z L, et al. Synthesis, Structures, and Urease Inhibition of Nickel(Ⅱ), Zinc(Ⅱ), and Cobalt(Ⅱ) Complexes with Similar Hydroxy-Rich Schiff Bases[J]. J Coord Chem,2012,65(2):339-352.
    [50]Dawood K M, Kirschning A. Combining Enabling Techniques in Organic Synthesis: Solid-Phase-Assisted Catalysis under Microwave Conditions using a Stable Pd(II)-Precatalyst[J]. Tetrahedron 2005,61(51):12121-12130.
    [51]Phan N T S, Styring P. Supported Phosphine-Free Palladium Catalysts for the Suzuki-Miyaura Reaction in Aqueous Media[J]. Green Chem,2008,10(10): 1055-1060.
    [52]Dhara K, Sarkar K, Srimani D, et al. A New Functionalized Mesoporous Matrix Supported Pd(Ⅱ)-Schiff Base Complex:An Efficient Catalyst for the Suzuki-Miyaura Coupling Reaction[J]. Dalton Trans,2010,39(28):6395-6402.
    [53]Quali A, Laurent R, Caminade A M, et al. Enhanced Catalytic Properties of Copper in O- and N-Arylation and Vinylation Reactions, Using Phosphorus Dendrimers as Ligands[J]. J. Am. Chem. Soc.2006,128(50):15990-15991.
    [54]Quali A, Spindler J F, Jutand A, et al. Nitrogen Ligands in Copper-Catalyzed Arylation of Phenols:Structure/Activity Relationships and Applications[J]. Adv Synth Catal, 2007,349(11-12):1906-1916.
    [55]Smith G S, Mapolie S F. Iminopyridyl-Palladium Dendritic Catalyst Precursors: Evaluation in Heck Reactions[J]. J Mol Catal A:Chem,2004,213(2):187-192.
    [56]Cloete J, Mapolie S F. Functionalized Pyridinyl-Imine Complexes of Palladium as Catalyst Precursors for Ethylene Polymerization[J]. J Mol Catal A:Chem,2006, 243(2):221-225.
    [57]Song J, Shen Q, Xu F, et al. The Use of Iminopyridines as Efficient Ligands in the Palladium(II)-Catalyzed Cyclization of (Z)-4'-acetoxy-2'-butenyl 2-alkynoates[J]. Tetrahedron,2007,63(24):5148-5153.
    [58]Huh S, Wiench J W, Yoo J C, et al. Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method[J]. Chem Mater,2003,15(22):4247-4256.
    [59]Mubofu E B, Clark J H, Macquarrie D J. A Novel Suzuki Reaction System Based on a Supported Palladium Catalyst[J]. Green Chem,2001,3(1):23-25.
    [60]Das D D, Sayari A. Applications of Pore-Expanded Mesoporous Silica 6. Novel Synthesis of Monodispersed Supported Palladium Nanoparticles and Their Catalytic Activity for Suzuki Reaction[J]. J Catal,2007,246(1):60-65.
    [61]Niu Z Q, Peng Q, Zhuang Z B, et al. Evidence of an Oxidative-Addition-Promoted Pd-Leaching Mechanism in the Suzuki Reaction by Using a Pd-Nanostructure Design[J]. Chem Eur J,2012,18(32):9813-9817.
    [62]Webb J D, MacQuarrie S, McEleney K, et al. Mesoporous Silica-Supported Pd Catalysts:An Investigation into Structure, Activity, Leaching and Heterogeneity [J]. J Catal,2007,252(1):97-109.
    [63]Weck M, Jones C W. Mizoroki-Heck Coupling Using Immobilized Molecular Precatalysts:Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes[J]. Inorg Chem,2007,46(6):1865-1875.
    [64]Chen J S, Vasiliev A N, Panarello A P, et al. Pd-Leaching and Pd-Removal in Pd/C-Catalyzed Suzuki Couplings[J]. Appl Catal A:Gen,2007,325(1):76-86.
    [1]Fang P P, Jutand A, Tian Z Q, et al. Au-Pd Core-Shell Nanoparticles Catalyze Suzuki-Miyaura Reactions in Water through Pd Leaching. Angew Chem Int Ed,2011, 50(51):12184-12188.
    [2]Moussa S, Siamaki A R, Gupton B F, et al. Pd-Partially Reduced Graphene Oxide Catalysis (Pd/PRGO):Laser Synthesis of Pd Nanoparticles Supported on PRGO Nanosheets for Carbon-Carbon Cross Coupling Reactions[J]. ACS Catal,2012,2(1): 145-154.
    [3]Fihri A, Cha D, Bouhrara M, et al. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst:Suzuki Coupling Reactions Under Sustainable Conditions[J]. ChemSusChem, 2012,5(1):85-89.
    [4]Schatz A, Reiser O, Stark W J. Nanoparticles as Semi-Heterogeneous Catalyst Supports[J]. Chem Eur J,2010,16(30):8950-8967.
    [5]Lu A H, Salabas E L, Schuth F. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application[J]. Angew Chem Int Ed,2007,46(8):1222-1244.
    [6]Latham A H, Williams M E. Controlling Transport and Chemical Functionality of Magnetic Nanoparitcles[J]. Acc Chem Res,2008,41(3):411-420.
    [7]Shylesh S, Schunemann V, Thiel W R. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis[J]. Angew Chem Int Ed,2010, 49(20):3428-3459.
    [8]Polshettiwar V, Luque R, Fihri A, et al. Magnetically Recoverable Nanocatalysts[J]. Chem Rev,2011,111(5):3036-3075.
    [9]Hafez H N, Hegab M I, Ahmed-Farag I S, et al. A Facile Regioselective Synthesis of Novel spiro-Thioxanthene and spiro-Xanthene-9',2-[1,3,4]thiadiazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents[J]. Bioorg Med Chem Lett,2008, 18(16):4538-4543.
    [10]Chilbale K, Visser M, van Schalkwyk D, et al. Exporing the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents[J]. Tetrahedron,2003,59(13):2289-2296.
    [11]Kumar A, Sharma S, Maurya R A, et al. Diversity Oriented Synthesis of Benzoxanthene Benzochromene Libraries via One-Pot, Three-Component Reactions and Their Anti-Proliferative Activity[J]. J Comb Chem,2010,12(1):20-24.
    [12]Li J J, Tang W Y, Lu L M, et al. Strontium Triflate Catalyzed One-Pot Condensation of β-Naphthol, Aldehydes and Cyclic 1,3-Dicarbonyl Compounds[J]. Tetrahedron Lett, 2008,49(50):7117-7120.
    [13]Nandi G C, Samai S, Kumar R, et al. An Efficient One-Pot Synthesis of Tetrahydrobenzo[a]xanthene-11-one and Diazabenzo[a]anthracene-9,11-dione Derivatives under Solvent Free Condition[J]. Tetrahedron,2009,65(34):7129-7134
    [14]Das B, Laxminarayana K, Krishnaiah M, et al. An Efficient and Convenient Protocol for the Synthesis of Novel 12-Aryl-or 12-Alkyl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives[J]. Synlett,2007, (20):3107-3112.
    [15]Zhang Z H, Wang H J, Ren X Q, et al. A Facile and Efficient Method for Synthesis of Xanthone Derivatives Catalyzed by HBF4/Si02 under Solvent-Free Conditions [J]. Monatsh Chem,2009,140(12):1481-1483.
    [16]Karimi N, Oskooie H A, Heravi M M, et al. Caro's Acid-Silica Gel-Catalyzed One-Pot Synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-ll-ones[J]. Synth Commun,2011,41(2):307-312.
    [17]Li J J, Lu L M, Su W K. A New Strategy for the Synthesis of Benzoxanthenes Catalyzed by Proline Triflate in Water[J]. Tetrahedron Lett,2010,51(18):2434-2437.
    [18]Gao S J, Tsai C H, Yao C. A Simple and Green Approach for the Synthesis of Tetrahydrobenzo[a]-xanthen-11-one Derivatives using Tetrabutylammonium Fluoride in Water[J]. Synlett,2009, (6):949-954.
    [19]Li J J, Li J, Fang J, et al. Efficient One-Pot Condensation of β-Naphthol, Aldehydes, and Cyclic 1,3-Dicarbonyl Compounds Catalyzed by p-TSA under Solvent-Free and Sonication Conditions[J]. Synth Commun,2010,40(7):1029-1039.
    [20]Lee J, Lee Y, Youn J K, et al. Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable High-Performance Biocatalysts[J]. Small,2008,4(1):143-152.
    [21]Zeng T Q, Chen W W, Cirtiu C M, et al. Fe3O4 Nanopaticles:A Robust and Magnetically Recoverable Catalyst for Three-Component Coupling of Aldehyde, Alkyne and Amine[J]. Green Chem,2010,12(4):570-573.
    [22]Wang Y Y, Gong X, Wang Z, et al. SO3H-Functionalized Iionic Liquids as Efficient and Recyclable Catalysts for the Synthesis of Pentaerythritol Diacetals and Diketals[J] J Mol Catal A:Chem,2010,322(1-2):7-16.
    [23]Janis R A, Triggle D J. New Development in Calcium Ion Channel Antagonists[J]. J Med Chem,1983,26(6):775-785.
    [24]Bocker R H, Guengerich E P. Oxidation of 4-Aryl-and 4-Alkyl-Substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by Human Liver Microsomes and Immunochemical Evidence for the Involvement of a Form of Cytochrome P-450[J]. J Med Chem,1986,29(9):1596-1603.
    [25]Gordeev M F, Patel D V, Gordon E M. Approaches to Combinatorial Synthesis of Heterocycles:A Solid-Phase Synthesis of 1,4-Dihydropyridines[J].J Org Chem,1996, 61(3):924-928.
    [26]Heravi M M, Behbahani F K, Oskooie H A, et al. Catalytic Aromatization of Hantzsch 1,4-Dihydropyridines by Ferric Perchlorate in Acetic Acid[J]. Tetrahedron Lett,2005, 46(16):2775-2777.
    [27]Kawase M, Shah A, Gaveriya H, et al.3,5-Dibenzoyl-1,4-dihydropyridines:Synthesis and MDR Reversal in Tumor Cells[J]. Bioorg Med Chem,2002,10(4):1051-1055.
    [28]Shan R, Velazquez C, Knaus, E E. Synthesis, Calcium Channel Agonist-Antagonist Modulation Activities, and Nitri Oxide Release Studies of Nitrooxyalkyl l,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3,-benzoxadiazol-4-yl)pyridine-5-carboylate Racemates, Enantiomers, and Diastereomers[J]. J Med Chem,2004,47(1):254-261.
    [29]Alajarin R, Vaquero J J, Garcia J L N, et al. Synthesis of 1,4-Dihydropyridines under Microwave Irradiation[J]. Synlett,1992, (4):297-298.
    [30]Wang S X, Li Z Y, Zhang J C, et al. The Solvent-Free Synthesis of 1,4-Dihydropyridines under Ultrasound Irradiation without Catalyst[J]. Ultra Sonochem,2008,15(5):677-680.
    [31]Pasunooti K K, Jensen C N, Chai H. Microwave-Assisted Copper (Ⅱ)-Catalyzed One-Pot Four-Component Synthesis of Multifunctionalized Dihydropyridines[J]. J Comb Chem,2010,12(4):577-581.
    [32]Li M, Guo W S, Wen L R. One-Pot Synthesis of Biginelli and Hantzsch Products Catalyzed by Non-Toxic Ionic Liquid (BMImSac) and Structural Determination of Two Products[J]. J Mol Catal A:Chem,2006,258(1-2):133-138.
    [33]Ji S J, Jiang Z Q, Lu J, et al. Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives under Solvent-Free Conditions [J]. Synlett,2004, (5): 831-835.
    [34]Tamaddon F, Razmi Z, Jafari A A. Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and 1,4-Dihydropyridines using Ammonium Carbonate in Water[J]. Tetrahedron Lett, 2010,51(8):1187-1189.
    [35]Shen L, Cao S, Wu J J. K2CO3-Assisted One-Pot Sequential Synthesis of 2-Trifluoromethyl-6-difluoromethylpyridine-3,5-dicarboxylates under Solvent-Free Conditions[J]. Tetrahedron Lett,2010,51(37):4866-4869.
    [36]Kumar A, Maurya R A. Synthesis of Polyhydroquinoline Derivatives through Unsymmetric Hantzsch Reaction using Organocatalysts[J]. Tetrahedron,2007,63(9): 1946-1952.
    [37]Wang L M, Shang J, Zhang L. Facile Yb(OTf)3 Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives through Hantzsch Reaction[J]. Tetrahedron,2005, 61(6):1539-1543.
    [38]Donelson J L, Gibbs R A, De S K. An Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives through the Hantzsch Four Component Condensation[J]. J Mol Catal A:Chem,2006,256(1-2):309-311.
    [39]Ko S K, Yao C F. Ceric Ammonium Nitrate (CAN) Catalyzes the One-Pot Synthesis of Polyhydroquinoline via the Hantzsch Reaction[J]. Tetrahedron,2006,62(31): 7293-7299.
    [40]Sapkal S B, Shelke K F, Shingate B B. Nickel Nanoparticle-Catalyzed Facile and Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation under Solvent-Free Conditions[J]. Tetrahedron Lett,2009,50(15): 1754-1756.
    [41]Debache A, Ghalem W, Boulcina R. An Efficient One-Step Synthesis of 1, 4-Dihydropyridines via a Triphenylphosphine-Catalyzed Three-Component Hantzsch Reaction under Mild Conditions[J]. Tetrahedron Lett,2009,50(37):5248-5250.
    [42]Ko S K, Sastry M N V, Lin C C, et al. Molecular Iodine-Catalyzed One-Pot Synthesis of 4-Substituted-1,4-dihydropyridine Derivatives via Hantzsch Reaction[J]. Tetrahedron Lett,2005,46(34):5771-577'4.
    [43]Kumar A, Maurya R A. Bakers'Yeast Catalyzed Synthesis of Polyhydroquinoline Derivatives via an Unsymmetrical Hantzsch Reaction[J]. Tetrahedron Lett,2007, 48(22):3887-3890.
    [44]Affeldt R F, Benvenutti E V, Russowsky D. A New In-SiO2 Composite Catalyst in the Solvent-Free Multicomponent Synthesis of Ca2+ Channel Blockers Nifedipine and Nemadipine B[J]. New J Chem,2012,36(7):1502-1511.
    [45]Li J J, He P, Yu C M. DPTA-Catalyzed One-Pot Regioselective Synthesis of Polysubstituted Pyridines and 1,4-Dihydropyridines[J]. Tetrahedron,2012,68(22): 4138-4144.
    [1]Heck R F, Nolley J P. Palladium-Catalyzed Vinylic Hydrogen Substitution Reactions with Aryl, Benzyl, and Styryl Halides[J]. J Org Chem,1972,37(14):2320-2322.
    [2]Bras J L, Muzart J. Intermolecular Dehydrogenative Heck Reactions [J]. Chem Rev, 2011,111(3):1170-1214.
    [3]Bouhlel A, Curti C, Dumetre A, et al. Synthesis and Evaluation of Original Amidoximes as Antileishmanial Agents[J]. Bioorg Med Chem,2010,18(20): 7310-7320.
    [4]Kienzler M A, Suseno S, Trauner D. Vinyl Quinones as Diels-Alder Dienes:Concise Synthesis of (-)-Halenaquinone[J]. J Am Chem Soc,2008,130(27):8604-8605.
    [5]Trost B M, O'Boyle B M, Hund D. Investigation of a Domino Heck Reaction for the Rapid Synthesis of Bicyclic Natural Products[J]. Chem Eur J,2010,16(32): 9772-9776.
    [6]Yan Y X, Tao X T, Sun Y H, et al. Synthesis and Nonlinear Optical Properties of Novel Multibranched Two-Photon Polymerization Initiators [J]. J Mater Chem,2004,14(20): 2995-3000.
    [7]Farina V. High-Turnover Palladium Catalysts in Cross-Coupling and Heck Chemistry: A Critical Overview[J]. Adv Synth Catal,2004,346(13-15):1553-1582.
    [8]Mondal J, Modak A, Bhaumik A. One-Pot Efficient Heck Coupling in Water Catalyzed by Palladium Nanoparticles Tethered into Mesoporous Organic Polymer [J]. J Mol Catal A:Chem,2011,350(1):40-48.
    [9]Liu G, Hou M, Song J, et al. Immobilization of Pd Nanoparticles with Functional Ionic Liquid Grafted onto Cross-Linked Polymer for Solvent-Free Heck Reaction[J]. Green Chem,2010,12(1):65-69.
    [10]Wang Y, Zhang J Z, Zhang W Q, et al. Pd-Catalyzed C-C Coupling Reactions within a Thermoresponsive and pH-Responsive and Chelating Polymeric Hydrogel[J]. J Org Chem,2009,74(5):1923-1931.
    [11]Iranpoor N, Firouzabadi H, Motevalli S, et al. Palladium Nanoparticles Supported on Silicadiphenyl Phosphinite (SDPP) as Efficient Catalyst for Mizoroki-Heck and Suzuki-Miyaura Coupling Reactions[J]. J Organomet Chem,2012,708-709,118-124.
    [12]Sharma R K, Pandey A, Gulati S. Silica-Supported Palladium Complex:An Efficient, Highly Selective and Reusable Organic-Inorganic Hybrid Catalyst for the Synthesis of E-Stilbenes[J]. Appl Catal A:Gen,2012,431-432,33-41.
    [13]Niembro S, Shafir A, Vallribera A, et al. Palladium Nanoparticles Supported on an Organic-Inorganic Fluorinated Hybrid Material. Application to Microwave-Base Heck Reaction[J]. Org Lett,2008,10(15):3215-3218.
    [14]Kamal A, Srinivasulu V, Seshadri B N, et al. Water Mediated Heck and Ullmann Couplings by Supported Palladium Nanoparticles:Importance of Surface Polarity of the Carbon Spheres[J]. Green Chem,2012,14(9):2513-2522.
    [15]Kalbasi R J, Mosaddegh N, Abbaspourrad A. Palladium Nanoparticles Supported on a Poly(N-vinyl-2-pyrrolidone)-Modified Mesoporous Carbon Nanocage as a Novel Heterogeneous Catalyst for the Heck Reaction in Water [J]. Tetrahedron Lett,2012, 53(29):3763-3766.
    [16]Ghiaci M, Ansari F, Sadeghi Z, et al. Efficient Clay Supported Pd Nanoparticles as Heterogeneous Catalyst for Arylation of Alkenes[J]. Catal Commun,2012,21(1): 82-85.
    [17]Wu S, Ma H C, Jia X, et al. Biopolymer-Metal Complex Wool-Pd as a Highly Active Heterogeneous Catalyst for Heck Reaction in Aqueous Media[J]. Tetrahedron,2011, 67(1):250-256.
    [18]Firouzabadi H, Iranpoor N, Kazemi F, et al. Palladium Nanoparticles Supported on Agarose as Efficient Catalyst and Bioorganic Ligand for C-C Bond Formation via Solventless Mizoroki-Heck Reaction and Sonogashira-Hagihara reaction in Polyethylene glycol (PEG 400)[J]. J Mol Catal A:Chem,2012,357(1):154-161.
    [19]Pathan S, Patel A. Heck Coupling Catalyzed by Pd Exchanged Supported 12-Tunstophosphoric Acid-an Efficient Ligand free, Low Pd-Loading Heterogeneous Catalyst[J]. RSC Adv,2012,2(1):116-120.
    [20]Li P H, Wang L, Zhang L, et al. Magnetic Nanoparticles-Supported Palladium:A Highly Efficient and Reusable Catalyst for the Suzuki, Sonogashira, and Heck Reactions[J]. Adv Synth Catal,2012,354(7):1307-1318.
    [21]Du Q W, Zhang W, Ma H, Zheng J, Zhou B, Li Y Q. Immobilized palladium on Surface-Modified Fe3O4/SiO2 Nanoparticles:as a Magnetically Separable and Stable Recyclable High-Performance Catalyst for Suzuki and Heck Cross-Coupling Reactions[J]. Tetrahedron,2012,68(18):3577-3584.
    [1]Astruc D. Nanoparticles and Catalysis[M]. Weinheim:Wiley-VCH,2008.
    [2]Campelo J M, Luna D, Luque R, et al. Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis[J]. ChemSusChem,2009,2(1): 18-45.
    [3]Niembro S, Shafir A, Vallribera A, et al. Palladium Nanoparticles Supported on an Organic-Inorganic Fluorinated Hybrid Material. Application to Microwave-Based Heck Reaction[J]. Org Lett,2008,10(15):3215-3218.
    [4]Li S H, Wang J H, Kou Y L, et al. Ionic Liquid-Grafted Rigid Poly(p-Phenylene) Microspheres:Efficient Heterogeneous Media for Metal Scavenging and Catalysis[J]. Chem Eur J,2010,16(6):1812-1818.
    [5]Hong M C, Choi M C, Chang Y W, et al. Palladium Nanoparticles on Thermoresponsive Hydrogels and Their Application as Recyclable Suzuki-Miyaura Coupling Reaction Catalysts in Water[J]. Adv Synth Catal,2012,354(7):1257-1263.
    [6]Fihri A, Cha D, Bouhrara M, et al. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst:Suzuki Coupling Reactions under Sustainable Conditions[J]. ChemSusChem, 2012,5(1):85-89.
    [7]Migowski P, Dupont J. Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids[J].Chem Eur J,13(1):32-39.
    [8]Durand J, Teuma E, Malbosc F, et al. Palladium Nanoparticles Immobilized in Ionic Liquid:An Outstanding Catalyst for the Suzuki C-C Coupling[J]. Catal Commun, 2008,9(2):273-275.
    [9]Calo V, Nacci A, Monopoli A, et al. Heck Reactions with Palladium Nanoparticles in Ionic Liquids:Coupling of Aryl Chlorides with Deactivated Olefins[J]. Angew Chem Int Ed,2009,48(33):6101-6103.
    [10]Scheuermann G M, Rumi L, Steurer P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction[J]. J Am Chem Soc,2009,131(23):8262-8270.
    [11]Moussa S, Siamaki A R, Gupton B F, et al. Pd-Partially Reduced Graphene Oxide Catalysts (Pd/PRGO):Laser Synthesis of Pd Nanoparticles Supported on PRGO Nanosheets for Carbon-Carbon Cross Coupling Reactions[J]. ACS Catal,2012,2(1): 145-154.
    [12]Zhu Y H, Peng S C, Emi A, et al. Supported Ultra Small Palladium on Magnetic Nanoparticles Used as Catalysts for Suzuki Cross-Coupling and Heck Reactions[J]. Adv Synth Catal,2007,349(11-12):1917-1922.
    [13]Yuan D Z, Zhang Q Y, Dou J B. Supported Nanosized Palladium on Superparamagnetic Composite Micospheres as an Efficient Catalyst for Heck Reaction[J]. Catal Commun,2010,11(7):606-610.
    [14]Du Q W, Zhang W, Ma H, et al. Immobilized Palladium on Surface-Modified Fe3O4/SiO2 Nanoparticles:as a Magnetically Separable and Stable Recyclable High-Performance Catalyst for Suzuki and Heck Cross-Coupling Reactions [J]. Tetrahedron,2012,68(18):3577-3584.
    [15]Amblard F, Cho J H, Schinazi R F. Cu(I)-Catalyzed Huisgen Azide-Alkyne 1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide ChemistryfJ]. Chem Rev,2009,109(9):4207-4220.
    [16]Chu C H, Liu R H. Application of Click Chemistry on Preparation of Separation Materials for Liquid Chromatography[J]. Chem Soc Rev,2011,40(5):2177-2188.
    [17]Ganai A K, Bhardwaj R, Hotha S, et al. Clicking Molecular Hooks on Silica Nanoparticles to Immobilize Catalytically Important Metal Complexes:the Case of Gold Catalyst Immobilization[J]. New J Chem,2010,34(11):2662-2670.
    [18]Jain S L, Rana B S, Singh B, et al. An Improved High Yielding Immobilization of Vanadium Schiff Base Complexes on Mesoporous Silica via Azide-Alkyne Cycloaddition for the Oxidation of Sulfides[J]. Green Chem,2010,12(3):374-377.
    [19]Zhang G F, Wang Y, Wen X, et al. Dual-Functional Click-Triazole:a Metal Chelator and Immobilization Linker for the Construction of a Heterogeneous Palladium Catalyst and Its Application for the Aerobic Oxidation of Alcohols[J]. Chem Commun, 2012,48(24):2979-2981.
    [20]Li P H, Wang L, Zhang L, et al. Magnetic Nanoparticles-Supported Palladium:A Highly Efficient and Reusable Catalyst for the Suzuki, Sonogashira, and Heck Reactions[J]. Adv Synth Catal,2012,354(7):1307-1318.
    [21]Zhang L, Li P H, Li H J, et al. Recyclable Magnetic Nanoparticles Supported Palladium Catalyst for the Hiyama Reaction of Aryltrialkyoxysilanes with Aryl Halides[J]. Catal Sci Technol,2012,2(9):1859-1864.
    [22]Pinna N, Grancharov S, Beato P, et al. Magnetite Nanocrystals:Nonaqueous Synthesis, Characterization, and Solubility [J]. Chem Mater,2005,17(11):3044-3049.
    [23]De Faria D L A, Silva S V, de Oliveira M T. Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides[J]. J Raman Spectrosc,1997,28(11):873-878.
    [24]Slavov L, Abrashev M V, Merodiiska T, et al. Raman Spectroscopy Investigation of Magnetite Nanoparticles in Ferrofluids[J]. J Magn Magn Mater,2010,322(14): 1904-1911.
    [25]Costa N J S, Kiyohara P K, Monteiro A L, et al. A Single-Step Procedure for the Preparation of Palladium Nanoparticles and a Phosphine-Functionalized Support as Catalyst for Suzuki Cross-Coupling[J]. J Catal,2010,276(2):382-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700