用户名: 密码: 验证码:
预压应力下陶瓷材料的裂纹扩展及其加工机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业陶瓷由于本身具有诸多优良的结构力学性能而被广泛应用于机械、电子、航空航天、仿生器械、机器人等领域。科学技术的发展促进了陶瓷材料的压制、成型以及烧结工艺不断的得到改进和提高,使得陶瓷材料的力学性能也得以提升。随着机械产品朝“高、精、尖”的方向发展,人们对陶瓷器件也提出越来越苛刻的要求,如高质量、高精度、高可靠性等。同时,陶瓷材料本身的硬脆性使得其在加工的过程中不可避免的产生加工损伤和裂纹,降低了其可靠性。如何有效的降低陶瓷材料加工过程中的损伤以及控制裂纹的扩展一直是学者们研究的重要课题。本文提出了一种陶瓷材料的预压应力加工方法,并分别从理论分析、试验研究以及模拟三个角度来阐述预压应力下陶瓷材料的断裂力学行为及其加工损伤机理。本文的研究成果可以为陶瓷材料加工的实际应用提供一定的技术指导,对发展陶瓷材料的高效、低损伤新加工工艺具有重要的科学意义和工程应用价值。
     本文共分为七章,各章节的主要研究内容如下:
     第一章阐述了本文的研究背景,回顾了陶瓷材料断裂力学行为近几十年来的研究成果;从陶瓷材料的加工机理、去除机理以及研究方法与手段出发,综述了陶瓷材料加工的研究现状;提出了陶瓷材料的预压应力加工方法,概括了全文的研究内容及研究意义;
     第二章以陶瓷材料的压痕断裂力学为基础,建立了陶瓷材料在预压应力作用下的划痕力学模型,分析了模型内部应力场随角度变量的分布;研究了预压应力、载荷比等对模型内部主应力及最大剪切应力的影响,并得到了不同裂纹形态下的应力场强度因子;
     第三章以工业中常见的碳化硅、氧化铝陶瓷为研究对象,通过施加不同大小的预压应力进行划痕试验;观察了材料表面/亚表面裂纹的扩展结果、材料的损伤情况、划痕沟槽的几何形状变化,以及记录了划痕过程中的声发射信号等;综合以上研究结果,分析了预压应力对材料内部裂纹扩展以及材料去除机理的影响;
     第四章对预压应力下碳化硅陶瓷的磨削过程进行了实验研究,采用Kistler测力仪测量了不同预压应力下磨削力信号的变化情况;结合磨削后材料表面/亚表面的损伤情况、表面粗糙度以及残余应力的变化趋势等,分析了预压应力对陶瓷材料磨削过程中裂纹扩展以及加工质量的影响;
     第五章采用Cluster方法建立了在微观上能近似材料微结构,且在宏观上能表征其力学性能的陶瓷材料离散元力学模型;建立了陶瓷材料磨削加工的方法,分析了陶瓷材料磨削过程中裂纹的动态扩展过程以及磨削力的变化情况;采用正交试验方法研究了不同磨削加工工艺下的磨削力,材料损伤等;基于离散元法提出了陶瓷材料加工后表面/亚表面残余应力分析的新方法,分析了残余应力分布情况,综合以上研究结果,优化了其加工工艺参数;
     第六章基于离散元法建立了预压应力下碳化硅陶瓷单点金刚石精密切削加工的离散元模型,分析了预压应力对材料内部裂纹扩展的影响,并以此与预压应力划痕试验进行对照分析;基于正交试验方法,对陶瓷材料的精密切削加工工艺参数进行了优化;分别了切削工艺参数对残余应力分布的影响,并得到了残余应力云图;
     第七章对本文的研究内容进行了简要总结,并对今后的研究工作进行了展望。
     从本文理论分析、试验研究以及模拟三个角度的研究结果来看,在陶瓷材料施加预压应力加工过程中,预压应力的存在将一定程度上阻止中位裂纹的扩展及降低材料的损伤。若施加合适大小的预压应力,将有助于改善材料的去除,从而达到主动控制材料损伤的目的;但预压应力并不是越大越好,过大的预压应力又将给材料带来新的损伤。
Industrial ceramics have been widely used in machinery, electronics, aerospace, bionicdevices, robotics and other fields due to their excellent mechanical properties. Thedevelopment of science and technology promoted and improved the processes of thecompressing, forming as well as sintering process of ceramic materials, which has enhancedthe mechanical properties of ceramic materials. With the development of machinery productsheading to the direction of ‘high, fine, sharp’, ceramic components have to meet a higherstandard, such as high-quality, high precision and high reliability. Because of the intrinsichard and brittle properties of ceramics, damage and cracks are almost inevitable during thetraditional machining processes, and once the damage is remained the reliability of the finalproducts would be reduced. How to effectively reduce, or even eliminate if possible, theremaining damage induced during the machining processes and control the propagation ofcracks has becoming an important research subject. In this thesis, a method of pre-stressingmachining of ceramic materials was presented and the fracture behavior of ceramic materialsunder pre-stressing were illustrated from the viewpoints of theoretical analysis, experimentalinvestigation as well as numerical simulation. The results of this research can provide atechnical guidance for the practical application of ceramic materials and can have animportant impact on both scientific researches and engineering applications for thedevelopment of high efficiency, low-damage of machining method of ceramic materials.
     This thesis was written in seven chapters, and main research objectives and outcomes ofeach chapter are briefly described as following:
     In chapter one, an introduction of the background of this research was given, anda literature review of fracture of ceramics was delivered. From the viewpoints ofmachining method, machining mechanism of ceramic materials and research method,the machining status of ceramics was described. The pre-stressing machining methodwas elaborated and the research contents and the significance of this thesis wereoutlined.
     In chapter two, a mechanical model of pre-stressing scratching of ceramicmaterials was developed. The stress distribution changed with the angle variablewithin the material under pre-stressing was analyzed. The effects of pre-stress andload ratio on the principal stress and maximum shear stress were studied, and thestress field intensity factor under different crack form was proposed.
     In chapter three, a series of scratching tests were carried out under different pre-stresses of silicon carbide and aluminum ceramics. The surface/sub-surface crack,material damage and the shape of scratch groove were observed, and the AE signalswere also recorded in the scratching test. Combining these results, the effects ofpre-stress on the crack propagation and material removal mechanism were analyzed.
     In chapter four, the grinding process of SiC ceramic under pre-stressing wasinvestigated in experiment. The signal of grinding force in the grinding process wascollected by the Kistler dynamometer. Combining the grinding surface, cross-sectiondamage, surface roughness and the residual stress of SiC ceramic, the effects ofpre-stress on the crack’s propagation and machining quality of SiC ceramic ingrinding process were also analyzed.
     In chapter five, based on discrete element method (DEM), the discrete elementmodel of SiC ceramic was established and calibrated using PFC2D numerical code.The cluster method was introduced so that the DEM model of SiC ceramic was closedto the reality material in the viewpoint of microscopic. The grinding process ofceramic materials was established base on the DEM simulation. The dynamics ofcracks propagation process and the changing of grinding force were analyzed. Basedon the orthogonal test, the grinding parameters under different pre-stress wereinvestigated, and the material damages were also studied. And based on the DEMmethod, the measurement of surface/sub-surface residual stress of ceramic afterprocessing was proposed, and the distribution of residual stresses were investigated.The grinding parameters of grinding process were optimized.
     In chapter six, the DEM model of pre-stressing cutting process of ceramicmaterial was established, and the effect of pre-stress on the crack propagation wasalso analyzed. The simulation results were compared with the results of scratchingtests. Based on the orthogonal test, the cutting parameters of ceramic materials wereoptimized. The distribution of residual stresses were investigated, and the residualstress nephogram was also accomplished.
     In chapter seven, the contents of this thesis were briefly summarized, andpotential future work was also discussed.
     From the research results of theoretical analysis, experimental investigation as well asnumerical simulation of this thesis, it can be seen that the existence of pre-stress shouldshorten the depth of median cracks and reduce the sub-surface damage. Moreover, if thepre-stress was kept in a proper range, the depth of median crack was decreased and thepropagation length of lateral crack was limited. And the existence of pre-stress can bepropitious to change the material removal mechanism, and than to achieve the aim of initiative control the material damages. But it is not that a higher pre-stress would get a bettermachining quality. If the pre-stress exceeded the proper range, it would be lead to producesome additional damages.
引文
[1].C. B. Carter, M. G. Norton. Ceramic materials science and engineering: Springer.2007.
    [2].袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社.2000.
    [3].田欣利,于爱兵.工程陶瓷加工的理论与技术.北京:国防工业出版社.2006.
    [4].龚江宏.陶瓷材料断裂力学.北京:清华大学出版社.2001.
    [5].David J. Green,龚江宏译.陶瓷材料力学性能导论.北京:清华大学出版社.2003.
    [6].L. E. Murr. Industrial materials science and engineering. New York: Marcel Dekker Inc.1984.
    [7].R. C. Garvie, R. H. Hannink, R. T. Pascoe. Ceramic steel?. Nature,1975,258:703-704.
    [8].C. E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners. TransactionsInstitution of Naval Architects,1913,55:219-230.
    [9].A. A. Griffith. The phenomena of rupture and flow in solids. Philosophical Transactions ofthe Royal Society of London. Series A,1921,221:163-198.
    [10].J. W. Obreimoff. The splitting strength of mica. Proceedings of the Royal Society ofLondon. Series A,1930,127:290-297.
    [11].G. R. Irwin. Fracture dynamics, fracturing of metals. American Society of Metals:Cleveland.1948.
    [12].G. R. Irwin. Fracture, in handbuch der physik. Berlin: Springer-Verlag.1958.
    [13].J. R. Rice. Mathematical analysis in the mechanics of fracture. Fracture: An AdvancedTreatise,1968,2:191–311.
    [14].B. R. Lawn, R. Wilshaw. Indentation fracture: principles and applications. Journal ofMaterials Science,1975,10(6):1049-1081.
    [15].B. R. Lawn, M. V. Swain. Microfracture beneath point indentations in brittle solids. Journalof Materials Science,1975,10(1):113-122.
    [16].A. G. Evans, T. R. Wilshaw. Dynamic solid particle damage in brittle materials: an appraisal.Journal of Materials Science,1977,12(1):97-116.
    [17].B. R. Lawn, A. G. Evans. A model for crack initiation in elastic/plastic indentation fields.Journal of Materials Science,1977,12(11):2195-2199.
    [18].B. R. Lawn, D. B. Marshall. Hardness, toughness, and brittleness-An indentation analysis.Journal of the American Ceramic Society,1979,62(7):347-350.
    [19].B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/plastic indentation damage in ceramics:The median/radial crack system. Journal of the American Ceramic Society,1980,63(9-10):574-581.
    [20].G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall. A critical evaluation of indentationtechniques for measuring fracture toughness: I, Direct crack measurements. Journal of theAmerican Ceramic Society,1981,64(9):533-538.
    [21].P. Chantikul, G. R. Anstis, B. R. Lawn, D. B. Marshall. A critical evaluation of indentationtechniques for measuring fracture toughness: II, Strength method. Journal of the AmericanCeramic Society,1981,64(9):539-543.
    [22].D. B. Marshall, B. R. Lawn, A. G. Evans. Elastic/plastic indentation damage in ceramics:The lateral crack system. Journal of the American Ceramic Society,1982,65(11):561-566.
    [23].K. L. Johnson. Contact mechanics: Cambridge University Press.1987.
    [24].K Li, T Warren Liao. Surface/subsurface damage and the fracture strength of groundceramics. Journal of Materials Processing Technology,1996,57(3-4):207-220.
    [25].郭培燕,王素玉,李明艳,张作状.切削加工表面残余应力的有限元计算.切削机理,2007,1:38-40.
    [26].M. V. Swain. Crack nucleation about pointed indentations in glasses. Journal of theAmerican Ceramic Society,1979,62(5-6):318-319.
    [27].J. C. Conway, H. P. Kirchner. The mechanics of crack initiation and propagation beneath amoving sharp indentor. Journal of Materials Science,1980,15(11):2879-2883.
    [28].E. Takakura, S. Horibe. Fatigue damage in ceramic materials caused by repeated indentation.Journal of Materials Science,1992,27(22):6151-6158.
    [29].R.J. Anton, G. Subhash. Dynamic Vickers indentation of brittle materials. Wear,2000,239(1):27-35.
    [30].B. R. Lawn. Partial cone crack formation in a brittle material loaded with a sliding sphericalindenter. Proceeding the Royel of Society A,1967,299:307-316.
    [31].B. R. Lawn. Hertzian fracture in single crystals with the diamond structure. Journal ofApplied Physics,1968,39(10):4828-4836.
    [32].B. R. Lawn, N. P. Padture, H. Cait, F. Guiberteau. Making ceramics "ductile". Science,1994,263:1114-1116.
    [33].P. B. Hirsch, S. G. Roberts. The brittle-ductile transition in silicon. Philosophical MagazineA,1991,64(1):55-80.
    [34].T. G. Bifano, T. Dow. Ductile-regime grinding: a new technology for machining brittlematerials. Journal of Engineering for Industry(Transactions of the ASME),1991,113(2):184-189.
    [35].P.N. Blake, R.O. Scattergood. Ductile-regime machining of germanium and silicon. Journalof the American Ceramic Society,1990,73(4):949-957.
    [36].B. K. A. Ngoi, P. S. Sreejith. Ductile regime finish machining-A review. The InternationalJournal of Advanced Manufacturing Technology,2000,16(8):547-550.
    [37].W. Zhang, G. Subhash. Finite element analysis of interacting Vickers indentations on brittlematerials. Acta Materialia,2001,49(15):2961-2974.
    [38].J. L. Bucaille, E. Felder, G. Hochstetter. Mechanical analysis of the scratch test on elasticand perfectly plastic materials with the three-dimensional finite element modeling. Wear,2001,249(5-6):422-432.
    [39].T. Chuang, S. Jahanmir, H.C. Tang. Finite element simulation of straight plunge grindingfor advanced ceramics. Journal of the European Ceramic Society,2003,23(10):1723-1733.
    [40].Xiao-Fei Song, Ling Yin, Yi-Gang Han, Jia Li. Finite element analysis of subsurfacedamage of ceramic prostheses in simulated intraoral dental resurfacing. Journal ofBiomedical Materials Research Part B: Applied Biomaterials,2008,85B:50-59.
    [41].D. A. Doman, A. Warkentin, R. Bauer. Finite element modeling approaches in grinding.International Journal of Machine Tools and Manufacture,2009,49(2):109-116.
    [42].S. Shimada, N. Ikawa, H. Tanaka, J. Uchikoshi. Structure of micromachined surfacesimulated by molecular dynamics analysis. CIRP Annals-Manufacturing Technology,1994,43(1):51-54.
    [43].P. Vashishta, A. Nakano, R.K. Kalia, I. Ebbsjo. Crack propagation and fracture in ceramicfilms--million atom molecular dynamics simulations on parallel computers. MaterialsScience and Engineering B,1996,37(1-3):56-71.
    [44].周泽华,于启勋.金属切削原理.上海:上海科学技术出版社.1993.
    [45].诸兴华.磨削原理.北京:机械工业出版社.1988.
    [46].B. R. Lawn,龚江宏译.脆性固体断裂力学.北京:高等教育出版社.2010.
    [47].GR Irwin, JA Kies, HL Smith. Fracture strengths relative to onset and arrest of crackpropagation. Proceedings of the American Society for Testing Materials,1958,58:640–660.
    [48].GR Irwin. The crack extension force for a crack at a free surface boundary. NRL Report,1958,5120:1-10.
    [49].H. Hertz. Miscellaneous papers. London: Macmillan.1896.
    [50].James Lankford, David L. Davidson. Indentation plasticity and microfracture in siliconcarbide. Journal of Materials Science,1979,14(7):1669-1675.
    [51].H. Ishikawa, N. Shinkai. Critical Load for Median Crack Initiation in Vickers Indentation ofGlasses. Journal of the American Ceramic Society,1982,65(8): c124-c127.
    [52].M. M. Islam, A. Senthil Kumar, S. Balakumar, H. S. Lim, M. Rahman. Characterization ofELID grinding process for machining silicon wafers. Journal of Materials ProcessingTechnology,2008,198(1-3):281-290.
    [53].Shaohui Yin, Hitoshi Ohmori, Yutang Dai, Yoshihiro Uehara, Fengjun Chen, Hengning Tang.ELID grinding characteristics of glass-ceramic materials. International Journal of MachineTools and Manufacture,2009,49(3-4):333-338.
    [54].V. K. Jain, P. Ranjan, V. K. Suri, R. Komanduri. Chemo-mechanical magneto-rheologicalfinishing (CMMRF) of silicon for microelectronics applications. CIRP Annals-Manufacturing Technology,2010,59(1):323-328.
    [55].D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O'Brien, S. Marson, W. O'Neill. Ion beam,focused ion beam, and plasma discharge machining. CIRP Annals-ManufacturingTechnology,2009,58(2):647-662.
    [56].B. Zhang, H. Tokura, M. Yoshikawa. Study on surface cracking of alumina scratched bysingle-point diamonds. Journal of Materials Science,1988,23(9):3214-3224.
    [57].Bi Zhang, X. L. Zheng, H. Tokura, M. Yoshikawa. Grinding induced damage in ceramics.Journal of Materials Processing Technology,2003,132(1-3):353-364.
    [58].H. H. K. Xu, S. Jahanmir. Simple technique for observing subsurface damage in machiningof ceramics. Journal of the American Ceramic Society,1994,77(5):1388-1390.
    [59].H.S. Ahn, L. Wei, S. Jahanmir. Nondestructive detection of damage produced by a sharpindenter in ceramics. Journal of engineering materials and technology,1996,118:402-409.
    [60].Sanjay Agarwal, P. Venkateswara Rao. A probabilistic approach to predict surfaceroughness in ceramic grinding. International Journal of Machine Tools and Manufacture,2005,45(6):609-616.
    [61].J. Akbari, Y. Saito, T. Hanaoka, S. Higuchi, S. Enomoto. Effect of grinding parameters onacoustic emission signals while grinding ceramics. Journal of Materials ProcessingTechnology,1996,62:403-407.
    [62].I. Demirci, S. Mezghani, A. Mkaddem, M. El Mansori. Effects of abrasive tools on surfacefinishing under brittle-ductile grinding regimes when manufacturing glass. Journal ofMaterials Processing Technology,2010,210(3):466-473.
    [63].O. Desa, S. Bahadur. The effect of lubricants in single point scratching and abrasivemachining of alumina and silicon nitride. Wear,2001,251(1-12):1085-1093.
    [64].O. Desa, S. Bahadur. Material removal and subsurface damage studies in dry and lubricatedsingle-point scratch tests on alumina and silicon nitride. Wear,1999,225-229(Part2):1264-1275.
    [65].RM Baul, R. Shilton. Mechanics of metal grinding with particular reference to Monte Carlosimulation. Proceedings of the8th International MTDR Conference.1967. Oxford:Pergamon. p.923-946
    [66].N. Fillot, I. Iordanoff, Y. Berthier. Wear modeling and the third body concept. Wear,2007,262(7-8):949-957.
    [67].S. Youssef, W. Ben Salem, A. Brosse, H. Hamdi. Residual stresses and metallurgictransformations induced by grinding. International Journal of Machining and Machinabilityof Materials,2011,9(3):223-232.
    [68].S. Youssef, O. Calonne, E. Feulvarch, P. Gilles, H. Hamdi. Analysis of residual stressinduced by hand grinding process.2011: Trans Tech Publ. p.327-331
    [69].D. Iliescu, D. Gehin, I. Iordanoff, F. Girot, M. E. Gutierrez. A discrete element method forthe simulation of CFRP cutting. Composites Science and Technology,2010,70(1):73-80.
    [70].Ivan Iordanoff, A. Battentier, J. Neauport, J. L. Charles. A discrete element model toinvestigate sub-surface damage due to surface polishing. Tribology International,2008,41(11):957-964.
    [71].Shengqiang Jiang, Yuanqiang Tan, Gaofeng Zhang, Ruitao Peng, Dongmin Yang. DEMSimulation and Experimental Investigation of Silicon Carbide on Pre-Stressed Machining.Advanced Materials Research,2010,126-128:241-245.
    [72].Shengqiang Jiang, Yuanqiang Tan, Gaofeng Zhang, Dongmin Yang. DEM Simulation ofMachining Damage in SiC Pre-stressing Cutting Process. Advanced Materials Research,2011,177:165-169.
    [73].E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H. W. Hoffmeister, F. Klocke, J.Peters, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert, M. Wittmann. Advances inModeling and Simulation of Grinding Processes. CIRP Annals-Manufacturing Technology,2006,55(2):667-696.
    [74].M. A. Elbestawi, A. K. Srivastava, T. I. El-wardany. A model for chip formation duringmachining of hardened steel. CIRP annals-Manuf Tech,1996,45(1):71-76.
    [75].Y. T. Feng, K. Han, C. F. Li, D. R. J. Owen. Discrete thermal element modelling of heatconduction in particle systems: Basic formulations. Journal of Computational Physics,2008,227(10):5072-5089.
    [76].Y. T. Feng, K. Han, D. R. J. Owen. Discrete thermal element modelling of heat conductionin particle systems: Pipe-network model and transient analysis. Powder Technology,2009,193(3):248-256.
    [77].K. Homma, K. Murakami. A simulation of crack behavior in ceramics under grindingprocess. International Journal of the Japan Society for Precision Engineering(Japan),1992,26(1):8-13.
    [78].P A Cundall, A computer model for simulating progressive large scale movements in blockysystem, in Muller Led.Proc. Symp.Int. Soc. Rock Mechanics, R.A. A, Editor.1971: Balk-ama. p.8-11.
    [79].王泳嘉,邢纪波.离散元法及其在岩土力学中的应用.沈阳:东北工学院出版社.1986.
    [80].刘凯欣,郑文刚,高凌天.脆性材料动态破坏过程的数值模拟.计算力学学报,2003,20(3):127-132.
    [81].方韬,龚顺风,金伟良.混凝土结构破坏过程的离散单元法模拟.浙江大学学报:工学版,2004,38(7):921-925.
    [82].叶勇,徐西鹏.单颗金刚石磨削花岗石中力的离散单元分析及试验验证.摩擦学学报,2009,29(3):215-220.
    [83].叶勇,徐西鹏.三种离散单元建模方法仿真脆性材料切削的比较研究.中国机械工程,2010,21(23):2830-2835.
    [84].叶勇,徐西鹏.岩石切削加工动态行为的离散元模拟.工具技术,2008,42(6):26-29.
    [85].X Shen, S Lei. Thermal Modeling and Experimental Investigation for Laser AssistedMilling of Silicon Nitride Ceramics. Journal of Manufacturing Science and Engineering,2009,131:051007.
    [86].Xinwei Shen, Budong Yang, Shuting Lei. Distinct element modeling of laser assistedmilling of silicon nitride ceramics. Journal of Manufacturing Processes,2010,12(1):30-37.
    [87].Xinwei Shen, Budong Yang, Shuting Lei. Microstructural Modeling and Dynamic ProcessSimulation of Laser-Assisted Machining of Silicon Nitride Ceramics With Distinct ElementMethod. Journal of Manufacturing Science and Engineering,2012,134(2):021011-10.
    [88].Yuanqiang Tan, Shengqiang Jiang, Cai Li, Dongmin Yang, Gaofeng Zhang, Y.Sheng. Studyon Mechanical Properties and Size effect of Si3N4using Discrete Element Method.Advanced Materials Research,2009,76-78:719-724.
    [89].Yuanqiang Tan, Dongmin Yang, Yong Sheng. Discrete element method (DEM) modeling offracture and damage in the machining process of polycrystalline SiC. Journal of theEuropean Ceramic Society,2009,29(6):1029-1037.
    [90].Yuanqiang Tan, Dongmin Yang, Y. Sheng. Study of polycrystalline Al2O3machining cracksusing discrete element method. International Journal of Machine Tools and Manufacture,2008,48(9):975-982.
    [91].Yong Sheng, Dongmin Yang, Yuanqiang Tan, Jianqiao Ye. Microstructure effects ontransverse cracking in composite laminae by DEM. Composites Science and Technology,2010, In Press, Accepted Manuscript.
    [92].Dongmin Yang, Yong Sheng, Jianqiao Ye, Yuanqiang Tan. Discrete element modeling of themicrobond test of fiber reinforced composite. Computational Materials Science,2010,49(2):253-259.
    [93].T Fujii, Y Akiniwa. Molecular dynamics analysis for fracture behavior of single crystalsilicon thin film with micro notch. Modeling and simulation in materials science andengineering,2004,14(5):73-83.
    [94].Z. Zhou, D. Guo, Pre-stressed machining: combined use of heuristics and optimizationmethods, in Proceedings of IX the ICPR.1987, Elsevier: Cincinnati. p.257-262.
    [95].彭锐涛.预应力硬态切削加工的有限元数值模拟及实验研究.广州:华南理工大学博士学位论文,2008.
    [96].彭锐涛,叶邦彦,唐新姿.预应力硬态切削残余应力及表面形态的研究.华南理工大学学报自然科学版,2008,36(4):6-9.
    [97].布光斌.预拉伸夹紧铣削铝合金残余应力的基础研究.南京:南京航空航天大学硕士学位论文,2005.
    [98].胡华南,周泽华.预应力加工表面残余应力的理论分析.华南理工大学学报,1994,22(2):1-9.
    [99].Weinong Chen, G. Ravichandran. Dynamic compressive failure of a glass ceramic underlateral confinement. Journal of the Mechanics and Physics of Solids,1997,45(8):1303-1328.
    [100].H. Huang, B. Damjanac, E. Detournay. Numerical modeling of normal wedge indentationin rocks with lateral confinement. International Journal of Rock Mechanics and MiningSciences,1997,34(3-4):64.e1-64.e15.
    [101].H. C. Heard, C. F. Cline. Mechanical behaviour of polycrystalline BeO, Al2O3, and AlN athigh pressure. Journal of Materials Science,1980,15(8):1889-1897.
    [102].Masahiko Yoshino, Yasufumi Ogawa, Sivanandam Aravindan. Machining of hard-brittlematerials by a single point tool under external hydrostatic pressure. Journal ofManufacturing Science and Engineering,2005,127(4):837-845.
    [103].V Singh, S Ghosh, P. V Rao. Comparative study of specific plowing energy for mild steeland composite ceramics using single grit scratch tests. Materials and ManufacturingProcesses,2011,26(2):272-281.
    [104].S. Malkin, TW Hwang. Grinding mechanisms for ceramics. CIRP Annals-ManufacturingTechnology,1996,45(2):569-580.
    [105].H. Huang, Y. C. Liu. Experimental investigations of machining characteristics and removalmechanisms of advanced ceramics in high speed deep grinding. International Journal ofMachine Tools and Manufacture,2003,43(8):811-823.
    [106].S.P. Timoshenko, JN Goodier. Theory of elasticity. McGraw-Hill,1970:441.
    [107].于爱兵,徐燕申,林彬,王龙山.工程陶瓷磨削裂纹形成过程研究.天津大学学报,1999,32(2):177-180.
    [108].于爱兵,田欣利,等.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报,2002,21(1):58-61.
    [109].周益春.材料固体力学(上册).北京:科学出版社.2005.
    [110].P. H. Melville. Fracture mechanics of brittle materials in compression. InternationalJournal of Fracture,1977,13(4):532-534.
    [111].J. T. Hagan. Micromechanics of crack nucleation during indentations. Journal of MaterialsScience,1979,14(12):2975-2980.
    [112].B. Cotterell. Brittle fracture in compression. International Journal of Fracture,1972,8(2):195-208.
    [113].王静,师俊平.有限板中裂纹应力强度因子的计算.岩石力学与工程学报,2005,24(6):963-968.
    [114].M. V. Swain. A note on the residual stress about a pointed indentation impression in abrittle solid. Journal of Materials Science,1976,11(12):2345-2348.
    [115].Henry P. Kirchner. Comparison of single-point and multipoint grinding damage in glass.Journal of the American Ceramic Society,1984,67(5):347-353.
    [116].J. von Stebut, F. Lapostolle, M. Bucsa, H. Vallen. Acoustic emission monitoring of singlecracking events and associated damage mechanism analysis in indentation and scratchtesting. Surface and Coatings Technology,1999,116-119:160-171.
    [117].F. Kaya. Damage detection in fibre reinforced ceramic and metal matrix composites byAcoustic Emission. Key Engineering Materials,2010,434-435:57-60.
    [118].S. Wakayama, K. Ishiwata. Fracture analysis based on quantitative evaluation ofmicrocracking in ceramics using AE source characterization. Journal of Solid Mechanicsand Materials Engineering,2009,3:96-105.
    [119].任敬心,华定安.磨削原理.北京:电子工业出版社.2011.
    [120].任敬心,康仁科,王西彬.难加工材料磨削技术.北京:电子工业出版社.2011.
    [121].XX Yu, WS Lau. A finite-element analysis of residual stress in stretch grinding. Journal ofMaterials Processing Technology,1999,94(1):13-22.
    [122].T. Chen, M. Zhang, X. Liu, Y. Shen. Predicting residual stress characteristics based on BPartificial neural network in precision hard turning.2011: IEEE. p.1615-1618
    [123].Y.M. Liu, Y.D. Gong, W. Ding, T.C. Han. Simulation and Experiment on the ResidualStress in Super-High Speed Grinding. Advanced Materials Research,2010,135:238-242.
    [124].P. J. Withers, M. Turski, L. Edwards, P. J. Bouchard, D. J. Buttle. Recent advances inresidual stress measurement. International Journal of Pressure Vessels and Piping,2008,85(3):118-127.
    [125].王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究.浙江:浙江大学博士学位论文,2003.
    [126].唐志涛.航空铝合金残余应力及切削加工变形研究.济南:山东大学博士学位论文,2008.
    [127].刘海涛,卢泽生,孙雅洲.切削加工表面残余应力研究的现状与进展.航空精密制造技术,2008,44(1):17-19,31.
    [128].薛进学,赵波,吴雁.二维超声磨削纳米复相陶瓷表面残余应力研究.兵工学报,2010,31(5):636-640.
    [129].原一高,畅晓振,施耀祖,陆志勇.超细硬质合金磨削表面残余应力的实验研究.机械科学与技术,2011,30(7):1217-1220.
    [130].PA Cundall, ODL Strack. A discrete numerical model for granular assemblies.Geotechnique,1979,29(1):47-65.
    [131].C. Thornton, MT Ciomocos, MJ Adams. Numerical simulations of diametrical compressiontests on agglomerates. Powder Technology,2004,140(3):258-267.
    [132].Z.P. Bazant, E.P. Chen. Scaling of structural failure. Applied Mechanics Reviews,1997,50:593-627.
    [133].HAN Guangping, LIU Kai, W. Xiuhong. Mechanical Properties and Size Effects of SingleCrystal Silicon. Chinese Journal of Mechanical Engineering,2006,19(2):290-293.
    [134].PFC2D User’s Manuals. Lakewood,Colorado,USA: Itasca Consulting Group Inc.2002.
    [135].潘丽军,陈锦权.试验设计与数据处理.南京:东南大学出版社.2008.
    [136].姜胜强,谭援强,杨冬民,盛勇.碳化硅单点金刚石超精密切削加工残余应力的离散元模拟.硅酸盐学报,2010,38(5):918-923.
    [137].Saurav Goel, Xichun Luo, Robert L. Reuben. Molecular dynamics simulation model forthe quantitative assessment of tool wear during single point diamond turning of cubicsilicon carbide. Computational Materials Science,2012,51(1):402-408.
    [138].Deepak Ravindra, John Patten. Ductile regime single point diamond turning of quartzresulting in an improved and damage-free surface. Machining Science and Technology,2012,15(4):357-375.
    [139].Sanjay Agarwal, P. Venkateswara Rao. Experimental investigation of surface/subsurfacedamage formation and material removal mechanisms in SiC grinding. International Journalof Machine Tools and Manufacture,2008,48(6):698-710.
    [140].田欣利,徐燕申.结构陶瓷磨削表面残余应力的产生机理.兵工学报,1998,19(4):361-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700