用户名: 密码: 验证码:
贵金属负载型微孔—介孔复合核壳结构材料:设计合成及催化一锅反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔核壳结构材料可以在壳层和核组装具有不同组分和功能的材料,因而在催化、分离、电化学、生物医药等领域具有潜在的应用前景。一锅串联反应由于中间产物不需分离纯化可以大大减少能源消耗和设备投资,是一种新的过程强化方法,符合可持续化学的发展要求。然而一锅串联反应的多个反应步骤一般需要多个催化活性中心参与才能完成。一锅串联反应的难点就在于如何设计具有双或多功能的催化活性中心的催化剂。结合多孔核壳结构材料的特点,我们设计制备了一系列新型的微孔介孔复合核壳结构材料负载贵金属纳米粒子用于一锅串联反应。
     论文的第一章和第二章分别为绪论和试剂及材料表征方法。
     论文的第三章以三嵌段非离子型表面活性剂P123作为壳层模板剂,首次在弱酸或近中性条件下,合成得到了具有有序蠕虫状介孔壳层包覆TS-1的微孔介孔复合核壳结构材料(TS-1@MS)。通过对反应条件和合成过程的考察,提出了该核壳结构材料的可能形成机理为静电相互作用机理,这是因为非离子型表面活性剂P123的等电点为6.2,TS-1纳米颗粒的等电点为2.4,而在我们的合成体系(P123/NaC1/H2O/EtOH/TEOS/TS1)中pH值控制在4.0-5.5之间,因此模板剂胶束可以通过静电作用吸附在TS-1表面,硅源或氧化硅低聚物与胶束自组装形成介孔壳层。并成功将此机理应用于以其他分子筛如silicalite-1、ZSM-5、 Ti-MWW分子筛为核的微孔介孔复合核壳结构材料的合成过程中。介孔氧化硅壳层为蠕虫状孔道结构,壳层厚度可通过调节TEOS/TS-1配比控制在30-90nm间,颗粒尺寸随着壳层厚度的增加从350nm增加到500nm。研究结果发表在"Microporous Mesoporous Mater."杂志上。
     论文的第四章以TS-1@MS为载体负载Au纳米粒子应用于丙烯、H2、O2直接气相环氧化反应制备环氧丙烷。和Au纳米粒子直接负载在TS-1表面相比,Au/TS-1@MS虽然Ti活性中心碱少,但催化活性(转化率3.7%)并没有下降,环氧丙烷选择性(>90%)明显优于Au/TS-1(78%).同时该催化剂具有良好的稳定性,连续反应132h,活性保持在3.7%,选择性大于87%。这是由于介孔Si02壳层对金纳米粒子具有限域作用,可以有效防止由于金纳米粒子的聚集而导致的活性和选择性下降。双功能催化剂Au/TS-1@MS的设计成功为丙烯直接气相环氧化反应制备具有重要工业应用价值的环氧丙烷提供了一类新型的催化材料。相关研究结果发表在“中国科学:化学”杂志上
     论文的第五章以TS-1@MS为硬模板,蔗糖为碳源,有机碱四丙基氢氧化铵(TPAOH)为溶硅试剂,选择性的控制溶硅过程,首次制备得到介孔碳包覆TS-1的微孔介孔复合核壳结构分子筛(TS-1@MC)。核TS-1的微孔晶体结构没有被破坏,相反使用NaOH和HF为溶硅试剂由于选择性差而得不到TS-1晶体结构保持良好的TS-1@MC材料。TS-1@MC的微孔和介孔孔径分别为0.51nm和2.9nm,而BET比表面积和总孔容则分别高达883m2g-1和0.63cm3g-1。由于壳层介孔碳具有良好的疏水性、高的比表面积、孔容、结构可修饰等特点,是一类优良的载体材料。通过浸渍法将Pd纳米粒子负载在介孔碳壳层得到双功能催化材料Pd/TS-1@MC。将Pd/TS-1@MC应用于甲醇水溶液中从丙烯、H2、O2出发直接液相环氧化反应制备环氧丙烷,和Pd直接负载在TS-1表面及商业Pd/C和TS-1机械混合催化剂相比,Pd/TS-1@MC由于其独特的结构特点具有高的催化活性。为丙烯的直接液相环氧化提供了新的性能优异的催化材料。研究结果发表在材料化学领域知名期刊"J. Mater. Chem."上。
     论文的第六章是在第五章研究的基础上,将溶硅条件变得更为苛刻,造成核TS-1部分溶硅,制备得到具有三级孔结构蛋壳型的介孔碳包覆TS-1的微孔介孔复合核壳结构材料(YS-TS-1@MC),分别为核TS-1的微孔(0.51nm)、壳层碳介孔(2.9nm)及介孔碳壳层和核TS-1间和TS-1小晶粒间的间隙孔(18.4nm)。虽然在苛刻的条件下溶硅,但核TS-1的晶体结构并没有大的破坏,仍然保持了MFI的晶体结构。催化正己烯和H2O2的环氧化反应,TON值和未经碱处理的TS-1的活性相当,甚至还略有提高。该蛋壳型材料的形成可以在很宽的条件范围内调节,为制备其他类型的蛋壳型介孔碳包覆其他类型的功能材料尤其是无机晶体材料提供了一种新的方法。负载Pd纳米粒子和Rh(OH)x后作为双功能催化剂可以高效催化丙烯、H2、02的直接液相环氧化和苯甲醛、氨、H202的氨肟化重排一锅反应。相关研究结果发表在"Chin.Chem.Lett."。
     论文的第七章,首次在微乳液体系中成功制备了辐射状介孔纤维Si02包覆TS-1的单分散微孔介孔复合核壳结构材料TS-1@KCC-1。TS-1@KCC-1可以在较宽的温度和时间范围合成得到,并且壳层厚度可方便地通过调节硅源TEOS与TS-1的配比加以控制。对TS-1@KCC-1的形成机理研究表明,特殊的微乳液合成体系是形成辐射状纤维Si02包覆TS-1的关键,为在微乳液体系中合成其他单分散核壳复合材料提供了一种新的可能方法。贵金属Rh(OH)x物种负载在TS-1@KCC-1载体上,可以高效催化醛、氨水、双氧水经氨肟化重排一锅反应制备伯酰胺,开辟了一条全新的制备伯酰胺的技术;同时Rh(OH)x负载在TS-1@KCC-1载体上,可以有效抑制Rh(OH)x物种的流失,Rh(OH)x/TS-1@KCC-1具有良好的重复使用性能及优异的高温水热稳定性能。相关研究结果以通讯形式发表在"Chem.Commun."和"Chin.J.Catal."上。
     在论文的最后一章,对论文全部研究内容进行了总结并对后续工作提出了展望。
Porous core shell materials have been widely studied duo to their potential applications in catalysis, separation, electrochemistry, bio-medicine, and so forth. Different compositions with various functionalities can be organically assembled into the core and shell as a monolithic composite. On the other hand, one-pot tandem or cascade reactions have also received intensive research interests in green and sustainable chemistry owing to their advantages in terms of atom economic efficiency, free separation for intermediates as well as process intensification. However, one pot tandem reaction usually needs a multifunctional catalyst to catalyze the multi-step reaction. It is clearly seen that the challenge in one pot reaction is how to design actively multifunctional catalyst. In this thesis, we designed and synthesized a series of novel micro-/mesoporous core-shell structured composite materials for supporting noble metal nanoparticles as bi-or multi-functional catalysts used in one pot tandem reaction.
     In chapter land2, the prolegomenon and reagents and the method of materials characterization were presented, respectively.
     In chapter3, a novel micro-/mesoporous core-shell structure material (TS-1@MS) was prepared through oriented assembly of mesoporous silica on premade titanosilicalite TS-1using triblock copolymer surfactant P123as template in an acid-free system. When pH value of the P123/NaCl/H2O/EtOH/TEOS/TS-1synthesis system was controlled at the range of4.0-5.5, the crystalline particles of TS-1were negatively charged, whereas P123micelles were partially protonated. Thus induced an electrostatic interaction between inorganic zeolite and organic micelles probably via enhanced hydrogen bonding, and made an oriented assembly of silica oligomer or silica-micelle composite on the surface of P123/TS-1and further condensation. Otherwise, the silica was self-assembled in a phase separation manner, or failed to form a mesophase. Using this method, we have been successfully fabricated a series of micro-/mesoporous composite core-shell materials with other zeolites (silicalite-1, ZSM-5, Ti-MWW) as core and large pore mesoporous silica as shell. The mesopores in silica shell were of wormhole-like and interconnected with the micropores in TS-1. When as-synthesized core/shell composites were hydrothermally post-treated, the pore volume, specific surface area and pore size of shell increased with increasing temperature. The shell thickness can be conveniently adjusted in the range of30to90nm by changing synthesis time, temperature, and the amount of silica source added, and also the particle size was changed from350nm to500nm with increase the shell thickness. The research results have been published on "Microporous Mesoporous Mater.".
     In chapter4, TS@MS was used as a support for incorporating gold nanoparticles (Au NPs) inside the mesoporous silica channels, leading a bifunctional catalyst (Au/TS-1@MS) which catalyzes propylene direct gas phase epoxidation with H2and O2actively and selectively. Au/TS-1@MS showed a constant propylene conversion (3.7%) and PO selectivity up to87%at473K for132h of time on stream, indicating a high stability because of the confining effect of mesopores on Au NPs. The related research results have been published on "Scientia Sinica Chimica".
     In chapter5, a new core-shell structured TS-1@mesocarbon (TS-1@MC) material with mesoporous carbon as shell and microporous TS-1titanosilicalite as core was fabricated through a nanocasting and selective silica etching strategy. The faithful replica structure was constructed from the composite of TS-1@mesosilica and carbon when tetrapropylammonium hydroxide (TPAOH) was employed to selectively remove the amorphous mesosilica shell while the core zeolite crystal structure was not destroyed. Contrarily, the protective effect was not seen when sodium hydroxide (NaOH) or hydrogen fluoride (HF) was employed as a silica-leaching agent. The obtained TS-1@MC had a bimodal pore structure consisting of2.9nm mesopores in carbon shell and0.51nm micropores in TS-1core. Its specific surface area and total pore volume reached883m2g-1and0.63cm3g-1, respectively. TS-1@MC was used as the support to load palladium nanoparticles (Pd NPs) in carbon shell. Having an average particle size approximately2nm, the Pd NPs were highly dispersed and confined in the mesopores of the carbon shell. Pd/TS-1@MC thus obtained served as efficient tandem catalyst in the direct epoxidation of propylene with H2and O2in liquid phase. The research results have been published on "J. Mater. Chem ".
     In chapter6, a trimodal hierarchical yolk-shell material consisting of TS-1core and mesoporous carbon shell (YS-TS-1@MC) was successfully synthesized by using TS-1@mesosilica as hard template, sucrose as carbon source and organic base tetrapropylammonium hydroxide (TPAOH) as silica etching agent. The resultant YS-TS-1@MC contains the micropores (0.51nm) in TS-1core, the mesopores (2.9nm) in carbon shell as well as a void or a stack pore between TS-1fragments (TS-1intercrystal mesopores,-18.4nm). Under the rigorous etching conditions, the crystalline structure of TS-1core was well retained. The YS-TS-1@MC served as a good support for palladium nano-particles (Pd NPs) or Rh(OH)x species, giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides in liquid phase. The related research results have been published on "Chin. Chem. Lett.".
     In chapter7, a monodispersed center radially fibrous silica encapsulated TS-1zeolite (TS-1@KCC-1) has been fabricated in a microemulsion system for the first time. TS-1@KCC-1can be easily synthesized in a wide range of temperature and time, and the shell thickness can be conveniently adjusted by changing the ratio of TEOS to TS-1. The special structure of this kind of material should be attributed to the microemulsion synthetic system. Supporting with the Rh(OH)3species, this novel core-shell structured material serves as a robust bifunctional catalyst for one-pot synthesis of benzamide from benzaldehyde, ammonia and hydrogen peroxide, in which the aldehyde ammoximation and oxime rearrangement occur in a tandem way. Rh(OH)3/TS-1@KCC-1can also be used to other aldehydes direct ammoximation and rearrangement to fabricated primary amide with NH3and H2O2. The reusability of Rh(OH)3/TS-1@KCC-1was superior duo to it can be run five times and the activity and selectivity without decreased apparently. TS-1@KCC-1is a good support for Rh(OH)x species with high hydrothermal and mechanical stability. The research results have been published on "Chem. Commun." and "Chin. J. Catal.".
     In the last chapter, the conclusions of this thesis were summarized and the outlook for continuous research and the development of this field was given.
引文
1. P. Anastas and N. Eghbali, Chem. Soc. Rev.,2010,39:301-312.
    2. S. Yu, F. F. Tao and J. J. Liu, Chemcatchem,2012,4:1445-1447.
    3. J. N. Armor, Catal. Today,2011,163:3-9.
    4. C. Descorme, P. Gallezot, C. Geantet and C. George, Chemcatchem,2012,4: 1897-1906.
    5. I. Fechete, Y. Wang and J. C. Vedrine, Catal. Today,2012,189:2-27.
    6. F. Song, Y. Liu, L. Wang, H. Zhang, M. He and P. Wu, Appl. Catal. A,2007, 327:22-31.
    7. F. Cavani and J. H. Teles, Chemsuschem,2009,2:508-534.
    8. M. J. Climent, A. Corma and S. Iborra, Chem. Rev.,2011,111:1072-1133.
    9. L. F. Tietze, Chem. Rev.,1996,96:115-136.
    10. P. J. Parsons, C. S. Penkett and A. J. Shell, Chem. Rev.,1996,96:195-206.
    11. W. F. Hoelderich, Catal. Today,2000,62:115-130.
    12. D. E. Fogg and E. N. Dos Santos, Coordin. Chem. Rev.,2004,248: 2365-2379.
    13. J. Wasilke, S. J. Obrey, R. T. Baker and G. C. Bazan, Chem. Rev.,2005,105: 1001-1020.
    14. M. E. Davis and R. F. Lobo, Chem. Mater.,1992,4:756-768.
    15. C. B. Dartt and M. E. Davis, Ind. Eng. Chem. Res.,1994,33:2887-2899.
    16. C. Avelino, J. Catal.,2003,216:298-312.
    17. A. Corma, Chem. Rev.,1997,97:2373-2420.
    18. M. E. Davis, Nature,2002,417:813-821.
    19. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature,1992,359:710-712.
    20. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, J. Am. Chem. Soc., 1992,114:10834-10843.
    21. A. Taguchi and F. Schh, Microporous Mesoporous. Mater,2005,77:1-45.
    22. M. Hartmann, Chem. Mater.,2005,17:4577-4593.
    23. Y. Ren, Z. Ma and P. G. Bruce, Chem. Soc. Rev.,2012.
    24. A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao and G. Qing Max Lu, Nanoscale,2011,3:2801-2818.
    25. J. M. Campelo, D. Luna, R. Luque, J. M. Marinas and A. A. Romero, Chemsuschem,2009,2:18-45.
    26. S. Wu, Y. Hung and C. Mou, Chem. Commun.,2011,47:9972-9985.
    27. N. Ikawa, M. Yamada, A. Miyaki and A. Endo, Chem. Commun.,2010,46: 4342-4344.
    28. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal.,1994, 148:569-574.
    29. S. van Donk, A. H. Janssen, J. H. Bitter and K. P. de Jong, Catal. Rev.,2003, 45:297-319.
    30. K. Na, M. Choi and R. Ryoo, Microporous Mesoporous Mater.,2013,166: 3-19.
    31. X. LI, M. SUN, J. C. ROOKE, L. CHEN and B. SU, Chin. J. Catal.,2013, 34:22-47.
    32. C. M. A. Parlett, K. Wilson and A. F. Lee, Chem. Soc. Rev.,2013,42: 3876-3893.
    33. J. Perez-Ramirez, S. Mitchell, D. Verboekend, M. Milina, N. Michels, F. Krumeich, N. Marti and M. Erdmann, Chemcatchem,2011,3:1731-1734.
    34. R. Ghosh Chaudhuri and S. Paria, Chem. Rev.,2011,112:2373-2433.
    35. N. Zhang, S. Liu and Y. Xu, Nanoscale,2012,4:2227-2238.
    36. J. Liu, S. Z. Qiao, J. S. Chen, X. W. David Lou, X. Xing and G. Q. Max Lu, Chem. Commun.,2011,47:12578-12591.
    37. J. C. Park and H. Song, Nano Res,2011,4:33-49.
    38. J. Park and H. Song, Nano Res,2011,4:33-49.
    39. X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang and D. Zhao, Chemical Science,2011,2:2006-2016.
    40. J. M. Lee, Y. Na, H. Han and S. Chang, Chem. Soc. Rev.,2004,33:302-312.
    41. F. Felpin and E. Fouquet, Chemsuschem,2008,1:718-724.
    42. M. J. Climent, A. Corma, S. Iborra, M. Mifsud and A. Velty, Green Chem., 2010,12:99-107.
    43. P. N. R. Vennestrom, C. H. Christensen, S. Pedersen, J. Grunwaldt and J. M. Woodley, Chemcatchem,2010,2:249-258.
    44. A. Corma, Chem. Rev.,1995,95:559-614.
    45. C. Liang, Z. Li and S. Dai, Angew. Chem. Int. Ed.,2008,47:3696-3717.
    46. R. Xing, N. Liu, Y. Liu, H. Wu, Y. Jiang, L. Chen, M. He and P. Wu, Adv. Funct. Mater.,2007,17:2455-2461.
    47. F. X. Llabres I Xamena, A. Abad, A. Corma and H. Garcia, J. Catal.,2007, 250:294-298.
    48. C. S. Cundy and P. A. Cox, Chem. Rev.,2003,103:663-702.
    49. S. M. Landge, M. Berryman and B. Torok, Tetrahedron Lett.,2008,49: 4505-4508.
    50. Y. Zhou, L. K. Woo and R. J. Angelici, Appl. Catal. A.,2007,333:238-244.
    51. R. G. Jacob, G. Perin, G. V. Botteselle and E. J. Lenardao, Tetrahedron Lett., 2003,44:6809-6812.
    52. A. H. Blatt, Chem. Rev.,1940,27:413-436.
    53. G. Kuriakose, J. B. Nagy and N. Nagaraju, Stud. Surf. Sci. Catal.,2004,154: 2803-2808.
    54. M. J. Climent, A. Corma, H. Garcia, R. Guil-Lopez, S. Iborra and V. Fornes, J. Catal.,2001,197:385-393.
    55. J. M. Thomas and R. Raja, P. Natl. Acad. Sci. USA.,2005,102: 13732-13736.
    56. K. V. N. S. Srinivas, E. B. Reddy and B. Das, Synlett,2002:625-627.
    57. P. Wu, T. Komatsu and T. Yashima, J. Catal.,1997,168:400-411.
    58. M. A. Camblor, A. Corma, H. Garcia, V. Semmer-Herledan and S. Valencia, J. Catal.,1998,177:267-272.
    59. P. Botella, A. Corma, S. Iborra, R. Monton, I. Rodriguez and V. Costa, J. Catal.,2007,250:161-170.
    60. Q. Hou, B. Zheng, C. Bi, J. Luan, Z. Zhao, H. Guo, G. Wang and Z. Li, J. Catal.,2009,268:376-383.
    61. C. Li, M. Zheng, A. Wang and T. Zhang, Energy Environ. Sci.,2012,5: 6383-6390.
    62. P. Y. Dapsens, C. Mondelli and J. Perez-Ramirez, ACS Catal.,2012,2: 1487-1499.
    63. X. F. Qian, B. Li, Y. Y. Hu, G. X. Niu, D. Y. H. Zhang, R. C. Che, Y. Tang, D. S. Su, A. M. Asiri and D. Y. Zhao, Chem. Eur. J.,2012,18:931-939.
    64. F. de Clippel, M. Dusselier, R. Van Rompaey, P. Vanelderen, J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald, G. V. Baron, J. F. M. Denayer, P. P. Pescarmona, P. A. Jacobs and B. F. Sels, J. Am. Chem. Soc.,2012,134: 10089-10101.
    65. A. Corma and S. Iborra, Adv. Catal.,2006,49:239-302.
    66. A. B. Shivarkar, S. P. Gupte and R. V. Chaudhari, Ind. Eng. Chem. Res., 2008,47:2484-2494.
    67. M. J. Climent, A. Corma, R. Guil-Lopez and S. Iborra, Catal. Lett.,2001,74: 161-167.
    68. M. Gruber, S. Chouzier, K. Koehler and L. Djakovitch, Appl. Catal. A,2004, 265:161-169.
    69. M. L. Kantam, R. Chakravarti, V. R. Chintareddy, B. Sreedhar and S. Bhargava, Adv. Synth. Catal.,2008,350:2544-2550.
    70. Science,2000,290:1140-1142.
    71. Y. Zhang, X. Cui, F. Shi and Y. Deng, Chem. Rev.,2011,112:2467-2505.
    72. T. Hayashi, T. Inagaki, N. Itayama and H. Baba, Catal. Today,2006,117: 210-213.
    73. I. Nielsen, E. Taarning, K. Egeblad, R. Madsen and C. Christensen, Catal. Lett.,2007,116:35-40.
    74. C. Marsden, E. Taarning, D. Hansen, L. Johansen, S. K. Klitgaard, K. Egeblad and C. H. Christensen, Green Chem.,2008,10:168-170.
    75. N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa and K. Inui, J. Mol. Catal. A-Chem.,2004,212:197-203.
    76. J. Huang, W. Dai, H. Li and K. Fan, J. Catal.,2007,252:69-76.
    77. L. He, L. Wang, H. Sun, J. Ni, Y. Cao, H. He and K. Fan, Angew. Chem. Int. Ed,2009,48:9538-9541.
    78. L. He, X. Lou, J. Ni, Y. Liu, Y. Cao, H. He and K. Fan, Chem. A Eur. J., 2010,16:13965-13969.
    79. L. Yu, X. Du, J. Yuan, Y. Liu, Y. Cao, H. He and K. Fan, Chemsuschem, 2013,6:42-46.
    80. Y. Yamada, C. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai and P. Yang, Nat. Chem,2011,3:372-376.
    81. F. Gelman, J. Blum and D. Avnir, Angew. Chem. Int. Ed.,2001,40: 3647-3649.
    82. K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am. Chem. Soc.,2005,127:9674-9675.
    83. Y. Huang, B. G. Trewyn, H. Chen and V. S. Y. Lin, New J. Chem.,2008,32: 1311-1313.
    84. W. Peng, Y. Lee, C. Wu and K. C. W. Wu, J. Mater. Chem.,2012,22: 23181-23185.
    85. N. A. Brunelli, K. Venkatasubbaiah and C. W. Jones, Chem. Mater.,2012, 24:2433-2442.
    86. J. Alauzun, A. Mehdi, C. Reye and R. J. P. Corriu, J. Am. Chem. Soc.,2006, 128:8718-8719.
    87. S. Shylesh, A. Wagener, A. Seifert, S. Ernst and W. R. Thiel, Angew. Chem. Int. Ed.,2010,49:184-187.
    88. Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu and Q. Yang, Angew. Chem. Int. Ed.,2012,51:9164-9168.
    89. Y. Yang, J. Liu, X. Li, X. Liu and Q. Yang, Chem. Mater.,2011,23: 3676-3684.
    90. P. Li, C. Cao, Z. Chen, H. Liu, Y. Yu and W. Song, Chem. Commun.,2012, 48:10541-10543.
    91. A. Corma, M. Iglesias and F. Sanchez, J. Chem. Soc. Chem. Commun.,1995, 0:1635-1636.
    92. F. Neatu, S. Coman, V. Parvulescu, G. Poncelet, D. Vos and P. Jacobs, Top. Catal.,2009,52:1292-1300.
    93. F. Iosif, S. Coman, V. Parvulescu, P. Grange, S. Delsarte, D. D. Vos and P. Jacobs, Chem. Commun.,2004,0:1292-1293.
    94. N. Ravasio, N. Poli, R. Psaro, M. Saba and F. Zaccheria, Top. Catal.,2000, 13:195-199.
    95. C. Milone, C. Gangemi, R. Ingoglia, G. Neri and S. Galvagno, Appl. Catal. A-Gen.,1999,184:89-94.
    96. P. Mertens, F. Verpoort, A. Parvulescu and D. De Vos, J. Catal.,2006,243: 7-13.
    97. K. A. Da Silva Rocha, P. A. Robles-Dutenhefner, E. M. B. Sousa, E. F. Kozhevnikova, I. V. Kozhevnikov and E. V. Gusevskaya, Appl. Catal. A-Gen, 2007,317:171-174.
    98. A. F. Trasarti, A. J. Marchi and C. R. Apesteguia, J. Catal.,2004,224: 484-488.
    99. F. Zaccheria, N. Ravasio, A. Fusi, M. Rodondi and R. Psaro, Adv. Synth. Catal.,2005,347:1267-1272.
    100. Y. Nie, S. Jaenicke, H. van Bekkum and G. Chuah, J. Catal.,2007,246: 223-231.
    101. M. Kroger, U. PruBe and K. Vorlop, Top. Catal.,2000,13:237-242.
    102. P. Dhepe and A. Fukuoka, Catalysis Surveys from Asia,2007,11:186-191.
    103. F. A and D. PL, Angew. Chem. Int. Ed.,2006,41:5161-5163.
    104. F. Zhu, W. Wang and H. Li, J. Am. Chem. Soc.,2011,133:11632-11640.
    105. T. Hayashi, K. Tanaka and M. Haruta, J. Catal.,1998,178:566-575.
    106. T. A. Nijhuis, M. Makkee, J. A. Moulijn and B. M. Weckhuysen, Ind. Eng. Chem. Res.,2006,45:3447-3459.
    107. B. S. Uphade, M. Okumura, S. Tsubota and M. Haruta, Appl. Catal. A-Gen, 2000,190:43-50.
    108. B. S. Uphade, T. Akita, T. Nakamur and M. Haruta, J. Catal.,2002,209: 331-340.
    109. E. Sacaliuc, A. M. Beale, B. M. Weckhuysen and T. A. Nijhuis, J. Catal., 2007,248:235-248.
    110. A. K. Sinha, S. Seelan, S. Tsubota and M. Haruta, Angew. Chem. Int. Ed., 2004,43:1546-1548.
    111. B. Chowdhury, J. J. Bravo-Suarez, M. Date, S. Tsubota and M. Haruta, Angew. Chem. Int. Ed.,2006,45:412-415.
    112. T. A. Nijhuis, B. J. Huizinga, M. Makkee and J. A. Moulijn, Ind. Eng. Chem. Res.,1999,38:884-891.
    113. Y. Ren, L. Xu, L. Zhang, J. Wang, Y. Liu, M. He and P. Wu, Pure Appl. Chem.,2012,84:561-578.
    114. S. Okada, K. Mori, T. Kamegawa, M. Che and H. Yamashita, Chem. Eur. J., 2011,17:9047-9051.
    115. S. Okada, S. Ikurumi, T. Kamegawa, K. Mori and H. Yamashita, J. Phys. Chem. C,2012,116:14360-14367.
    116. S. K. Sharma, V. K. Srivastava, R. S. Shukla, P. A. Parikh and R. V. Jasra, New J. Chem.,2007,31:277-286.
    117. M. S. Kwon, N. Kim, S. H. Seo, I. S. Park, R. K. Cheedrala and J. Park, Angew. Chem. Int. Ed.,2005,44:6913-6915.
    118. S. Ken-ichi, R. Sato and A. Satsuma, Angew. Chem. Int. Ed.,2009,48.
    119. A. Corma, T. Rodenas and M. J. Sabater, Chem. Eur. J.,2010,16:254-260.
    120. A. G. Shaikh and S. Sivaram, Chem. Rev.,1996,96:951-976.
    121. R. L. Paddock and S. T. Nguyen, J. Am. Chem. Soc.,2001,123: 11498-11499.
    122. D. Xiang, X. Liu, J. Sun, F. Xiao and J. Sun, Catal. Today,2009,148: 383-388.
    123. J. Zhang, Y. Liu, N. Li, H. Wu, X. Li, W. Xie, Z. Zhao, P. Wu and M. He, Chin. J. Catal.,2008,29:589-591.
    124. E. Iglesia, D. G. Barton, J. A. Biscardi, M. J. L. Gines and S. L. Soled, Catal. Today,1997,38:339-360.
    125. P. Wang, S. Bai, J. Zhao, P. Su, Q. Yang and C. Li, Chemsuschem,2012,5: 2390-2396.
    126. S. Talwalkar and S. Mahajani, Appl. Catal. A-Gen.,2006,302:140-148.
    127. N. Das, D. Tichit, R. Durand, P. Graffin and B. Coq, Catal. Lett.,2001,71: 181-185.
    128. Y. Pan, B. Yuan, Y. Li and D. He, Chem. Commun.,2010,46:2280-2282.
    129. J. J. Gamman, S. D. Jackson and F. A. Wigzell, Ind. Eng. Chem. Res.,2010, 49:8439-8443.
    130. A. Ko, C. Hao Hu and J. Chen, Appl. Catal. A-Gen.,1999,184:211-217.
    131. K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa and K. Kaneda, Chem. Eur. J.l,2006,12:8228-8239.
    132. S. M. Csicsery, Zeolites,1984,4:202-213.
    133. L. Tosheva and V. P. Valtchev, Chem. Mater.,2005,17:2494-2513.
    134. E. Ng, D. Chateigner, T. Bein, V. Valtchev and S. Mintova, Science,2012, 335:70-73.
    135. J. Jiang, J. Yu and A. Corma, Angew. Chem. Int. Ed.,2010,49:3120-3145.
    136. J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb and A. Corma, Science,2011,333:1131-1134.
    137. J. Sun, C. Bonneau, A. Cantin, A. Corma, M. J. Diaz-Cabanas, M. Moliner, D. Zhang, M. Li and X. Zou, Nature,2009,458:1154-1157.
    138. X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov and M. O'Keeffe, Nature,2005,437:716-719.
    139. A. Corma, M. J. Diaz-Cabanas, J. Jiang, M. Afeworki, D. L. Dorset, S. L. Soled and K. G. Strohmaier, P. Natl. Acad. Sci.,2010,107:13997-14002.
    140. W. J. Roth and J. Cejka, Catal. Sci. Techno.,2011,1:43-53.
    141. X. Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, K. V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi, O. Terasaki, M. Thommes and M. Tsapatsis, Science,2012,336:1684-1687.
    142. J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen and J. C. Groen, Chem. Soc. Rev.,2008,37:2530-2542.
    143. J. Cejka and S. Mintova, Catal. Rev.,2007,49:457-509.
    144. Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev.,2006,106: 896-910.
    145. K. Egeblad, C. H. Christensen, M. Kustova and C. H. Christensen, Chem. Mater.,2008,20:946-960.
    146. D. P. Serrano, J. M. Escola and P. Pizarro, Chem. Soc. Rev.,2013,42: 4004-4035.
    147. Y. Sasaki, T. Suzuki, Y. Takamura, A. Saji and H. Saka, J. Catal.,1998,178: 94-100.
    148. Y. Liu, W. Zhang and T. J. Pinnavaia, J. Am. Chem. Soc.,2000,122: 8791-8792.
    149. J. Zecevic, C. J. Gommes, H. Friedrich, P. E. de Jongh and K. P. de Jong, Angew. Chem. Int. Ed.,2012,51:4213-4217.
    150. S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam and W. Schwieger, Adv. Mater.,2011,23:2602-2615.
    151. J. Scherzer, Catalysis Reviews,1989,31:215-354.
    152. C. S. Triantafillidis, A. G. Vlessidis and N. P. Evmiridis, Ind. Eng. Chem. Res.,1999,39:307-319.
    153. B. Sulikowski, J. Phys Chem,1993,97:1420-1425.
    154. C. J. Van Oers, W. J. J. Stevens, E. Bruijn, M. Mertens, O. I. Lebedev, G. Van Tendeloo, V. Meynen and P. Cool, Microporous Mesoporous Mater., 2009,120:29-34.
    155. L. Yingcai, J. Mingyang, S. Yaojun, W. Tailiu, W. Liping and F. Lun, J. Chem. Soc. Faraday Trans.,1996,92:1647-1651.
    156. Y. Goa, H. Yoshitake, P. Wu and T. Tatsumi, Microporous Mesoporous Mater.,2004,70:93-101.
    157. D. Verboekend and J. Perez-Ramirez, Catal. Sci. Techno.,2011,1:879-890.
    158. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi and M. Matsukata, Chem. Lett.,2000,29:882-883.
    159. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi and M. Matsukata, Appl. Catal. A-Gen.,2001,219:33-43.
    160. J. C. Groen, J. C. Jansen, J. A. Moulijn and J. Perez-Ramirez, J. Phys. Chem. B,2004,108:13062-13065.
    161. D. Verboekend and J. Perez-Ramirez, Catal. Sci. Technol.,2011,1:879-890.
    162. M. S. Holm, M. K. Hansen and C. H. Christensen, Eur. J. Inorg. Chem., 2009,2009:1194-1198.
    163. S. Abello, A. Bonilla and J. Perez-Ramirez, Appl. Catal. A-Gen.,2009,364: 191-198.
    164. J. Perez-Ramirez, D. Verboekend, A. Bonilla and S. Abello, Adv. Funct. Mater.,2009,19:3972-3979.
    165. J. Perez-Ramirez, S. Abello, A. Bonilla and J. C. Groen, Adv. Funct. Mater., 2009,19:164-172.
    166. D. Verboekend and J. Perez-Ramirez, Chemi. Eur. J.,2011,17:1137-1147.
    167. J. Garcia-Martinez, K. Li and G. Krishnaiah, Chem. Commun.,2012,48: 11841-11843.
    168. R. Chal, C. Gerardin, M. Bulut and S. van Donk, Chemcatchem,2011,3: 67-81.
    169. A. H. Lu and F. Schuth, Adv. Mater.,2006,18:1793-1805.
    170. C. Madsen, C. Madsen and C. J. H. Jacobsen, Chem. Commun.,1999,0: 673-674.
    171. I. Schmidt, C. Madsen and C. J. H. Jacobsen, Inorg. Chem.,2000,39: 2279-2283.
    172. C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and A. Carlsson, J. Am. Chem. Soc.,2000,122:7116-7117.
    173. I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson and C. J. H. Jacobsen, Chem. Commun.,2000,0:2157-2158.
    174. I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson and C. J. H. Jacobsen, Chem. Mater.,2001,13:4416-4418.
    175. A. Boisen, I. Schmidt, A. Carlsson, S. Dahl, M. Brorson and C. J. H. Jacobsen, Chem. Commun.,2003,0:958-959.
    176. A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, A. J. Koster and K. P. de Jong, Microporous Mesoporous Mater.,2003,65:59-75.
    177. Z. X. Yang, Y. D. Xia and R. Mokaya, Adv. Mater.,2004,16:727-732.
    178. X. Wang, G. Li, W. Wang, C. Jin and Y. Chen, Microporous Mesoporous Mater.,2011,142:494-502.
    179. Y. Tao, H. Kanoh and K. Kaneko, J. Am. Chem. Soc.,2003,125:6044-6045.
    180. W. Li, A. Lu, R. Palkovits, W. Schmidt, B. Spliethoff and F. Schuth, J. Am. Chem. Soc.,2005,127:12595-12600.
    181. H. Katsuki, S. Furuta, T. Watari and S. Komarneni, Microporous Mesoporous Mater.,2005,86:145-151.
    182. B. T. Holland, L. Abrams and A. Stein, J. Am. Chem. Soc.,1999,121: 4308-4309.
    183. L. Xu, S. Wu, J. Guan, H. Wang, Y. Ma, K. Song, H. Xu, H. Xing, C. Xu, Z. Wang and Q. Kan, Catal. Commun,2008,9:1272-1276.
    184. Y. Tao, H. Kanoh and K. Kaneko, Langmuir,2005,21:504-507.
    185. Y. Liu, W. Zhang, Z. Liu, S. Xu, Y. Wang, Z. Xie, X. Han and X. Bao, J. Phys. Chem. C,2008,112:15375-15381.
    186. B. Zhang, S. A. Davis and S. Mann, Chem. Mater.,2002,14:1369-1375.
    187. H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan and Z. Xie, Chem. Mater.,2007, 20:1134-1139.
    188. A. Dong, Y. Wang, Y. Tang, Y. Zhang, N. Ren and Z. Gao, Adv. Mater., 2002,14:1506-1510.
    189. Q. Lei, T. Zhao, F. Li, Y. Wang and M. Zheng, Chem. Lett.,2006,35: 490-491.
    190. Q. Lei, T. Zhao, F. Li, L. Zhang and Y. Wang, Chem. Commun.,2006,0: 1769-1771.
    191. Q. Lei, T. Zhao, F. Li, Y. Wang and L. Hou, J.Porous Mater.,2008,15: 643-646.
    192. W. Xu, J. Dong, J. Li, J. Li and F. Wu, J. Chem. Soc. Chem. Commun.,1990, 0:755-756.
    193. M. Matsukata, M. Ogura, T. Osaki, P. Hari Prasad Rao, M. Nomura and E. Kikuchi, Top. Catal.,1999,9:77-92.
    194. A. Karlsson, M. Stocker and R. Schmidt, Microporous Mesopoous. Mater., 1999,27:181-192.
    195. N. Petkov, M. Holzl, T. H. Metzger, S. Mintova and T. Bein, J. Phys. Chem. B,2005,109:4485-4491.
    196. Y. Liu, W. Zhang and T. J. Pinnavaia, Angew. Chem. Int. Ed.,2001,40: 1255-1258.
    197. Y. Jin, Y. Li, S. Zhao, Z. Lv, Q. Wang, X. Liu and L. Wang, Microporous Mesoporous Mater.,2012,147:259-266.
    198. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki and R. Ryoo, Nature, 2009,461:246-249.
    199. K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R. J. Messinger, B. F. Chmelka and R. Ryoo, Science,2011,333:328-332.
    200. I. Lee, Q. Zhang, J. Ge, Y. Yin and F. Zaera, Nano Res,2011,4:115-123.
    201. G. Buchel, K. K. Unger, A. Matsumoto and K. Tsutsumi, Adv. Mater.,1998, 10:1036-1038.
    202. M. V. Barmatova, I. D. Ivanchikova, E. I. El'Kina, A. N. Shmakov, M. S. Mel'Gunov and V. B. Fenelonov, Appl. Surf. Sci.,2010,256:5513-5519.
    203. Y. Meng, D. Chen and X. Jiao, J. Phys. Chem. B,2006,110:15212-15217.
    204. Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng and J. Shi, Acs Nano, 2010,4:6001-6013.
    205. L. Zhang, W. C. Geng, S. Z. Qiao, H. J. Zheng, G. Q. M. Lu and Z. F. Yan, ACS Appl Mater Interfaces,2010,2:2767-2772.
    206. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin and Z. Guo, Nanoscale,2011,3: 4474-4502.
    207. F. Tao, M. E. Grass, Y. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M Salmeron, G. A. Somorjai, Science,2008,322: 932-934.
    208. Y. Bouizi, I. Diaz, L. Rouleau and V. P. Valtchev, Adv. Funct. Mater.,2005, 15:1955-1960.
    209. Y. Bouizi, L. Rouleau and V. P. Valtchev, Microporous Mesoporous Mater., 2006,91:70-77.
    210. A. M. Henning, J. Watt, P. J. Miedziak, S. Cheong, M. Santonastaso, M. Song, Y. Takeda, A. I. Kirkland, S. H. Taylor and R. D. Tilley, Angew. Chem. Int. Ed.,2013,52:1477-1480.
    211. G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama and Y. Zhang, J. Am. Chem. Soc.,2010,132:8129-8136.
    212. G. Centi and S. Perathoner, Coordin. Chem. Rev.,2011,255:1480-1498.
    213. J. H. Kim, S. B. Yoon, J. Kim, Y. B. Chae and J. Yu, Colloid Surface A, 2008,313-314:77-81.
    214. J. Yu, S. B. Yoon, Y. J. Lee and K. B. Yoon, J. Phys. Chem. B,2005,109: 7040-7045.
    215. J. Yu, Rev. Adv. Mater. Sci.,2005,10:341-346.
    216. M. Kim, K. Sohn, H. B. Na and T. Hyeon, Nano Lett.,2002,2:1383-1387.
    217. S. B. Yoon, K. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu and T. Hyeon, Adv. Mater.,2002,14:19-21.
    218. W. Zhao, J. Gu, L. Zhang, H. Chen and J. Shi, J. Am. Chem. Soc.,2005,127: 8916-8917.
    219. H. Yang, Y. Chong, X. Li, H. Ge, W. Fan and J. Wang, J. Mater. Chem., 2012,22:9069-9076.
    220. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science,1998,279:548-552.
    221. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon and T. Hyeon, Angew. Chem. Int. Ed.,2008,47:8438-8441.
    222. T. Nakamura, M. Mizutani, H. Nozaki, N. Suzuki and K. Yano, J. Phys. Chem. C,2007,111:1093-1100.
    223. S. B. Yoon, J. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. Park and J. Yu, J. Mater. Chem.,2007,17:1758-1761.
    224. Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, J. Am. Chem. Soc.,2008, 130:28-29.
    225. Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Zhao, J. Am. Chem. Soc.,2010,132:8466-8473.
    226. L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng and P. Wu, J. Mater. Chem.,2011,21:10852-10858.
    227. Y. Han, P. Pitukmanorom, L. Zhao and J. Y. Ying, Small,2011,7:326-332.
    228. X. Fang, Z. Liu, M. Hsieh, M. Chen, P. Liu, C. Chen and N. Zheng, ACS Nano,2012,6:4434-4444.
    229. S. H. Joo, J. Y. Park, C. Tsung, Y. Yamada, P. Yang and G. A. Somorjai, Nat. Mater,2009,8:126-131.
    230. Z. Bian, J. Zhu, F. Cao, Y. Lu and H. Li, Chem. Commun.,2009:3789-3791.
    231. T. M. Suzuki, T. Nakamura, E. Sudo, Y. Akimoto and K. Yano, J. Catal., 2008,258:265-272.
    232. A. Lopez-Noriega, E. Ruiz-Hernandez, S. M. Stevens, D. Arcos, M. W. Anderson, O. Terasaki and M. Vallet-Regi, Chem. Mater.,2009,21:18-20.
    233. D. Niu, Z. Ma, Y. Li and J. Shi,J. Am. Chem. Soc.,2010,132:15144-15147.
    234. Y. Chen, H. Chen, M. Ma, F. Chen, L. Guo, L. Zhang and J. Shi, J. Mater. Chem.,2011,21:5290-5298.
    235. H. Yang, X. Jiao and S. Li, Chem. Commun.,2012,48:11217-11219.
    1. Y. Bouizi, I. Diaz, L. Rouleau and V. P. Valtchev, Adv. Funct. Mater.,2005,15: 1955-1960.
    2. M. V. Barmatova, I. D. Ivanchikova, E. I. El'Kina, A. N. Shmakov, M. S. Mel'Gunov and V. B. Fenelonov, Appl. Surf. Sci.,2010,256:5513-5519.
    3. Y. Yang, Y. Qu, J. Zhao, Q. Zeng, Y. Ran, Q. Zhang, X. Kong and H. Zhang, Eur. J. Inorg. Chem.,2010,2010:5195-5199.
    4. W. Schartl, Nanoscale,2010,2:829-843.
    5. Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng and J. Shi, Acs Nano,2010, 4:6001-6013.
    6. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon and T. Hyeon, Angew. Chem. Int. Ed.,2008,47:8438-8441.
    7. T. M. Suzuki, T. Nakamura, E. Sudo, Y. Akimoto and K. Yano, J. Catal.,2008, 258:265-272.
    8. M. V. Barmatova, I. D. Ivanchikova, O. A. Kholdeeva, A. N. Shmakov, V. I. Zaikovskii and M. S. Mel'Gunov, J. Mater. Chem.,2009,19:7332-7339.
    9. K. J. Lin, L. J. Chen, M. R. Prasad and C. Y. Cheng, Adv. Mater.,2004,16: 1845-1849.
    10. M. Kustova, M. S. Holm, C. H. Christensen, Y. Pan, P. Beato, T. V. W. Janssens, F. Joensen and J. Nerlov, Stud. Surf. Sci. Catal.,2008, Volume 174, Part 1: 117-122.
    11. J. Ge, Q. Zhang, T. Zhang and Y. Yin, Angew. Chem. Int. Ed.,2008,47: 8924-8928.
    12. S. H. Joo, J. Y. Park, C. Tsung, Y. Yamada, P. Yang and G. A. Somorjai, Nat. Mater,2009,8:126-131.
    13. X. Yang, Y. Li, G. Van Tendeloo, F. Xiao and B. Su, Adv. Mater.,2009,21: 1368-1372.
    14. C. Song, J. Du, J. Zhao, S. Feng, G. Du and Z. Zhu, Chem. Mater.,2009,21: 1524-1530.
    15. N. Nishiyama, K. Ichioka, D. Park, Y. Egashira, K. Ueyama, L. Gora, W. Zhu, F. Kapteijn and J. A. Moulijn, Ind. Eng. Chem. Res.,2004,43:1211-1215.
    16. E. A. Khan, A. Rajendran and Z. Lai, Ind. Eng. Chem. Res.,2010,49: 12423-12428.
    17. H. Kumagi and K. Yano, Chem. Mater.,2010,22:5112-5118.
    18. Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, J. Am. Chem. Soc.,2008,130: 28-29.
    19. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu and J. Lin, Adv. Funct. Mater., 2010,20:1166-1172.
    20. S. B. Yoon, J. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. Park and J. Yu, J. Mater. Chem.,2007,17:1758-1761.
    21. J. H. Kim, S. B. Yoon, J. Kim, Y. B. Chae and J. Yu, Colloids Surfaces A:Phys., 2008,313-314:77-81.
    22. Y. Han, P. Pitukmanorom, L. Zhao and J. Y. Ying, Small,2011,7:326-332.
    23. J. Zheng, Q. Zeng, Y. Zhang, Y. Wang, J. Ma, X. Zhang, W. Sun and R. Li, Chem. Mater.,2010,22:6065-6074.
    24. A. Lopez-Noriega, E. Ruiz-Hernandez, S. M. Stevens, D. Arcos, M. W. Anderson, O. Terasaki and M. Vallet-Regi, Chem. Mater.,2009,21:18-20.
    25. Y. Bouizi, L. Rouleau and V. P. Valtchev, Microporous Mesoporous Mater., 2006,91:70-77.
    26. J. Yu, S. B. Yoon, Y. J. Lee and K. B. Yoon, J. Phys. Chem. B,2005,109: 7040-7045.
    27. D. Niu, Z. Ma, Y. Li and J. Shi, J. Am. Chem. Soc.,2010,132:15144-15147.
    28. A. M. El-Toni, M. W. Khan, M. A. Ibrahim, M. Abid, M. Al-Hoshan and M. Al-salhi, Chem. Commun.,2010,46:6482-6484.
    29. Z. Wang, Y. Liu, J. Jiang, M. He and P. Wu, J. Mater. Chem.,2010,20: 10193-10199.
    30. A. Corma, Chem. Rev.,1997,97:2373-2420.
    31. Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Zhao, J. Am. Chem. Soc.,2010,132:8466-8473.
    32. A. Monnier, F. Schiith, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Science,1993,261:1299-1303.
    33. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, J. Am. Chem. Soc., 1992,114:10834-10843.
    34. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992,359:710-712.
    35. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science,1998,279:548-552.
    36. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1998,120:6024-6036.
    37. F. Kleitz, S. Hei Choi and R. Ryoo, Chem. Commun.,2003,17:2136-2137.
    38. T. Kim, F. Kleitz, B. Paul and R. Ryoo, J. Am. Chem. Soc.,2005,127: 7601-7610.
    39. W. Hao, H. Lu, S. Lin, T. Bo and Z. Dong-Yuan, Chem. J. Chin. U.,2011,32: 503-507.
    40. S. Chen and S. Cheng, Chem. Mater.,2007,19:3041-3051.
    41. F. Cavani and J. H. Teles, Chemsuschem,2009,2:508-534.
    42. G. N. Vayssilov, Catal. Rev.,1997,39:209-251.
    43. M. Taramasso, G. Perego and B. Notari, US patent 4410501,1983.
    44. F. Song, Y. Liu, H. Wu, M. He, P. Wu and T. Tatsumi, J. Catal.,2006,237: 359-367.
    45. S. Kim, T. R. Pauly and T. J. Pinnavaia, Chem. Commun.,2000:1661-1662.
    46. S. S. Kim, A. Karkamkar, T. J. Pinnavaia, M. Kruk and M. Jaroniec, J. Phys. Chem. B,2001,105:7663-7670.
    47. D. R. Ulrich, Chemtech,1988,18:242-249.
    48. C. J. Brinker and G. W. Scherer, Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing, Academic Pr,1990.
    49. L. L. Hench and J. K. West, Chem. Rev.,1990,90:33-72.
    50. C. Yu, B. Tian, J. Fan, G. D. Stucky and D. Zhao, Chem. Commun.,2001: 2726-2727.
    1. T. A. Nijhuis, M. Makkee, J. A. Moulijn and B. M. Weckhuysen, Ind. Eng. Chem. Res.,2006,45:3447-3459.
    2. F. Cavani and J. H. Teles, Chemsuschem,2009,2:508-534.
    3. C. Qi, Gold Bull.,2008,41:224-234.
    4. R. A. van Santen and C. P. M. de Groot, J. Catal.,1986,98:530-539.
    5. R. A. Van Santen and H. P. C. E. Kuipers, Adv. Catal.,1987, Volume 35: 265-321.
    6. J. M. Kobe, W. E. Evans, R. L. June and M. F. Lemanski, in Encyclopedia of Catalysis,2002.
    7. J. Lu, J. J. Bravo-Suarez, M. Haruta and S. T. Oyama, Appl. Catal. A,2006,302: 283-295.
    8. T. Hayashi, K. Tanaka and M. Haruta, J. Catal,1998,178:566-575.
    9. G. Mul, A. Zwijnenburg, B. van der Linden, M. Makkee and J. A. Moulijn, J. Catal.,2001,201:128-137.
    10. J. Chen, S. J. A. Halin, J. C. Schouten and T. A. Nijhuis, Faraday Discuss.,2011, 152:321-336.
    11. N. Yap, R. P. Andres and W. N. Delgass, J. Catal.,2004,226:156-170.
    12. J. Lu, X. Zhang, J. J. Bravo-Suarez, T. Fujitani and S. T. Oyama, Catal. Today, 2008,147:186-195.
    13. J. Gaudet, K. K. Bando, Z. Song, T. Fujitani, W. Zhang, D. S. Su and S. T. Oyama, J. Catal.,2011,280:40-49.
    14. T. A. Nijhuis, B. J. Huizinga, M. Makkee and J. A. Moulijn, Ind. Eng. Chem. Res., 1999,38:884-891.
    15. W. Lee, M. Cem Akatay, E. A. Stach, F. H. Ribeiro and W. Nicholas Delgass, J. Catal.,2012,287:178-189.
    16. M. Haruta, B. Uphade, S. Tsubota and A. Miyamoto, Res. Chem. Intermediat., 1998,24:329-336.
    17. B. S. Uphade, M. Okumura, S. Tsubota and M. Haruta, Appl. Catal. A-Gen.,2000, 190:43-50.
    18. A. K. Sinha, S. Seelan, T. Akita, S. Tsubota and M. Haruta, Appl. Catal. A-Gen., 2003,240:243-252.
    19. B. S. Uphade, T. Akita, T. Nakamur and M. Haruta, J. Catal.,2002,209: 331-340.
    20. A. K. Sinha, S. Seelan, S. Tsubota and M. Haruta, Angew. Chemie Int. Ed.,2004, 43:1546-1548.
    21. J. Lu, X. Zhang, J. J. Bravo-Suarez, K. K. Bando, T. Fujitani and S. T. Oyama, J. Catal.,2007,250:350-359.
    22. E. Sacaliuc, A. M. Beale, B. M. Weckhuysen and T. A. Nijhuis, J. Catal.,2007, 248:235-248.
    23. C. Liu, Y. Guan, E. J. M. Hensen, J. Lee and C. Yang, J. Catal.,2011,282: 94-102.
    24. B. Taylor, J. Lauterbach and W. N. Delgass, Catal. Today,2007,123:50-58.
    25. T. Liu, P. Hacarlioglu, S. T. Oyama, M. Luo, X. Pan and J. Lu, J. Catal.,2009, 267:202-206.
    26. A. K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota and M. Haruta, J.Phys. Chem. B,2005,109:3956-3965.
    27. L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng and P. Wu, J. Mater. Chem.,2011,21:10852-10858.
    28. W. Zhang, T. R. Pauly and T. J. Pinnavaia, Chem. Mater.,1997,9:2491-2498.
    29. S. S. Kim, A. Karkamkar, T. J. Pinnavaia, M. Kruk and M. Jaroniec, J. Phys. Chem. B,2001,105:7663-7670.
    30. J. C. Jansen, Z. Shan, L. Marchese, W. Zhou, N. V. D. Puil and T. Maschmeyer, Chem. Commun.,2001:713-714.
    31. T. Tatsumi, K. A. Koyano and N. Igarashi, Chem. Commun.,1998:325-326.
    32. P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Catal.,2001,202:245-255.
    33. T. A. Nijhuis, T. Visser and B. M. Weckhuysen, J. Phys. Chem. B,2005,109: 19309-19319.
    34. B. S. Uphade, Y. Yamada, T. Akita, T. Nakamura and M. Haruta, Appl.Catal. A-Gen.,2001,215:137-148.
    35. B. Chowdhury, J. J. Bravo-Suarez, M. Date, S. Tsubota and M. Haruta, Angew. Chem. Int. Ed.,2006,45:412-415.
    36. M. Du, G. Zhan, X. Yang, H. Wang, W. Lin, Y. Zhou, J. Zhu, L. Lin, J. Huang, D. Sun, L. Jia and Q. Li, J. Catal.,2011,283:192-201.
    1. C. S. Cundy and P. A. Cox, Chem. Rev.,2003,103:663-702.
    2. A. Corma, M. Davis, V. Forn, V. Gonzez-Alfaro, R. Lobo and A. V. Orchill, J. Catal.,1997, 167:438-446.
    3. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga and K. P. Lillerud, Angew. Chem. Int. Ed.,2012,51:5810-5831.
    4. C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely and G. J. Hutchings, Angew. Chem. Int. Ed., 2012,51:5129-5133.
    5. A. Corma, J. Catal.,2003,216:298-312.
    6. Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev.,2006,106:896-910.
    7. C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and A. Carlsson, J. Am. Chem. Soc., 2000,122:7116-7117.
    8. J. Cejka and S. Mintova, Catal. Rev.,2007,49:457-509.
    9. J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen and J. C. Groen, Chem. Soc. Rev.,2008,37:2530-2542.
    10. X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang and D. Zhao, Chem. Sci.,2011,2:2006-2016.
    11. J. Yu, S. B. Yoon, Y. J. Lee and K. B. Yoon, J. Phys. Chem. B,2005,109:7040-7045.
    12. Y. Han, P. Pitukmanorom, L. Zhao and J. Y. Ying, Small,2011,7:326-332.
    13. X. F. Qian, B. Li, Y. Y. Hu, G. X. Niu, D. Y. H. Zhang, R. C. Che, Y. Tang, D. S. Su, A. M. Asiri and D. Y. Zhao, Chem. Eur. J.,2012,18:931-939.
    14. Z. Wang, Y. Liu, J. Jiang, M. He and P. Wu, J. Mater. Chem.,2010,20:10193-10199.
    15. L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng and P. Wu, J. Mater. Chem., 2011,21:10852-10858.
    16. H. Peng, L. Xu, H. Wu, Z. Wang, Y. Liu, X. Li, M. He and P. Wu, Microporous Mesoporous Matter,2012,153:8-17.
    17. H. Peng, L. Xu, L. ZHang, J. Wang, Z. Wang, L. Chen and P. Wu, Scientia Sinica Chimica, 2012,42:548-557.
    18. R. Ryoo, S. H. Joo and S. Jun, J. Phys. Chem. B,1999,103:7743-7746.
    19. T. R. Pauly, Y. Liu, T. J. Pinnavaia, S. J. L. Billinge and T. P. Rieker, J. Am. Chem. Soc.,1999, 121:8835-8842.
    20. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc.,2000,122:10712-10713.
    21. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature,2001,412: 169-172.
    22. C. Liang, Z. Li and S. Dai, Angew. Chem. Int. Ed.,2008,47:3696-3717.
    23. J. Lee, S. Yoon, S. M. Oh, C. H. Shin and T. Hyeon, Adv. Mater.,2000,12:359-362.
    24. J. E. Hampsey, Q. Hu, Z. Wu, L. Rice, J. Pang and Y. Lu, Carbon,2005,43:2977-2982.
    25. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater.,2001,13:677-681.
    26. A. H. Lu and F. Schiith, Adv. Mater.,2006,18:1793-1805.
    27. J. Liu, S. Z. Qiao, J. S. Chen, X. W. David Lou, X. Xing and G. Q. Max Lu, Chem. Commun., 2011,47:12578-12591.
    28. X. Fang, C. Chen, Z. Liu, P. Liu and N. Zheng, Nanoscale,2011,3:1632-1639.
    29. P. Valle-Vig, M. Sevilla and A. B. Fuertes, Mater. Lett.,2010,64:1587-1590.
    30. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng and J. Shi, Acs Nano,2010,4: 529-539.
    31. T. A. Nijhuis, M. Makkee, J. A. Moulijn and B. M. Weckhuysen, Ind. Eng. Chem. Res.,2006, 45:3447-3459.
    32. F. Cavani and J. H. Teles, Chemsuschem,2009,2:508-534.
    33. G. Blanco-Brieva, M. C. Capel-Sanchez, M. P. de Frutos, A. Padilla-Polo, J. M. Campos-Martin and J. L. G. Fierro, Ind. Eng. Chem. Res.,2008,47:8011-8015.
    34. T. Hayashi, K. Tanaka and M. Haruta, J. Catal.,1998,178:566-575.
    35. A. K. Sinha, S. Seelan, S. Tsubota and M. Haruta, Angew. Chem. Int. Ed.,2004,43: 1546-1548.
    36. B. Chowdhury, J. J. Bravo-Suarez, M. Date, S. Tsubota and M. Haruta, Angew. Chem. Int. Ed., 2006,45:412-415.
    37. W. Lee, M. Cem Akatay, E. A. Stach, F. H. Ribeiro and W. Nicholas Delgass, J. Catal.,2012, 287:178-189.
    38. E. Sacaliuc, A. M. Beale, B. M. Weckhuysen and T. A. Nijhuis, J. Catal.,2007,248:235-248.
    39. T. Liu, P. Hacarlioglu, S. T. Oyama, M. Luo, X. Pan and J. Lu, J. Catal.,2009,267:202-206.
    40. G. Jenzer, T. Mallat, M. Maciejewski, F. Eigenmann and A. Baiker, Appl. Catal. A-Gen,2001, 208:125-133.
    41. C. Shi, B. Zhu, M. Lin and J. Long, Eur. J. Inorg. Chem.,2009,2009:3067-3070.
    42. P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely and G. J. Hutchings, Chem. Commun., 2002,18:2058-2059.
    43. A. S. K. Hashmi and G. J. Hutchings, Angew. Chem. Int. Ed.,2006,45:7896-7936.
    44. J. K. Edwards, B. Solsona, E. N. N, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Science,2009,323:1037-1041.
    45. M. P. Kaminsky, R. A. Grey and E. Morals, US patent 20090042718,2008.
    46. T. Seo and H. Abekawa, US patent 7915434,2011.
    47. T. Onfroy, F. Guenneau, M. Springuel-Huet and A. Gedeon, Carbon,2009,47:2352-2357.
    48. Z. L. Hu, M. Aizawa, Z. M. Wang and H. Hatori, Carbon,2009,47:3377-3380.
    49. C. Zlotea, F. Cuevas, V. Paul-Boncour, E. Leroy, P. Dibandjo, R. Gadiou, C. Vix-Guterl and M. Latroche, J. Am. Chem. Soc.,2010,132:7720-7729.
    50. L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo and R. Ryoo, Carbon,2002,40: 2477-2481.
    51. J. Perez-Ramirez, S. Abello, A. Bonilla and J. C. Groen, Adv. Funct. Mater.,2009,19: 164-172.
    52. D. Verboekend and J. Perez-Ramirez, Chem. Eur. J.,2011,17:1137-1147.
    53. Z. L. Hua, J. Zhou and J. L. Shi, Chem. Commun.,2011,47.
    54. Y. Wang, M. Lin and A. Tuel, Microporous Mesoporous Mater,2007,102:80-85.
    55. S. Tsai, P. Chao, T. Tsai, I. Wang, X. Liu and X. Guo, Catal. Today,2009,148:174-178.
    56. P. Chao, S. Tsai, T. Tsai, J. Mao and X. Guo, Top. Catal,2009,52:185-192.
    57. J. Perez-Ramirez, D. Verboekend, A. Bonilla and S. Abello, Adv. Funct. Mater.,2009,19: 3972-3979.
    58. X. Yang, G. Tian, L. Chen, Y. Li, J. C. Rooke, Y. Wei, Z. Liu, Z. Deng, G. Van Tendeloo and B. Su, Chem. Eur. J.,2011,17:14987-14995.
    59. D. Verboekend and J. Perez-Ramirez, Catal Sci. Techno.,2011,1:879-890.
    60. V. Calvino-Casilda, A. J. Lopez-Peinado, C. J. Duran-Valle and R. M. Martin-Aranda, Catal. Rev.,2010,52:325-380.
    61. T. Tatsumi, K. A. Koyano and N. Igarashi, Chem. Commun.,1998:325-326.
    62. P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Catal.,2001,202:245-255.
    1. A. Corma, Chem. Rev.,1997,97:2373-2420.
    2. S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam and W. Schwieger, Adv. Mater.,2011,23:2602-2615.
    3. D. Verboekend and J. Perez-Ramirez, Catal. Sci. Techno.,2011,1:879-890.
    4. Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev.,2006,106:896-910.
    5. W. Fan, M. A. Snyder, S. Kumar, P. Lee, W. C. Yoo, A. V. McCormick, R. Lee Penn, A. Stein and M. Tsapatsis, Nat. Mater,2008,7:984-991.
    6. C. M. A. Parlett, K. Wilson and A. F. Lee, Chem. Soc. Rev.,2013.
    7. D. P. Serrano, J. M. Escola and P. Pizarro, Chem. Soc. Rev.,2013.
    8. L. Chen, X. Li, G. Tian, Y. Li, J. C. Rooke, G. Zhu, S. Qiu, X. Yang and B. Su, Angew. Chem. Int. Ed.,2011,50:11156-11161.
    9. N. Michels, S. Mitchell, M. Milina, K. Kunze, F. Krumeich, F. Marone, M. Erdmann, N. Marti and J. Perez-Ramirez, Adv. Funct. Mater.,2012,22: 2509-2518.
    10. Y. Li, Z. Fu and B. Su, Adv. Funct. Mater.,2012,22:4634-4667.
    11. J. Yu, S. B. Yoon, Y. J. Lee and K. B. Yoon, J. Phys. Chem. B,2005,109: 7040-7045.
    12. L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng and P. Wu, J. Mater. Chem.,2011,21:10852-10858.
    13. H. Peng, L. Xu, H. Wu, Z. Wang, Y. Liu, X. Li, M. He and P. Wu, Microporous Mesoporous Mater.,2012,153:8-17.
    14. X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang and D. Zhao, Chem. Sci.,2011,2:2006-2016.
    15. J. Liu, S. Z. Qiao, J. S. Chen, X. W. David Lou, X. Xing and G. Q. Max Lu, Chem. Commun.,2011,47:12578-12591.
    16. S. Wang, M. Zhang and W. Zhang, Acs Catal,2011,1:207-211.
    17. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng and J. Shi, ACS Nano, 2010,4:529-539.
    18. X. Fang, Z. Liu, M. Hsieh, M. Chen, P. Liu, C. Chen and N. Zheng, Acs Nano, 2012,6:4434-4444.
    19. W. Zhao, H. Chen, Y. Li, L. Li, M. Lang and J. Shi, Adv. Funct. Mater.,2008,18: 2780-2788.
    20. J. Liu, H. Q. Yang, F. Kleitz, Z. G. Chen, T. Yang, E. Strounina, G. Q. M. Lu and S. Z. Qiao, Adv. Funct. Mater.,2012,22:591-599.
    21. I. Lee, J. B. Joo, Y. Yin and F. Zaera, Angew. Chem. Int. Ed.,2011,50: 10208-10211.
    22. I. Lee, Q. Zhang, J. Ge, Y. Yin and F. Zaera, Nano Rsearch,2011,4:115-123.
    23. J. Liu, S. Z. Qiao, S. Budi Hartono and G. Q. M. Lu, Angew. Chem. International Ed.,2010,49:4981-4985.
    24. Y. Yang, J. Liu, X. Li, X. Liu and Q. Yang, Chem. Mater.,2011,23:3676-3684.
    25. Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu and Q. Yang, Angew. Chem. Int. Ed.,2012,51:9164-9168.
    26. H. Fujiwara, Y. Ogasawara, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed.,2007,46:5202-5205.
    27. H. Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi and N. Mizuno, Chem. Asian J.,2008,3:1715-1721.
    28. R. Ryoo, S. H. Joo and S. Jun, J. Phys. Chem. B,1999,103:7743-7746.
    29. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc.,2000,122:10712-10713.
    30. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 2001,412:169-172.
    31. J. Lee, S. Yoon, S. M. Oh, C. H. Shin and T. Hyeon, Adv. Mater.,2000,12: 359-362.
    32. L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo and R. Ryoo, Carbon, 2002,40:2477-2481.
    33. Y. Wang, M. Lin and A. Tuel, Microporous Mesoporous Mater,2007,102: 80-85.
    34. D. Verboekend and J. Perez-Ramirez, Chem. Eur. J.,2011,17:1137-1147.
    35. P. Chao, S. Tsai, T. Tsai, J. Mao and X. Guo, Top. Catal.,2009,52:185-192.
    36. S. Tsai, P. Chao, T. Tsai, I. Wang, X. Liu and X. Guo, Catal. Today,2009,148: 174-178.
    37. T. Tatsumi, K. A. Koyano and N. Igarashi, Chem. Commun.,1998:325-326.
    38. P. Wu, T. Tatsumi, T. Komatsu and T. Yashima, J. Catal.,2001,202:245-255.
    39. C. Liang, Z. Li and S. Dai, Angew. Chem. Int. Ed.,2008,47:3696-3717.
    40. E. Guillen, R. Rico, J. M. Lopez-Romero, J. Bedia, J. M. Rosas, J. Rodriguez-Mirasol and T. Cordero, Appl. Catal. A,2009,368:113-120.
    41. Y. Shao, Z. Xu, H. Wan, Y. Wan, H. Chen, S. Zheng and D. Zhu, Catal. Commun, 2011,12:1405-1409.
    42. C. Zlotea, F. Cuevas, V. Paul-Boncour, E. Leroy, P. Dibandjo, R. Gadiou, C. Vix-Guterl and M. Latroche, J. Am. Chem. Soc.,2010,132:7720-7729.
    43. P. Witte, P. Berben, S. Boland, E. Boymans, D. Vogt, J. Geus and J. Donkervoort, Top. Catal.,2012,55:505-511.
    44. J. Bedia, J. M. Rosas, J. Rodriguez-Mirasol and T. Cordero, Appl. Catal. B-Environ.,2010,94:8-18.
    1. M. J. Climent, A. Corma and S. Iborra, Chem. Rev.,2010,111:1072-1133.
    2. Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu and Q. Yang, Angew. Chem. Int. Ed.,2012,51:9164-9168.
    3. Y. Huang, S. Xu and V. S. Y. Lin, Angew. Chem. Int. Ed.,2011,50:661-664.
    4. P. Li, C. Cao, Z. Chen, H. Liu, Y. Yu and W. Song, Chem. Commun.,2012,48: 10541-10543.
    5. X. Fang, Z. Liu, M. Hsieh, M. Chen, P. Liu, C. Chen and N. Zheng, ACS Nano, 2012,6:4434-4444.
    6. S. Okada, S. Ikurumi, T. Kamegawa, K. Mori and H. Yamashita, J. Phys. Chem. C,2012,116:14360-14367.
    7. P. Wang, S. Bai, J. Zhao, P. Su, Q. Yang and C. Li, ChemSusChem,2012,5: 2390-2396.
    8. L. Xu, Y. Ren, H. Wu, Y. Liu, Z. Wang, Y. Zhang, J. Xu, H. Peng and P. Wu, J. Mater. Chem.,2011,21:10852-10858.
    9. K. Ekoue-Kovi and C. Wolf, Chem. Eur. J.,2008,14:6302-6315.
    10. H. Fujiwara, Y. Ogasawara, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed.,2007,46:5202-5205.
    11. H. Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi and N. Mizuno, Chem. Asian J.,2008,3:1715-1721.
    12. J. W. Kim, K. Yamaguchi and N. Mizuno, Angew. Chem. Int. Ed.,2008,47: 9249-9251.
    13. L. A. Long, Process Saf. Prog.,2004,23:114-120.
    14. C. Wei, W. J. Rogers and M. S. Mannan, Chem. Eng. Commun.,2007,194: 579-585.
    15. Robert Raja and J. M. Thomas, Z. Anorg. Allg. Chem.,2005,631:2942-2946.
    16. P. Wu, T. Komatsu and T. Yashima, J. Catal.,1997,168:400-411.
    17. J. N. Armor, J. Am. Chem. Soc.,1980,102:1453-1454.
    18. S. Zhao, W. Xie, J. Yang, Y. Liu, Y. Zhang, B. Xu, J. Jiang, M. He and P. Wu, App. Catal. A-Gen,2011,394:1-8.
    19. J. Liu, S. Z. Qiao, J. S. Chen, X. W. David Lou, X. Xing and G. Q. Max Lu, Chem. Commun.,2011,47:12578-12591.
    20. R. Ghosh Chaudhuri and S. Paria, Chem. Rev.,2011,112:2373-2433.
    21. X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang and D. Zhao, Chem. Sci.,2011,2:2006-2016.
    22. X. F. Qian, B. Li, Y. Y. Hu, G. X. Niu, D. Y. H. Zhang, R. C. Che, Y. Tang, D. S. Su, A. M. Asiri and D. Y. Zhao, Chem. Eur. J.,2012,18:931-939.
    23. Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, J. Am. Chem. Soc.,2008,130: 28-29.
    24. S. B. Yoon, J. Kim, J. H. Kim, Y. J. Park, K. R. Yoon, S. Park and J. Yu, J. Mater. Chem.,2007,17:1758-1761.
    25. H. Peng, L. Xu, L. ZHang, J. Wang, Z. Wang, L. Chen and P. Wu, Scientia Sinica Chimica,2012,42:548-557.
    26. V. Polshettiwar, D. Cha, X. Zhang and J. M. Basset, Angew. Chem. Int. Ed.,2010, 49:9652-9656.
    27. V. Polshettiwar, J. Thivolle-Cazat, M. Taoufik, F. Stoffelbach, S. Norsic and J. Basset, Angew. Chem. Int. Ed.,2011,50:2747-2751.
    28. A. Fihri, D. Cha, M. Bouhrara, N. Almana and V. Polshettiwar, ChemSusChem, 2012,5:85-89.
    29. A. Fihri, M. Bouhrara, U. Patil, D. Cha, Y. Saih and V. Polshettiwar, ACS Catal., 2012,2:1425-1437.
    30. M. Taramasso, G. Perego and B. Notari, US patent 4410501,1983.
    31. H. Peng, L. Xu, H. Wu, Z. Wang, Y. Liu, X. Li, M. He and P. Wu, Microporous Mesoporous Mater.,2012,153:8-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700