用户名: 密码: 验证码:
杂原子介孔磷酸铝分子筛的合成、表征及催化氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔磷酸铝分子筛骨架由铝氧四面体与磷氧四面体交替排列而成,呈电中性,当杂原子如硅、过渡金属钴和锰等进入磷酸铝分子筛骨架结构后,其骨架则带有电荷产生酸性位,也能同时产生氧化还原活性位,从而成为潜在的催化材料。同微孔相比,介孔磷酸铝分子筛具有较高的比表面积,较大的孔径,较窄的孔径分布,从而使其应用于有较大分子参与的反应成为可能,表现出潜在的应用前景,可用于加氢、脱氢、重整、裂化、异构化、环化及氧化等多种反应。但是同微孔磷酸铝分子筛和介孔硅基分子筛相比,介孔磷酸铝分子筛的稳定性较差,且合成的影响因素较多,造成合成的经验性强、过程的可控性差,本文致力于合成出较高热稳定性的介孔磷酸铝分子筛,并对其应用进行研究。
     本文采用水热合成法对介孔磷酸铝分子筛进行了合成,并通过大量的实验,讨论了四甲基氢氧化铵加入量、晶化温度、晶化时间、铝与磷原料摩尔配比、模板剂脱除方法等影响因素对分子筛晶体结构和性能的影响,并借助X射线粉末衍射(X-ray powder diffraction, XRD)、傅立叶变换红外光谱(flourier transform infrared spectrometry, FT-IR)、热重-差热分析(thermogravimetry and differential thermal analysis, TG-DTA)、比表面积测定(Brunner-Emmett-Teller method, BET)等分析手段,得出介孔磷酸铝分子筛较好的合成工艺。在此基础上,将铁、钴和铬等杂原子引入介孔磷酸铝分子筛中,并通过氮气吸附、紫外可见漫反射光谱(ultraviolet-visible diffuse reflectance spectroscopy, UV-Vis DRS)和电子顺磁共振波谱(electron paramagnetic resonance spectroscopy, EPR)等分析手段对分子筛结构和杂原子存在形态进行了表征,并将所合成分子筛用于不同氧化反应,考察其催化性能。
     在铁掺杂介孔磷酸铝分子筛中,铁原子进入分子筛骨架结构中,并主要以四配位形式存在,同时存在少量骨架外铁氧化物。将其用于苯酚过氧化氢羟基化制苯二酚反应中,三价铁离子(Fe3+)是催化苯酚羟基化反应的活性中心,骨架铁物种的活性要远高于非骨架的铁物种,非骨架的铁物种(主要以骨架外氧化物聚集体(簇)的形式存在)会导致过氧化氢的无效分解,采用优化的工艺条件,苯酚的转化率、苯二酚的选择性和过氧化氢有效利用率分别达到21.0%、98.2%和62.7%。同时将铁掺杂介孔磷酸铝分子筛用于催化过氧化氢氧化水溶液中苯酚的反应,苯酚去除率达到99.5%,化学需氧量(chemical oxygen demand, COD)去除率达到87.9%,析出到溶液中Fe3+离子活性很低,并且浓度也很低,不会产生二次污染,克服了芬顿(Fenton)试剂的缺陷。提出了铁掺杂介孔磷酸铝分子筛催化过氧化氢氧化水溶液中苯酚的催化机理,并通过设计实验进行了验证。机理如下:反应中过氧化氢首先吸附在骨架铁物种上形成羟基自由基(OH),OH进攻苯环生成相应的中间产物,如苯醌、邻苯二酚、间苯二酚、对苯二酚等,这些中间产物继续与.OH反应生成低碳链的脂肪酸,主要有草酸、乙酸和富马酸等,低碳链的脂肪酸可进一步被氧化最终氧化为二氧化碳和水。
     在钴掺杂介孔磷酸铝分子筛中,引入钴原子对700cm-附近的红外吸收峰有明显的增强作用。钴掺杂介孔磷酸铝分子筛在苯乙烯氧化制苯甲醛反应中,具有较高的活性和选择性,条件优化后苯乙烯转化率达到42.2%,苯甲醛选择性为82.0%,苯甲醛产率达到34.6%,并具有较好的稳定性。
     采用XRD研究了铬掺杂介孔磷酸铝分子筛在不同晶化温度下的水热晶化过程。以相对结晶度为指标测定了结晶动力学曲线,并根据阿累尼乌斯(Arrhenius)方程计算了铬掺杂介孔磷酸铝分子筛表观成核活化能和表观晶体生长活化能,分别为63.70kJ·mol-1和14.7kJ·mol-1。将其用于乙苯选择性氧化制苯乙酮反应中,乙苯转化率可达到72.8%,苯乙酮选择性为85.4%,苯乙酮产率达到62.2%。
The mesoporous aluminophosphates represent a family of molecular sieves that are constituted of PO4(+) and AlO4(-) tetrahedral having an electronically neutral framework. Upon incorporation of heteroatoms, for example silicon or transition metal elements, into the framework of an aluminophosphate molecular sieve, silicoaluminophosphate or metalaluminophosphate which have acid sites or redox-active sites due to the replacement of phosphorus or both phosphorus and aluminums by silicon or transition metals can be obtained. The substitution of phosphorus or both phosphorus and aluminium also provides these molecular sieves with potential catalytic applications. Compared with microporous materials, the mesoporous aluminophosphates have higher specific surface area, larger pore size and narrower pore size distribution. These materials have showed potential application prospect in dealing with even large bulky molecules, such as hydrogenation, dehydrogenation, reformation, crack, isomerization, cyclization and oxidation, etc. The mesoporous aluminophosphates are thermally unstable compared with microporous aluminophosphates and mesoporous silicon-based materials. Due to many influence factors in such kind of synthetic method, the synthesis process is empirical and uncontrollable. This dissertation is devoted to improving the thermal stability and investigating the application of mesoporous aluminophosphates.
     The mesoporous aluminophosphates were synthesized by hydrothermal crystallization. Based on the experiments of crystallization time, crystallization temperature, amount of tetramethylammonium hydroxide (TMAOH), aluminium/phosphorus molar ratio, different templates and template removal methods etc., the effects of these methods on property and structure of mesoporous aluminophosphate molecular sieves were carefully researched. Moreover, the optimum synthesis conditions were determined by X-ray powder diffraction (XRD), fourier transform infrared spectrophotometery (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), Brunner-Emmett-Teller method (BET), etc. Based on the above mentioned experiments, the influences of transition metal elements (iron, cobalt, chromium) on structure of mesoporous aluminophosphates and existent form of transition metal elements were investigated. The catalytic performances of mesoporous aluminophosphates were also studied.
     From the obtained characterization results, it could also be concluded that both the framework and extraframework iron species (iron oxide) were together present in the iron -substituted mesoporous aluminophosphates (Fe-MAPs), and most iron ions (Fe3+) in tetrahedral coordination were incorporated into the Fe-MAPs. The catalytic performances of Fe-MAPs for hydroxylation of phenol were studied. The results indicated that the framework Fe3+species were active centers, and the catalytic performance of framework Fe3+species was higher than that of extraframework Fe3+species. The extraframework Fe3+species (mainly existing in oxide aggregates or clusters) could lead to the invalid decomposition of hydrogen peroxide (H2O2). Under the optimized conditions, the conversion of phenol, the selectivity to catechol and the selectivity to hydroquinone reached21.0%,66.8%and31.4%respectively.
     The catalytic properties of Fe-MAPs were also studied in the wet oxidation of phenol. Fe-MAPs as heterogeneous catalysts were effective for catalytic oxidation of phenol in aqueous solutions with H2O2as oxidant. Under the optimized conditions, the removal of phenol and chemical oxygen demand (COD) reached99.5%,87.9%respectively. Compared with Fenton systems, the concentration of Fe3+in the treated solution was very lower by Fe-MAP, and the possibility of induced pollution caused by the metal ions in the solution was avoided. The catalytic oxidation mechanism of phenol was proposed and verified by the designed experiments. The phenol oxidation reaction proceeds through the radical chain mechanism. The mechanism consists of the following steps.
     First, H2O2is adsorbed on the surface of the Fe-MAP and reacts with Fe3+to form hydroxyl radical (OH). Then, the benzene ring is attacked by OH to form intermediates, such as benzoquinone, catechol, hydroquinone and resorcinol. These intermediates can react with OH to form fatty acids, such as oxalic acid, acetic acid and fumaric acid. Finally, these fatty acids further react to form carbon dioxide (CO2) and water (H2O).
     The cobalt-substituted mesoporous aluminophosphate (Co-MAP) was also prepared by hydrothermal synthesis. FT-IR spectrum showed that the peak around700cm-1of Co-MAP was strengthened observably than that of mesoporous aluminophosphate (MAP). Co-MAP was effective for oxidation of styrene with H2O2to benzaldehyde. Under the optimized conditions, the conversion of styrene, the selectivity to benzaldehyde and the yield of benzaldehyde reached42.2%,82.0%and34.6%, respectively.
     The hydrothermal crystallization processes of chromium-substituted mesoporous aluminophosphate (Cr-MAP) at various temperatures were studied by XRD. From the crystallization curves determined by the relative cyrstallinity of each sample, the apparent activation energy for the nucleation and for crystal growth were calculated by Arrhenius equation, which were63.7kJ·mol-1and14.7kJ·mol-1for Cr-MAP. The catalytic performance of Cr-MAP for selective oxidation of ethylbenzene was studied. The results indicated that the framework chromium ions (Cr5+) were active centers. Under the optimized conditions, the conversion of ethylbenzene, the selectivity to acetophenone and the yield of acetophenone reached72.8%,85.4%, and62.2%, respectively.
引文
[1]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学.第1版.北京:科学出版社,2004
    [2]任海伦,辛峰.介孔磷酸铝分子筛的研究进展.化学反应过程与工艺,2006,22(2):133~171
    [3]Kresge C T, Leonwicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359 (22):710-712
    [4]Attard G S, Glyde J C, Gltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature,1995,378:366-368
    [5]Chen C Y, Burkett S L, Li H X, Davis M E. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41. Microporous Materials,1993,2(1):27-34
    [6]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science,1995,267:1138-1143
    [7]Huo Q, Margolese D I, Ciesla U, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials,1994,6(8):1176-1191
    [8]Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993,261: 1299-1303
    [9]Chenite A, Page Y L, Karra V R, Sayari A. Coaxial cylindrical bilayer growth:a novel phase in inorganic-surfactant systems evidenced by transmission electron microscopy. Chemical Communications,1996,3:413-414
    [10]Olive S, Kuperman A, Coombs N, Lugh A, Ozin G A. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature,1995,378: 47-50
    [11]Huo Q, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature,1994,368:317-321
    [12]Che S, Garcia-Bennett A E, Yokoi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials,2003,2:801-805
    [13]Garcia-Bennett A E, Terasaki O, Che S. Structural investigations of AMS-n mesoporous materials by transmission electron microscopy. Chemistry of Materials,2004, 16 (5):813-82
    [14]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature,1994,368:321-323
    [15]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science,1995,267(5199):865-867
    [16]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science,1995,269(5228):1242-1244
    [17]Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science,1996,271(5253):1267-1269
    [18]Antonelli D M, Ying J Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angewandte Chemie International Edition in English,1996,35(4):426-430
    [19]Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorganic Chemistry,1996,35(11): 3126-3136
    [20]Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chemistry of Materials,1996,8(4):874-881
    [21]Ulagappan N, Rao C N R. Mesoporous phases based on SnO2 and TiO2. Chemical Communications,1996,14:1685-1686
    [22]Hudson M J, Knowles J A. Preparation and characterisation of mesoporous, high-surface-area zirconium (IV) oxide. Journal of Material Chemistry,1996,6(1):89-95
    [23]Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky G D, Zhao D. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials,2003,2:159-163
    [24]Attard G S, Corker J M, Goltner C G, Henke S, Templer R H. Liquid-crystal templates for nanostructured metals. Angewandte Chemie International Edition in English, 1997,36(12):1315-1317
    [25]Tohver V, Braun P V, Pralle M U, Stupp S I. Counterion effects in liquid crystal templating of nanostructured CdS. Chemistry of Materials,1997,9(7):1495-1498
    [26]Liu G, Wang Z, Jia M. Thermally stable amorphous mesoporous aluminophosphates with controllable P/Al ratio:synthesis, characterization, and catalytic performance for selective o-methylation of catechol. The Journal of Physical Chemistry B,2006,110(34): 16953-16960
    [27]Lu D, Lee B, Kondo J N, Domen K. Preparation and characteristics of crystallized mesoporous Zr6Nb2O17. Microporous and Mesoporous Materials,2004,75(3):203-208
    [28]Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications,2007,9:897-926
    [29]Ayyappan S, Rao C N R. Mesoporous aluminoborates. Chemical Communications, 1997,6:575-576
    [30]Wilson S T, Lok B M, Messina C A, Cannan T R, Flanigen E M. Aluminophosphate molecular sieves:A new class of microporous crystalline inorganic solids. Journal of the American Chemical Society,1982,104(4):1146-1147
    [31]Lok B M, Messina C A, Patton R L, Gajek R C, Cannan T R, Flanigen E M. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society,1984,106(20):6092-6093
    [32]Kapoor M P, Anuj R. Synthesis of mesorporous hexagonal titanium aluminosphate molecular sieves and their catalytic applications. Applied Catalysis,2000,203:311-319
    [33]Sayari A, Liu P. Non-silica periodic mesostructured material:recent progress. Microporous Material,1997,12:149-177
    [34]Chen J, Pang W, Xu R. Mixed-bonded open-framework aluminophosphates and related layered materials. Topics in Catalysis,1999,9(1-2):93-103
    [35]Yu J, Xu R, Li J. Structural diversity of a family of aluminophosphates with Al/P ratio of non-unity. Solid State Science,2000,2(2):181-192
    [36]Bennett J M, Dytrych W J, Pluth J J, Richardson J J W, Smith J V. Structural features of aluminophosphate materials with Al/P=1. Zeolites,1986,6(5):349-360
    [37]Lin S, Weng H. Liquid-phase oxidation of cyclohexane using CoAPO-5 as the catalyst. Applied Catalysis A:General,1993,105 (2):289-308
    [38]张瑞珍,董梅,秦张峰,王建国.CoAPO-5和MnAPO-5分子筛的合成、表征及在环己烷选择氧化反应中的应用.燃料化学学报,2007,35(1):98~103
    [39]Zhao R, Dong M, Qin Z, Wang J. Synthesis of small particle-sized CoAPO-5 and CoAPO-20 by surfactant-assisted method. Materials Letters,2008,62:4573-4575
    [40]Priya S V, Mabel J H, Gopalakrishnan S, Palanichamy M, Murugesan M. Lewis acid metal ion-exchanged MAPO-36 molecular sieve:Characterisation and catalytic activity. Journal of Molecular Catalysis A:Chemical,2008,290(1-2):60-66
    [41]Ulagappan N, Krishnasamy V. Titanium substitution in silicon-free molecular sieves: anatase-free TAPO4-5 and TAPO4-11 synthesis and characterisation for hydroxylation of phenol. Journal of the Chemical Society. Chemical Communications,1995,3:373-374
    [42]Lowenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist,1954,39:92-96
    [43]Holland B T, Isbester P K, Blanford C F, Munson E J, Stein A. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. Journal of the American Chemical Society,1997,119(29):6783-6796
    [44]Kron D A, Holland B T, Wipson R, Maleke C, Stein A. Anion exchange properties of a mesoporous aluminophosphate. Langmuir,1999,15:8300-8308
    [45]Kimura T, Sugahara Y, Kuroda K. Synthesis of mesoporous aluminophosphates and adsorption properties. Microporous and Mesoporous Materials,1998,22:115-126
    [46]Campelo J M, Jaraba M, Luna D. Luque R, Marinas J M, Romero A A. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AIPO4 materials. Chemistry of Materials,2003,15(17): 3352-3364
    [47]Mohapatra S K, Sahoo B, Keune W, Selvam P. Synthesis, characterization and catalytic properties of trivalent iron substituted hexagonal mesoporous aluminophosphates. Chemical Communications,2002,14:1466-1467
    [48]Kimura T, Sugahara Y, Kuroda K. Synthesis of mesoporous aluminophosphates using surfactants with long alkyl chain lengths and triisopropylbenzene as a solubilizing agent. Chemical Communications,1998,5:559-560
    [49]Cabrera S, Haskouri J E, Guillem C, Beltran-Porter A, Beltran-Porter D, Marcos M D, Amoros P, Mendioroz S. Tuning the pore size from micro-to meso-porous in thermally stable aluminophosphates. Chemical Communications,1999,4:333-334
    [50]Kriesel J W, Sander M S, Tilley T D. General route to homogeneous, mesoporous, multicomponent oxides based on the thermolytic transformation of molecular precursors in non-polar media. Advanced Materials,2001,13:331-335
    [51]Beck J S, Varrwli J E, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of American Chemical Society,1992,114(27): 10834-10843
    [52]Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, Mccullen S B, Hellring S D, Beck J S, Schlenker J L, Olson D H, Sheppard E W. Development of a formation mechanism of M41S materials. Studies in Surface Science and Catalysis,1994, 84:53-60
    [53]Vartuli J C, Kresge C T, Leonowiez M E, Chu A S, Mccullen S B, Johnson I D, Sheppard E W. Synthesis of mesoporous materials:liquid-crystal templating versus intercalation of layered silicates. Chemistry of Materials,1994,6:2070-2077
    [54]Huo Q, Leon R, Petroff P M, Stucky G D. Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array. Science,1995, 268(5215):1324-1327
    [55]Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials,1996,8(5):1147-1160
    [56]Huo Q, Margolese D I, Ciesla U, Demuth D G, Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials,1994,6(8):1176-1191
    [57]Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan,1990,63(4):988-992
    [58]Livage J. Sol-gel chemistry and molecular sieve synthesis. Studies in Surface Science and Catalysis,1994,85:1-42
    [59]Mortlock R F, Bell A T, Radke C J. Phosphorus-31 and aluminum-27 NMR investigations of the effects of pH on aqueous solutions containing aluminum and phosphorus. The Journal of Physical Chemistry,1993,97(3):775-782
    [60]Kraushaar-Czametzki B, Stork W H J, Dogterom R J. Novel aluminophosphate-based compounds with a layered structure and intercalation behavior. Inorganic Chemistry,1993,32:5029-5033
    [61]Feng P, Bu X, Stucky G D. Control of structural ordering in crystalline lamellar aluminophosphates with periodicity from 51 to 62A. Inorganic Chemistry,2000,39(1): 2-3
    [62]Oliver S, Kuperman A, Coombs N, Lough A, Ozin G A. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature,1995,378:47-50
    [63]Oliver S, Ozin G A, Coombs N G. Synthetic hollow aluminophosphate microspheres. Advanced Materials,1995,7(11):931-935
    [64]Ozin G A, Oliver S. Skeletons in the beaker:Synthetic hierarchical inorganic materials. Advanced Materials,1995,7(11):943-947
    [65]Sayari A, Karra V R, Reddy J S, Moudrakovski I L. Synthesis of mesostructured lamellar aluminophosphates. Chemical Communications,1996,3:411-412
    [66]Sayari A, Moudrakovski I L, Reddy J S, Ratcliffe C I, Ripmeester J A, Preston K F. Synthesis of mesostructured lamellar aluminophosphates using supramolecular templates. Chemistry of Materials,1996,8(8):2080-2088
    [67]Gao Q, Xu R, Chen J, Li R, Li S, Qui S, Yue Y. Synthesis and characterization of an unusual lamellar aluminophosphate synthesized from an alcohol system. Journal of the Chemical Society. Dalton Transanctions,1996,15:3303-3307
    [68]Gao Q, Chen J, Xu R, Yue Y. Synthesis and Characterization of a family of amine-intercatalated lamellar aluminophosphates from alcoholic system. Chemistry of Materials,1997,9(2):457-462
    [69]Cheng S, Tzeng J N, Hsu B Y. Synthesis and characterization of a novel layered aluminophosphate of kanemite-like structure. Chemistry of Materials,1997,9(8): 1788-1796
    [70]Tiemann M, Froba M. Mesostructured aluminophosphates synthesized with supramolecular structure directors. Chemistry of Materials,2001,13(10):3211-3217
    [71]Tiemann M, Schulz M, Jager C, Froba M. Mesoporous aluminophosphate molecular sieves synthesized under nonaqueous conditions. Chemistry of Materials,2001,13(9): 2885-2891
    [72]Tiemann M, Froba M. Mesoporous aluminophosphates from a single-source precursor. Chemical Communications,2002,5:406-407
    [73]Tiemann M, Froba M, Rapp G, Funari S S. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites:synthesis, characterization, and in-Situ SAXS studies. Chemistry of Materials,2000,12(5):1342-1348
    [74]Froba M, Tiemann M. A new role of the surfactant in the synthesis of mesostructured phases:dodecyl phosphate as template and reactant for aluminophosphates. Chemistry of Materials,1998,10(11):3475-3483
    [75]Zhou Z, Liu G, Zhang W, Liao X, Hou Y, Jia M. Thermally stable mesoporous aluminophosphates assembled from preformed precursors of microporous aluminophosphate. Materials Letters,2005,59:3503-3506
    [76]Sarkar K, Bhaumik A. Hydrothermal transformation of a layered aluminophosphate into a mesoporous structure. Journal of Porous Materials,2008,15(4):445-450
    [77]Fu G, Fyfe C A, Schwieger W, Kokotailo G T. Structure organization of aluminosilicate polyanions with surfactants:optimization of Al incorporation in aluminosilicate mesostructural materials. Angewandte Chemie (International Edition in English),1995,34(13-14):1499-1502
    [78]Lin K, Wang L, Sun Z, Yang Q, Di Y, Zhang D, Jiang D, Xiao F. A stable hexagonal mesoporous aluminophosphate assembled from preformed aluminophosphate precursors. Chemistry Letters,2005,34 (4):516-517
    [79]Masson N C, Pastore H O. Synthesis and characterization of tubular aluminophosphate mesoporous materials containing framework magnesium. Microporous and Mesoporous Materials,2001,44-45:173-183
    [80]Perez O J O, Borade R B, Clearfield A. Synthesis of a mesoporous aluminophosphate. Journal of Molecular Structure,1998,470(1-2):221-228
    [81]Feng P, Xia Y, Feng J, Bu X, Stucky G D. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chemical Communications, 1997,10:949-950
    [82]Kimura T, Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chemistry of Materials,1999,11(2):508-518
    [83]Zhao D, Luan Z, Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chemical Communications,1997,11:1009-1010
    [84]Zhao D, Luan Z, Kevan L. Electron spin resonance and electron spin echo modulation spectroscopy of aluminophosphate-based mesoporous molecular sieve containing framework manganese. The Journal of Physical Chemistry B,1997,101(35): 6943-6948
    [85]Luan Z, Zhao D, He H, Klinowski J, Kevan L. Characterization of aluminophosphate-based tubular mesoporous molecular sieves. The Journal of Physical Chemistry B,1998,102(7):1250-1259
    [86]Luan Z, Zhao D, Kevan L. Electron spin resonance and optical spectroscopy of tubular aluminophosphate materials containing framework vanadium. Microporous and Mesoporous Materials,1998,20(1-3):93-99
    [87]Pai S, Newalkar B L, Choudary N V. Synthesis and characterization of cobalt substituted aluminophosphate molecular sieve:Co-SSZ-51 under microwave-hydrothermal conditions. Microporous and Mesoporous Materials,2006,96(1-3):135-140
    [88]Yuan Z, Chen T, Wang J, Li H. Synthesis of mesostructured lamellar aluminophosphates in the presence of alkylpyridinium cationic surfactant. Materials Chemistry and Physics,2001,68(1-3):110-118
    [89]Ho L, Yukushima S, Morikawa R, Asaka N, Nishiguchi H, Nagaoka K, Yusaku T. Synthesis of a thermally stable mesoporous aluminophosphate by using sodium aluminate as precursor. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005, 268(1-3):40-44
    [90]Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications,2006,42:4380-4382
    [91]Schulz M, Tiemann M, Froba M, Jager C. NMR characterization of mesostructured aluminophosphates. The Journal of Physical Chemistry B,2000,104(45):10473-10481
    [92]Wang L, Tian B, Fan J, Liu X, Yang H, Yu C, Tu B, Zhao D. Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid-base pair" route. Microporous and Mesoporous Materials,2004,67(2-3):123-133
    [93]Du Y, Yang Y, Liu S, Xiao N, Zhang Y, Xiao F. Mesoporous aluminophosphates and Fe-aluminophosphates with highly thermal stability and large surface area templated from semi-fluorinated surfactant. Microporous and Mesoporous Materials,2008,114(1-4): 250-256
    [94]Lu J, Ranjit K T, Rungrojchaipan P, Kevan L. Synthesis of mesoporous aluminophosphate(AlPO) and investigation of zirconium incorporation into mesoporous AlPOs. The Journal of Physical Chemistry B,2005,109(19):9284-9293
    [95]Liu G, Jia M, Zhou Z, Wang L, Zhang W, Jiang D. Synthesis and pore formation study of amorphous mesoporous aluminophosphates in the presence of citric acid. Journal of Colloid and Interface Science,2006,302(1):278-286
    [96]Liu G, Jia M, Zhou Z, Zhang W, Wu T, Jiang D. Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route. Chemical Communications,2004,14:1660-1661
    [97]Kimura T. Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress. Microporous and Mesoporous Materials,2005,77:97-107
    [98]Chakraborty B, Pulikottil A C, Das S, Viswanathan B. Synthesis and characterization of mesoporous SAPO. Chemical Communications,1997,10:911-912
    [99]Chakraborty B, Pulikottil A C, Viswanathan B. Physico-chemical and MAS NMR characterization of mesoporous SAPOs. Applied Catalysis A:General,1998,167(2): 173-181
    [100]Zhao X S, Lu G Q. Aluminophosphate-based mesoporous molecular sieves: synthesis and characterization of TAPOs. Microporous and Mesoporous Materials,2001, 44-45:185-194
    [101]Khimyak Y Z, Klinowski J. Incorporation of magnesium in mesostructured and mesoporous aluminophosphates. Physical Chemistry Chemical Physics,2001,3(8): 1544-1551
    [102]Gerbaldi C, Bodoardo S, Fiorilli S, Piana M, Penazzi N. Characterization of Mn species in mesoporous systems:An electrochemical study. Electrochimica Acta,2005, 50(28):5539-5545
    [103]Khimyak Y Z, Klinowski J. Synthesis and characterisation of mesoporous aluminophosphates containing boron. Journal of Materials Chemistry,2002,12(4): 1079-1085
    [104]Varshney K G, Pandith A H, Gupta U. Synthesis and characterization of zirconium aluminophosphate. A new cation exchanger. Langmuir,1998,14(26):7353-7358
    [105]Yuan Z, Chen T, Wang J, Li H. Synthesis and characterization of silicon and cobalt substituted mesoporous aluminophosphates. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,179(2-3):253-259
    [106]Belen-Cordero D S, Mendez-Gonzalez S, Hernandez-Maldonado A J. SBE type cobalt aluminophosphate nanoporous materials:Degradation of the structure-directing agent. Microporous and Mesoporous Materials,2008,109(1-3):287-297
    [107]Gianorti E, Oliveira E C, Coluccia S, Pastore H O, Marchese L. Synthesis and surface properties of Ti-containing mesoporous aluminophosphates. A comparison with Ti-grafted mesoporous silica Ti-MCM-41. Inorganica Chimica Acta,2003,349:259-264
    [108]Bae J Y, Ranjit K T, Luan Z, Krishna R M, Kevan L. Photoionization of n-alkylphenothiazines in mesoporous metal silicoaluminophosphate molecular sieves. The Journal of Physical Chemistry B,2000,104(41):9661-9669
    [109]Kapoor M P, Raj A. Synthesis of mesoporous hexagonal titanium aluminophosphate molecular sieves and their catalytic applications. Applied Catalysis A: General,2000,203(2):311-319
    [110]Karthik M, Vinu A, Tripathi A K, Gupta N M, Palanichamy M, Murugesan V. Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates. Microporous and Mesoporous Materials,2004,70(1-3): 15-25
    [111]Venkatathri N, Srivastava R. Synthesis, characterization and catalytic properties of hexagonal mesoporous vanadium aluminophosphate molecular sieves. Catalysis Communications,2005,6(3):177-183
    [112]Bhaumik A, Inagaki S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society,2001,123(4):691-696
    [113]Subrahmanyam C, Louis B, Rainone F, Viswanathan B, Renken A, Varadarajan T K. Catalytic oxidation of toluene with molecular oxygen over Cr-substituted mesoporous materials. Applied Catalysis A:General,2003,241(1-2):205-215
    [114]Subrahmanyam C, Viswanathan B, Varadarajan T K. Synthesis, characterization and catalytic activity of mesoporoustrivalent iron substituted aluminophosphates. Journal of Molecular Catalysis A:Chemical,2004,223(1-2):149-153
    [115]Subrahmanyam C, Louis B, Viswanathan B, Renken A, Varadarajan T K. Synthesis, characterisation and catalytic properties of vanadium substituted mesoporous aluminophosphates. Applied Catalysis A:General,2005,282(1-2):67-71
    [116]Mohapatra S K, Sonavane S U, Jayaram R V, Selvam P. Heterogeneous catalytic transfer hydrogenation of aromatic nitro and carbonyl compounds over cobalt(II) substituted hexagonal mesoporous aluminophosphate molecular sieves. Tetrahedron Letters,2002,43(47):8527-8529
    [117]Mohapatra S K, Hussain F, Selvam P. Synthesis, characterization, and catalytic properties of chromium-containing hexagonal mesoporous aluminophosphate molecular sieves. Catalysis Letters,2002,85(3-4):217-222
    [118]Selvam P, Mohapatra S K. Synthesis and characterization of divalent cobalt-substituted mesoporous aluminophosphate molecular sieves and their application as novel heterogeneous catalysts for the oxidation of cycloalkanes. Journal of Catalysis,2005, 233(2):276-287
    [119]Selvam P, Mohapatra S K. Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate(FeHMA) molecular sieves:Synthesis, characterization, and catalytic properties. Journal of Catalysis,2006,238(1):88-99
    [120]Mohapatra S K, Hussain F, Selvam P. Titanium substituted hexagonal mesoporous aluminophosphates:Highly efficient and selective heterogeneous catalysts for the oxidation of phenols at room temperature. Catalysis Communications,2003,4(2):57-62
    [121]Selvam P, Mohapatra S K, Sonavane S U, Jayaram R V. Chemo-and regioselective reduction of nitroarenes, carbonyls and azo dyes over nickel-incorporated hexagonal mesoporous aluminophosphate molecular sieves. Tetrahedron Letters,2004,45(9): 2003-2007
    [122]Schuth F. Non-siliceous mesostructured and mesoporous materials. Chemistry of Materials,2001,13(10):3184-3195
    [123]Yang P, Zhao D, Margolese D I, Chemlka B F, Stucky G D. Generalized synthesis of large pore mesoporous metal oxides with semicrystalline fameworks. Nature,1998,396: 152-155
    [124]Maclachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4Sio)4-clusters. Nature,1999,397: 681-684
    [125]Xu W, Dong J, Li J, Li J, Wu F. A novel method for the preparation of zeolite ZSM-5. Jouranl of Chemical Society. Chemical Communications,1990,10:755-756
    [126]姚建峰,张利雄,徐南平.气相法制备沸石分子筛的研究进展.南京工业大学学报,2004,26(1):7-13
    [127]张强,李春义,山红红,杨朝合.气相转移法合成ZSM-5/SAPO-5复合分子筛.高等学校化学学报,2007,28(11):2030~2034
    [128]Goor G, Behrens P, Felsche J.(C3H6O2)2, (Si6O12)2, a new silica sodalite synthesized, using 1,3-dioxolane as template. Microporous Materials,1994,2(6):501-514
    [129]Wu C-G, Bein T. Microwave synthesis of molecular sieve MCM-41. Chemical Communications,1996,8:925-926
    [130]Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society,2000, 122(36):8791-8792
    [131]Zhang Z, Han Y, Zhu L, Wang R, Yu Y, Qiu S, Zhao D, Xiao F. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition,2001,40(7):1258-1262
    [132]Han Y, Wu S, Sun Y, Li D, Xiao F, Liu J, Zhang X. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chemistry of Materials, 2002,14(3):1144-1148
    [133]Wang M, Muhammed M. Novel synthesis of Al13-cluster based alumina materials. Nanostructured Materials,1999,11(8):1219-1229
    [134]项斯芬,严宣申,曹庭礼.无机化学丛书第四卷,北京:科学出版社,1995,180~380
    [135]Lin Y, Lin H, Mou C. A simple synthesis of well-ordered super-microporous aluminosilicate. Microporous and Mesoporous Materials,2004,76(1-3):203-208
    [136]Climent M J, Corma A, Fornes V, Frau A, Guil-Lopez R, Iborra S, Primo J. Aluminophosphates oxynitrides as base catalysts:nature of the base sites and their catalytic implications. Journal of Catalysis,1996,163(2):392-398
    [137]张金中,王中林,刘俊,陈少伟.自组装纳米结构,北京:化学工业出版社,2005,1~47
    [138]Feng P, Bu X, Pine D J. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurafctant-water systems. Langmuir,2000,169(12): 5304-5310
    [139]Dvais S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature,1997,385:420-423
    [140]Ma Y, Tong W, Zhou H, Suib S L. A review of zeolite-like porous materials. Microporous and Mesoporous Materials,2000,37(1-2):243-252
    [141]Zhao G, Zhang X, Chen T, Yuan Z. Synthesis of mesoporous aluminophosphate and silicoaluminophosphate in the presence of nonionic poly(ethylene oxide) surfactant. Materials Science and Engineering B,2006,131(1-3):263-266
    [142]Kimura T. Oligomeric surfactant and triblock copolymer syntheses of aluminum organophosphonates with ordered mesoporous structures. Chemistry of Materials,2005, 17(22):5521-5528
    [143]Briend M, Vomscheid R, Peltre M J. Man P P, Barthomeuf D. Influence of the choice of the template on the short-and long-term stability of SAPO-34 zeolite. The Journal of Physical Chemistry,1995,99(20):8270-8276
    [144]Ashtekar S, Chilukuri S V V, Chakrabarty D K. Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazitestructure:a study of silicon incorporation. The Journal of Physical Chemistry,1994,98(18):4878-4883
    [145]Marchese L, Frache A, Gianotti E, Martra G, Causa M, Coluccia S. ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent. FTIR and FT-Raman studies of the host-guest and guest-guest interactions within the zeolitic framework. Microporous and Mesoporous Materials,1999,30(1):145-153
    [146]Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R. Crystallization and Si incorporation mechanisms of SAPO-34. Microporous and Mesoporous Materials,2002, 53(1-3):97-108
    [147]徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成.长春:吉林大学出版社,1 987:90~126
    [148]Venkatathri N, Hegde S G, Rajamohanan P R, Sivasanker S. Synthesis of SAPO-35 in non-aqueous gels. Journal of Chemical Society, Faraday Transactions,1997, 93(18):3411-3415
    [149]蔡强,魏长平,许永宜,庞文琴,甄开吉.过渡金属(Ti, Zr, Mn, Cu, Mo, Cr, Co)离子掺杂的MCM-48的合成、表征与催化性能研究.高等化学学报,1999,20(3):344~349
    [150]Fernandez R, Giotto M V, Pastore H O, Cardoso D. Synthesis and characterization of MAPO-11 molecular sieves. Microporous and Mesoporous Materials,2002,53(1-3): 135-144
    [151]Shi L, Li J, Yu J, Xu R. Synthesis and characterization of a new open-framework aluminophosphate C4N3H16 Al4P5O20(H2O)2AlPO-Cj31). Microporous and Mesoporous Materials,2006,93(1-3):325-330
    [152]Tong X, Xu J, Miao H, Yang G, Ma H, Zhang Q. Highly efficient and metal-free oxidation of olefins by molecular oxygen under mild conditions. Tetrahedron,2007,63(32): 7634-7639
    [153]Gopalakrishnan S, Viswanathan K R, Priya S V, Mabel J H, Palanichamy M, Murugesan V. Lewis acid metal ion-exchanged MAPO-5 molecular sieves for solvent free synthesis of coumarin derivative. Catalysis Communications,2008,10(1):23-28
    [154]Karanikolos G N, Garcia H, Corma A, Tsapatsis M. Growth of AlPO4-5 and CoAPO-5 films from amorphous seeds. Microporous and Mesoporous Materials,2008, 115(1-2):11-22
    [155]Lopez C M, Escobar V, Arcos M E, Nobrega L D, Yanez F, Garcia L V. Synthesis, characterization and catalytic behaviour of SAPO-11 obtained at low crystallization times and with low organic agent content. Catalysis Today,2008,133-135:120-128
    [156]孔黎明,杨森林,刘晓勤.FeAPO-5分子筛的合成及其催化氧化水溶液中苯酚的性能.化工学报,2008,59(2):348~353
    [157]Pozzi G, Montanari F, Quici S. Cobalt tetraarylporphyrin-catalysed epoxidation of alkenes by dioxygen and 2-methylpropanal under fluorous biphasic conditions. Chemical Communications,1997,1:69-70
    [158]Sankar G, Raja R, Thomas J M. Redox solid catalysts for the selective oxidation of cyclohexane in air. Catalsis Letters,1998,55(1):15-23
    [159]Verberckmoes A A, Weckhuysen B M, Schoonheydt R A. Spectroscopy and coordination chemistry of cobalt in molecular sieves. Microporous and Mesoporous Materials,1998,22(1-3):165-178
    [160]Vinu A, Dedecek J, Murugesan V, Hartmann M. Synthesis and characterization of CoSBA-1 cubic mesoporous molecular sieves. Chemistry of Materials,2002,14(6): 2433-2435
    [161]Wang J, Park J N, Wei X, Lee C W. Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Nap zeolite. Chemical Communications,2003,(5):628-629
    [162]游贤德.过氧化物氧化法制取邻苯二酚与对苯二酚.化学推进剂与高分子材料,2003,1(2):33~35
    [163]Klaewkla R, Rirksomboon T, Kulprathipanja S, Nemeth L, Rangsunvigit P. Light sensitivity of phenol hydroxylation with TS-1. Catalysis Communications,2006,7(5): 260-263
    [164]Sun J, Meng X, Shi Y, Wang R, Feng S, Jiang D, Xu R, Xiao F. A novel catalyst of Cu-Bi-V-O complex in phenol hydroxylation with hydrogen peroxide. Journal of Catalysis, 2000,193(2):199-206
    [165]Zhao W, Luo Y, Deng P, Li Q. Synthesis of Fe-MCM-48 and its catalytic performance in phenol hydroxylation. Catalysis Letters,2001,73(2-4):199-202
    [166]Wu C, Kong Y, Gao F, Wu Y, Lu Y, Wang J, Dong L. Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM-41 with high iron content. Microporous and Mesoporous Materials,2008,113(1-3):163-170
    [167]Lou L, Liu S. CuO-containing MCM-48 as catalysts for phenol hydroxylation. Catalysis Communications,2005,6(12):762-765
    [168]何红运,李艳凤,何震,喻玲,庞文琴.全硅p沸石的合成、表征及在苯酚羟基化反应中的催化性能.应用化学,2007,24(7):790~795
    [169]Yu R, Xiao F, Wang D, Sun J, Liu Y, Pang G, Feng S, Qiu S, Xu R, Fang C. Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V-Zr-O complex. Catalysis Today,1999,51(1):39-46
    [170]崔小明.邻苯二酚的生产及应用.化工之友,2001,4:29-30
    [171]李新柱,任海伦,杨树林.铁取代介孔磷铝分子筛的合成、表征及其催化性能.过程工程学报,2009,9(2):408~412
    [172]李新柱,张记市.铁掺杂介孔磷铝分子筛催化苯酚羟基化反应性能.石油学报<石油加7->,2010,26(4):518~523
    [173]Dongare M K, Sabde D P, Shaikh R A, Kamble K R, Hegde S G. Synthesis, characterization and catalytic properties of ZrAPO-5. Catalysis Today,1999,49(1-3): 267-276
    [174]Zhou L, Xu J, Miao H, Li X, Wang F. Synthesis of FeCoMnAPO-5 molecular sieve and catalytic activity in cyclohexane oxidation by oxygen. Catalysis Letters,2005,99(3-4): 231-234
    [175]Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G. Structure and reactivity of framework and extra framework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis,1996,158(2):486-501
    [176]Vinu A, Sawant D P, Ariga K, Hossain K Z, Halligudi S B, Hartmann M, Nomura M. Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves. Chemistry of Materials,2005,17(21):5339-5345
    [177]Coldfarb D, Bernardo M, Strohmaier K G, Vaughan D E M, Thomann H. Characterization of iron in zeolites by X-band and Q-Band ESR, pulsed ESR, and UV-Visible spectroscopies. Journal of the American Chemical Society,1994,116(14): 6344-6353
    [178]Park J W, Chon H. Isomorphous substitution of iron ions into aluminophosphate molecular sieve, ALPO4-5. Journal of Catalysis,1992,133(1):159-169
    [179]Vinu A, Terrones M, Golberg D, Hishita S, Ariga K, Mori T. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chemistry of Materials,2005,17(24):5887-5890
    [180]Tuel A, Moussa-Khouzami S, Taarit Y B, Naccache C. Hydroxylation of phenol over TS-1:Surface and solvent effects. Journal of Molecular Catalysis,1991,68(1):45-52
    [181]Mohamed M M, Eissa N A. Characterization of intrazeolitic Fe3+ prepared by chemical vapor deposition of [(C5H5)Fe(CO)2]2 inside NaY and FSM-16 zeolites and their catalytic activities towards phenol hydroxylation. Materials Research Bulletin,2003, 38(15):1993-2007
    [182]Choi J S, Yoon S S, Jang S H, Ahn W S. Phenol hydroxylation using Fe-MCM-41 catalysts. Catalysis Today,2006,111(3-4):280-287
    [183]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials,2003,98(1-3):33-50
    [184]Teel A L, Warberg C R. Atkinson D A, Watts R J. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene. Water Research,2001, 35(4):977-984
    [185]Malik P K, Saha S K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology,2003,31(3):241-250
    [186]Barrault J, Bouchoule C, Tatibouet J M, Abdellaoui M, Majeste A, Lououdi I, Papayannakos N, Gangas N H. Catalytic wet peroxide oxidation over mixed(Al-Fe) pillared Clays. Studies in Surface Science and Catalysis,2000,130:749-754
    [187]Timofeeva M N, Melgunov M S, Kholdeeva O A, Malyshew M E, Shmakov A N, Fenelonov V B. Full phenol peroxide oxidation over Fe-MMM-2 catalysts with enhanced hydrothermal stability. Applied Catalysis B:Environmental,2007,75(3-4):290-297
    [188]Caudo S, Centi G, Genovese C, Perathoner S. Copper-and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production. Applied Catalysis B:Environmental,2007,70(1-4):437-446
    [189]Fajerwerg K, Debellefontaine H. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5:a promising catalyst. Applied Catalysis B: Environmental,1996,10(4):L229-L235
    [190]Fajerwerg K, Foussard J N, Perrard A, Debellefontaine H. Wet oxidation of phenol by hydrogen peroxide:the key role of pH on the catalytic behavior of the Fe-ZSM-5. Water Science and Technology,1997,35(4):103-110
    [191]Shaikh R A, Chandrasekar G, Biswas K, Choi J S, Son W J, Jeong S Y, Ahn W S. Tetralin oxidation over chromium-containing molecular sieve catalysts. Catalysis Today, 2008,132(1-4):52-57
    [192]Auty K, Gilbert B C, Thomas C B, Brown S W, Jones C W, Sanderson W R. The selective oxidation of toluenes to benzaldehydes by cerium(III), hydrogen peroxide and bromide ion. Journal of Molecular Catalysis A:Chemical,1997,117(1-3):279-287
    [193]徐成华,吕绍结,邱发礼.钛硅分子筛(TS)催化氧化苯乙烯的研究.石油与天然气化工,1999,28(1):1-3
    [194]于健强,李灿,许磊,李美俊,辛勤,李中民.以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛Ⅲ.Ti-MCM-41分子筛的催化活性.催化学报,2001,22(4):335~338
    [195]Zhang Q, Wang Y, Itsuki S, Shishido T, Takehira K. Manganese-containing MCM-41 for epoxidation of styrene and stilbene. Journal of Molecular Catalysis A: Chemical,2002,188(1-2):189-200
    [196]王玉,鄢红艳,陈晓晖,魏可镁.Bi-MSU-4分子筛合成、结构及催化性能的研究.功能材料,2008,4:636~640
    [197]Verberckmoes A A, Uytterhoeven M G, Schoonheydt R A. Framework and extra-framework Co2+in CoAPO-5 by diffuse reflectance spectroscopy. Zeolites,1997, 19(2-3):180-189
    [198]Kim D S, Chang S H, Ahn W S. p-Cresol autoxidation using CoAPO-5 prepared by microwave heating of the precursor gel:comparison with homogeneous and biphasic reaction schemes using cobalt salt or complex catalysts. Journal of Molecular Catalysis A: Chemical,2002,179(1-2):175-183
    [199]Lee J F, Wei A C, Chao K J. In situ X-ray absorption spectroscopic study on the reducibility of cobalt-containing aluminophosphate molecular sieves. Journal of Molecular Catalysis A:Chemical,2003,203(1-2):165-172
    [200]Sponer J, Cejka J, Dedecek J, Wichterlova B. Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11. Microporous and Mesoporous Materials,2000, 37(1-2):117-127
    [201]Dai P E, Petty R H, Ingram C W, Szostak R. Metal substituted aluminophosphate molecular sieves as phenol hydroxylation catalysts. Applied Catalysis A:General,1996, 143(1):101-110
    [202]Concepcion P, Blasco T, Nieto J M L, Vidal-Moya A, Martinez-Arias A. Preparation, characterization and reactivity of V- and/or Co-containing AlPO-18 materials (VCoAPO-18) in the oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials,2004,67(2-3):215-227
    [203]Tusar N N, Mali G, Arcon I, Kaucic V, Ghanbari-Siahkali A, Dwyer J. Framework cobalt and manganese in MeAPO-31(Me=Co, Mn) molecular sieves. Microporous and Mesoporous Materials,2002,55(2):203-216
    [204]Jhung S H, Lee J H, Yoon J W, Park S E, Chang J S. Selective crystallization of CoAPO-34 and VAPO-5 molecularsieves under microwave irradiation in an alkaline or neutral condition. Microporous and Mesoporous Materials,2005,80(1-3):147-152
    [205]Frache A, Palella B, Cadoni M, Pirone R, Ciambelli P, Pastore H O, Marchese L. Catalytic DeNOx activity of cobalt and copper ions in microporous MeALPO-34 and MeAPSO-34. Catalysis Today,2002,75(1-4):359-365
    [206]Barrett P A, Sankar G, Cattlowc R A, Catlow A, Thomas J M. Investigation of the structural stability of cobalt-containing AlPO-44 microporous materials. Journal of Physics and Chemistry of Solids,1995,56(10):1395-1405
    [207]李新柱,张记市.Co取代介孔磷铝分子筛的合成、表征及催化性能.中国有色金属学报,2009,19(11):2061~2066
    [208]Mohapatra S K, Selvam P. Synthesis, characterization and catalytic properties of mesoporous cobalt aluminophosphate molecular sieves. Topics in Catalysis,2003,22(1-2): 17-22
    [209]Frache A, Gianotti E, Marchese L. Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today,2003,77(4):371-384
    [210]Thomson S, Luca V, Howe R. Framework Co(II) in CoAPO-5. Physical Chemistry Chemical Physics,1999,1(4):615-619
    [211]Hulea V, Dumitriu E. Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies. Applied Catalysis A:General,2004, 277(1-2):99-106
    [212]Xie L, Gao Q, Li Q. Nanoporous metal phosphate CoVSB-1 catalyst for oxidation of styrene with H2O2. Studies in Surface Science and Catalysis,2007,170:1338-1343
    [213]陈晓晖,苏建峰,魏可镁.含Bi中孔分子筛(Ⅱ)苯乙烯氧化反应机理及条件的优化.化工学报,2005,56(5):865~869
    [214]Hulea V, Moreau P. The solvent effect in the sulfoxidation of thioethers by hydrogen peroxide using Ti-containing zeolites as catalysts. Journal of Molecular Catalysis A:Chemical,1996,113(3):499-505
    [215]Maurya M R, Chandrakar A K, Chand S. Zeolite-Y encapsulated metal complexes of oxovanadium(VI), copper(II) and nickel(II) as catalyst for the oxidation of styrene, cyclohexane and methyl phenyl sulfide. Journal of Molecular Catalysis A:Chemical,2007, 274(1-2):192-201
    [216]Pierrlla L B, Saux C, Caglieri S C, Bertorello H R, Bercoff P G. Catalytic activity and magnetic properties of Co-ZSM-5 zeolites prepared by different methods. Applied Catalysis A:General,2008,347(1):55-61
    [217]Kumar S B, Mirajkar S P, Pais G C G, Kumar P, Kumar R. Epoxidation of styrene over a titanium silicate molecular sieve TS1 using dilute H2O2 as oxidizing agent. Journal of Catalysis,1995,156(1):163-166
    [218]章思规.实用精细化学品手册:有机卷上册.北京:化学工业出版社,1996:35
    [219]Maurya M R, Arya A, Adao P, Pessoa J C. Immobilisation of oxovanadium(Ⅳ), dioxomolybdenum(VI) and copper(II) complexes on polymers for the oxidation of styrene, cyclohexene and ethylbenzene. Applied Catalysis A:General,2008,351(2):239-252
    [220]Sujandi, Prasetyanto E A, Han D S, Lee S C, Park S E. Immobilization of Co(III) using tethered cyclam ligand on SBA-15 mesoporous silica for aerial oxidation of ethylbenzene. Catalysis Today,2009,141(3-4):374-377
    [221]Salavati-Niasari M. Host (nanocavity of zeolite-Y)/guest[Cu([R]2-N2X2)]2+(R=H, CH3; X= NH, O, S) nanocomposite materials:synthesis, characterization and catalytic oxidation of ethylbenzene. Journal of Molecular Catalysis A:Chemical,2008,284(1-2): 97-107
    [222]Bhoware S S, Shylesh S, Kamble K R, Singh A P. Cobalt-containing hexagonal mesoporous molecular sieves(Co-HMS):Synthesis, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Journal of Molecular Catalysis A:Chemical, 2006,255(1-2):123-130
    [223]Maurya M R, Kumar M, Kumar U. Polymer-anchored vanadium(IV), molybdenum(VI) and copper(II) complexes of bidentate ligand as catalyst for the liquid phase oxidation of organic substrates. Journal of Molecular Catalysis A:Chemical,2007, 273(1-2):133-143
    [224]李新柱,张记市.铬取代介孔磷铝分子筛的合成与催化性能研究.石油炼制与化工,2010,41(11):32~36
    [225]王丽琴,王祥生,郭新闻,李钢,修景海,刘松.合成TS-1分子筛的结晶动力学及催化性能研究.催化学报,2003,2:132~136
    [226]李钢,郭新闻,王祥生,李光岩.钛硅沸石的结晶动力学研究.2000,21(1):64~66
    [227]Lezanska M, Szymanski G S, Pietrzyk P, Sojka Z, Lercher J A. Characterization of Cr-MCM-41 and Al, Cr-MCM-41 mesoporous catalysts for gas-phase oxidative dehydrogenation of cyclohexane. The Journal of Physical Chemistry C,2007,111(4): 1830-1839
    [228]Zhu Z, Chang Z, Kevan L. Synthesis and characterization of mesoporous chromium-containing silica tube molecular sieves CrMCM-41. The Journal of Physical Chemistry B,1999,103(14):2680-2688
    [229]Parida K M, Dash S S. Manganese containing MCM-41:synthesis, characterization and catalytic activity in the oxidation of ethylbenzene. Journal of Molecular Catalysis A:Chemical,2009,306(1-2):54-61
    [230]Bhoware S S, Singh A P. Characterization and catalytic activity of cobalt containing MCM-41 prepared by direct hydrothermal, grafting and immobilization methods. Journal of Molecular Catalysis A:Chemical,2007,266(1-2):118-130
    [231]Vetrivel S, Pandurangan A. Side-chain oxidation of ethylbenzene with tert-butylhydroperoxide over mesoporous Mn-MCM-41 molecular sieves. Journal of Molecular Catalysis A:Chemical,2004,217(1-2):165-174
    [232]Kasaikina O T, Kortenska V D, Kartasheva Z S, Kuznetsova G M, Maximova T V, Sirota T V, Yanishlieva N V. Hydrocarbon and lipid oxidation in micro heterogeneous systems formed by surfactants or nanodispersed Al2O3, SiO2 and TiO2. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,149(1-3):29-38
    [233]George K, Sugunan S. Nickel substituted copper chromite spinels:preparation, characterization and catalytic activity in the oxidation reaction of ethylbenzene. Catalysis Communications,2008,9(13):2149-2153
    [234]Christensen A N, Jensen T R, Norby P, Hanson J C. In situ synchrotron X-ray powder diffraction studies of crystallization of microporous aluminophosphates and Me2+-substituted aluminophosphates. Chemistry of materials,1998,10(6):1688-1693
    [235]Norby P, Christensen AN, Hanson J C. Crystallization in nonaqueous media of Co-and Mn-Substituted microporous aluminophosphates investigated by in situ synchrotron X-ray powder diffraction. Inorganic chemistry,1999,38(6):1216-1221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700