用户名: 密码: 验证码:
血红素衍生卟啉金属配合物的合成及其仿生催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属卟啉是一类重要的共轭有机金属配合物,可以模拟许多酶的活性中心,在仿生催化领域显示出广泛的应用前景。然而,从目前国内外在金属卟啉仿生催化应用研究方面所取得的进展来看,目前研究结果的取得大多以各种全合成的四芳基卟啉作为研究对象,对于天然金属卟啉及其衍生物的仿生催化应用研究较少。血红素衍生物是以来源充足的天然卟啉-血红素为原料合成的一类卟啉类化合物,其结构更接近于卟啉酶的辅基,以血红素衍生物为基础,研究其仿生催化性能,必将为仿生催化剂的设计及高性能仿生催化剂的制备提供新的思路。
     本论文以氯化血红素为原料,通过脱铁反应、酯化反应、金属加成反应以及自催化氢化反应合成了原卟啉、原卟啉二甲酯、金属原卟啉二甲酯及金属间卟啉二甲酯;通过脱金属-氢化一步反应、酯化反应合成了间卟啉及间卟啉二甲酯;通过脱铁-马氏加成-亲核取代“一锅煮”反应、超声激励酯化反应合成了血卟啉及血卟啉二甲酯;通过脱铁-马氏加成-超声激励酯化醚化“一锅煮”反应合成了血卟啉双醚二酯化合物;通过原卟啉二甲酯的反马氏加成反应合成了异血卟啉二甲酯;通过脱乙烯基反应以及血红素衍生物同胱氨酸酯基的羧胺缩合反应合成了次卟啉以及胱氨酸二甲酯血红素衍生物;将上述合成的血红素衍生物与金属离子络合合成了相应的金属血红素衍生物;探索了各反应的规律,优化了各反应的合成工艺条件,并通过核磁、红外、紫外、质谱等检测手段对合成化合物的结构进行了表征;
     将合成的一系列3,8-取代血红素衍生物用于催化空气氧化环己烷反应,研究了不同中心金属、不同取代基团对血红素衍生物的催化性能的影响,并初步探讨了催化反应的机理。结果表明:血红素衍生物能够较好的催化环己烷氧化,以钴(II)间卟啉二甲酯为例,在环己烷用量为500mL、催化剂用量为0.01mmol、反应温度为150℃、空气压力为0.8MPa时,环己烷的转化率最高,为16.9%;醇酮的总选择性为84.2%;催化剂的催化活性主要受中心金属离子、取代基的电子效应、空间效应以及催化剂的热稳定性共同影响,吸电子基团的引入能够提高金属血红素衍生物的催化活性,而取代基团的体积增大则使催化剂的催化活性降低;在金属血红素衍生物催化空气氧化环己烷反应过程中,其活性中间体是高价金属氧络合物;
     以锰(Ⅲ)次卟啉和钻(Ⅱ)次卟啉催化H202氧化鲁米诺化学发光为基础,丌发了灵敏、快速、准确的测定苯酚及己烯雌酚的方法,优化了该体系中的各项实验条件。结果表明、当体系中NaOH的浓度0.1mol·L-1、鲁米诺的浓度足8.0×10-8mol·L-1、锰(Ⅲ)次卟啉的浓度足3.0×10-6g·mL-1、H2O2的浓度为6.0×10-5mol·L-1、主泵和副泵的流速分别为2.5mL·min-1和2.0mL·min-1时,苯酚测定体系的灵敏度最;当体系中H2O2的浓度为6.0×10-5mol·L-1、NaOH的浓度0.4mol·L-1、鲁米诺浓度是8.0x10-7g·mL-1、钴(II)次卟啉的浓度是6.0×10-6g.mL-1、主泵和副泵的流速分别为3.0mL·min-1和2.5mL·min-1时,己烯雌酚测定体系的灵敏度最高;在最佳实验条件下测定苯酚时,线性范围为4.0×10-9~4.0×10-7g·mL-1,检测限为6.63×10-10g.mL-1,测定己烯雌酚时线性范围为6.0×10-10~1.0x10-8g·mL-1和1.0×10-8~1.0×10-7g·mL-1,检测限为3.83×10-10g·mL-1;由于金属血红素衍生物较好的催化性能,在对实际样品的检测中,该体系同其它方法相比检测限更低、稳定性更好、操作过程更简便;
     通过S-Au共价键作用将胱氨酸二甲酯次卟啉钻(Ⅱ)或胱氨酸二甲酯间卟啉钴(Ⅱ)自组装于金电极表面。修饰电极通过红外、XPS以及循环伏安法进行了表征。利用金属血红素衍生物的催化性能,将自组装电极应用到溶解氧及H202的电催化还原中。实验结果表明,胱氨酸二甲酯次卟啉钴(Ⅱ)或胱氨酸二甲酯间卟啉钴(Ⅱ)通过单分子膜自组装的形式有序、稳定地组装到金电极表面,自组装电极对溶解氧及H2O2具有较好的电催化效果,胱氨酸二甲酯次卟啉钴(Ⅱ)自组装电极可以将溶解氧通过四电子过程还原为H20,而胱氨酸二甲酯间卟啉钴(Ⅱ)自组装电极的差分脉冲峰电流值在H202的浓度为1.96×10-3μnmol·cm-3~0.314μnmol·cm-3范围内同溶液中H202的浓度成正比,可以较好地应用于H202的电催化还原及安培传感,检测限可以达到8.75×10-4μnmol·cm-3。
Metallo-porphyrins are important classes of conjugated organic metal complexes, which could mimic the active site of many important enzymes and displayed broad appli-cation prospects in a variety of biomimetic catalyzed fields. However, most investigation results for metalloporphyrin biomimetic catalyzed applications are obtained based on the use of totally synthesized tetraaryl porphyrins and their derivatives. There were few resear-ches concerning the biomimetic catalysis application of natural metallo-porphyrins and their derivatives. Hemin derivatives can be prepared in high yield from the red blood pigment heme, which is available in almost any desired amount from slaughterhouse wastes. The close relationship to the naturally hemin makes it great significance to design and develop hemin derivatives with high biomimetic catalytic activities.
     In this thesis, hemin was chose as starting material. Protoporphyrin, protoporphyrin dimethyl ester, metalloprotoporphyrin dimethyl ester and metallomesoporphyrin dimethyl ester were synthesized from hemin through demetalation reaction, esterification reaction, metal complexation reaction and self-catalyzed hydrogenation reaction; Mesoporphyrin and mesoporphyrin dimethyl ester were synthesized by a "one-step" demetalation-hydro-genation reaction and an esterification reaction; Hematoporphyrin and hematoporphyrin dimethyl ester were prepared from hemin by a "one-pot" reaction of demetalation, Mar-kovnikov addition and nucleophilic substitution reaction and an ultrasound irradiated esterification reaction; Hematoporphyrin diether diesters were prepared from hemin throu-gh a "one-pot" reaction of demetalation, Markovnikov addition and ultrasound promoted esterification-etherification reaction; Iso-hematoporphyrin was synthesized from the anti-Markovnikov addition of protoporphyrin dimethyl ester; L-cystine dimethyl ester was chemically introduced into the edge of deuteroporphyrin or mesoporphyrin by the conden-sation of deuteroporphyrin or mesoporphyrin with cystine dimethyl ester dihydrochloride. The metal complexes of hemin derivatives were synthesized from the metal complexation reaction between hemin derivatives and metal salts. The optimum reaction condations were obtained by optimizing the experimental conditions, and the structures of productions were confirmed by1H NMR, IR, MS and UV-vis.
     A series of3,8-substituted hemin derivatives were used as the catalysts for the catalyzed oxidation of cyclohexane by air. The effects of metal ions and substituents on the catalytic activities of3,8-substituted hemin derivatives were investigated. The mechanism of this reaction was preliminarily studied. The results showed that3,8-substituted hemin derivatives could smoothly catalyze the oxidation of cyclohexane. For example, in the oxidation of cyclohexane catalyzed by Co(II)-mesoporphyrin dimethyl ester, the conver-sion and the total selectivity of cyclohexanol and cyclohenone reached to16.9%and84.2%, respectively; The catalytic activities were influenced by the electron effects and steric effects of substituents and the thermal stability of catalysts; The with-drawing-elec-tron substituents can improve the catalytic activities of hemin derivatives and the activity decreased with the increasing of the size of substituents; The active intermediates of hemin derivatives in this reaction is high-valence metal hemin derivatives radicals.
     Based on the great enhancement of Mn(III)-or Co(II)-deuteroporphyrin catalyzed chemiluminescence of luminol, a sensitive and high selective flow-injection chemilumine-scence (FI-CL) method for the determination of phenol and diethylstilbestrol was exploited. The optimum experimental conditions and the possible mechanism were investigated. The results showed that the optimum experimental conditions for the detection of phenol is: CNaOH,0.1mol·L-1; CLuminoL,8.0×10-8mol·L-1; CMn(Ⅲ)DP,3.0×10-6g-mL-1; CH2O2,6.0×10-5mol·L-1; the flow rate of phenol, Mn(III) deuteroporphyrin and NaOH,2.5mL·min-1; the flow rate of luminol and H2O2,2.0mL-min-1. The optimum experimental conditions for the detection of phenol is:CH2O2,6.0×10-5mol·L-1; CNaOH,0.4mol·L-1; Cluminol,8.0×10-7g-mL-1; CCo(Ⅱ)DP,6.0×10-6g·mL-1; the flow rate of diethylstilbestrol, Co(II)-deuteropor-phyrin and NaOH,3.0mL-min-4; the flow rate of luminol and H2O2,2.5mL-min-1. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of4.0×10-9to4.0×10-7g·mL-1and linear with diethylstilbestrol in the range of6.0×10-10-1.0×10-8g·mL-1and1.0×10-8-1.0×10-7g·mL-1. The detection limit (3σ) for phenol and diethylstilbestrol were6.3×10-10g-mL-1and3.83×10-10g·mL-1, respectively. Because of the high catalytic ability of metallo-deuteroporphyrins, the developed methods were more sensitivity, simplicity and stability than other methods.
     Through the covalent band of S-Au, cystine dimethyl ester cobalt(II) deuteropor-phyrin or cystine dimethyl ester cobalt(II) mesoporphyrin were self-assembled to gold electrodes. The modified electrodes were characterized by IR and X-ray photoelectron spectroscopy spectra and confirmed electrochemically by cyclic voltammogram. Based on the catalytic ability of hemin derivatives, the assembled electrodes were used in electro-catalyzed reduction of dissolved oxygen and H2O2. The investigation results showed that cystine dimethyl ester cobalt(Ⅱ) deuteroporphyrin or cystine dimethyl ester cobalt(II) mesoporphyrin could oriently and stably assembled onto the surface of gold electrodes and showed good electrocatalytic ability to the reduction of dissolved oxygen and H2O2. Catalyzed by cystine dimethyl ester cobalt(II) deuteroporphyrin self-assembled gold electrode, dissolved oxygen could be reduced by a4electrons reaction to H2O. Cystine dimethyl ester cobalt(II) mesoporphyrin self-assembled gold electrode showed excellent activity for electrocatalyzed reduction of H2O2and the differential pulse voltammogram peak current of the modified electrode displayed a linear increase with the increased concentration of H2O2from1.96⒋1.0-3μmol·cm-3to0.314μmol·cm-3with the detection limit of8.75×10-4μmol·cm-3.
引文
[1]Dolphin D. The Porphyrins [M]. NewYork:Acad Press,1978,1:289.
    [2]Sylvaina I, Zerrouki R, Granet R, et al. Synthesis and Biological Evaluation of Thioglycosylated Porphyrins for an Application in Photodynamic Therapy [J]. Bioorg. Med. Chem.,2002,10:57-69.
    [3]Hu B C, Zhou W Y, Ma D S, et al. Metallo-deuteroporphyrins as Catalysts for the Oxidation of Cyclohexane with Air in the Absence of Additives and Solvents [J]. Catal. Commun.,2008,10:83-85.
    [4]Drain C M, Varotto A, Radivojevic I. Self-organized porphyrinic materials [J]. Chem. Rev.,2009,109(5):1630-1658.
    [5]Liu Q, Guo C C. Theoretical studies and industrial applications of oxidative active-tion of inert C-H bond by metalloporphyrin-based biomimetic catalysis [J]. Sci. China, Ser. B Chem.,2012,55:2036-2053.
    [6]刘新刚,冯亚青.卟啉化合物的应用与研究进展[J].化学推进剂与高分子材料,2004,2:23-27.
    [7]Makoto O, Shiho H, Rika T, et al. In Vitro Heavy-Atom Effect of Palladium (II) and Platinum (Ⅱ) Complexes of Pyrrolidine-Fused Chlorin in Photodynamic Therapy [J]. J. Med. Chem.,2009,52,2747-2753.
    [8]Frederic S, Padavattan G, Georg S, et al. Ruthenium Porphyrin Compounds for Photodynamic Therapy of Cancer [J]. J. Med. Chem.,2008,51,1811-1816.
    [9]Zhi F P, Lu X Q, Yang J D, et al. Selective anion sensing through a self-assembled monolayer of thiol-End-functionalized Porphyrin [J]. J. Phys. Chem. C,2009, 113(30):13166-13172.
    [10]Smith K M. Porphyrins and Metalloporphyrins [M]. Amsterdam:Elsevier.1975.
    [11]Lemberg R, Parker J. Porphyrins with formyl groups. III. Preparation of chloro-cruoroporphyrin and diformyldeuteroporphyrin [J]. Australian J. Exp. Biol. Med. Sci.,1952,30(2),165-175.
    [12]Sparatore F, Mauzerall D. Osmium tetroxide oxidation of protoporphyrin IX and synthesis of deuteroporphyrin IX 2,4-diacrylic acid [J]. J. Org. Chem.1960,25(7), 1073-1076.
    [13]Shiau F Y, Pandey R K, Ramaprasad S, et al. Isomeric monoacetylmono(1-hydr-oxyethyl)deuteroporphyrins:synthesis, characterization, and use for the synthesis of regioselectively methyl-and vinyl-deuterated hemins [J]. J. Org. Chem.1990, 55,2190-2195.
    [14]陈志龙,万维勤,范开华,等.2,7,12,18-四甲基-3,8-二(1-烷氧乙基)-13,17---(3-羟基丙基)卟啉衍生物的合成及其光敏化活性[J].中国药物化学杂志,1998,27(8):1-4.
    [15]孙呈郭,周维友,胡炳成,等.2,7,12,18-四甲基-13,17-二(3-羟基丙基)卟啉的合成改进[J].精细化工,2009,26(9):919-922.
    [16]Caughey W S, Alben J O, Fujimoto W Y, et al. Substituted Deuteroporphyrins. I. Reactions at the Periphery of the Porphyrin Ring [J]. J. Org. Chem.,1966,31(8): 2631-2640.
    [17]Reboucas S J, James B R. A simple, catalytic H2-hydrogenation method for the synthesis of fine chemicals:hydrogenation of protoporphyrin IX dimethyl ester [J]. Tetrahedron Lett.,2006,47:5119-5122.
    [18]Xu S C, Hu B C, Hu T J, et al. A convenient hydrogenation method for the syn-thesis of metallo-mesoporphyrin IX dimethyl esters via self-catalyzed CoCl2-NaBH4 reagent system [J]. Chin. J. Chem.,2012,30:2461-2465
    [19]战佩英,李东风,王进军.环稠卟啉合成的研究进展[J].有机化学,2008,28(12): 2039-2056.
    [20]Morgan A R, Pangka V S, Dolphin D. Ready syntheses of benzoporphyrins via Diels-Alder reactions with protoporphyrin IX [J]. J. Chem. Soc., Chem. Commun., 1984,16:1047-1048.
    [21]Levy J G. Waterfield E, Richter A, et al. Photodynamic therapy of malignancies with benzoporphyrin derivative monoacid ring A [C]. Photodynamic Therapy of Cancer.1994.2078:99-101.
    122] Lipson R L, Baldes E J, Olsen A M. The use of a derivative of hematoporphyrin in tumor detection [J]. J. Natl. Cancer Inst.,1961,26:1-11.
    [23]刘永漋,杨世林,白亦莉,等.血卟啉二甲酯及双乙酰血卟啉二甲酯的制备和鉴定[J].药学学报,1985,20(7):545-547.
    [24]Kumadaki I, Ando A, Omote M. Synthesis of fluorinated analogs of natural porphyrins potentially useful for the diagnosis and therapy of cancer [J]. J. Fluorine Chem.,2001,109:67-81.
    [25]Ando A, Kumadaki I. Progress on the syntheses of fluorine analogs of natural porphyrins potentially useful for the diagnosis and therapy of certain cancers [J]. J. Fluorine Chem.,1999,100,135-146.
    [26]Sun C G, Hu B C, Zhou W Y, et al. Simple and efficient method for synthesis of metallodeuteroporphyrin derivatives bearing symmetrical disulphide bond [J]. Chin. Chem. Lett.,2011,18:527-530.
    [27]马登生.卟啉衍生物的合成及应用研究[D].南京:南京理工大学,2008.
    [28]Brunner H, Maiterth F, Treittinger B. Synthese und Antitumoraktivitat neuer Porphyrin-Platin(II)-Komplexe mit an den Porphyrin-Seitenketten gebundenem cytostatischen Platin-Rest [J]. Chem. Bet.,1994,127(11):2141-2149.
    [29]Brunner H, Obermeier H, Szeimies R M. Platin(II)-Komplexe mit Porphyrin-liganden:Synthese und Synergismen bei der photodynamischen Tumortherapie [J]. Chem. Bet.,1995,128(2):173-181.
    [30]Brunner H, Schellerer K M. New porphyrin platinum conjugates for the cytostatic and photodynamic tumor therapy [J]. Inorg. Chim. Acta,2003,350(4),39-48.
    [31]Bonnett R, Dimsdale M J. Stephenson G F. The meso-reactivity of porphyrins and related compounds. Part IV. Introduction of oxygen functions [J]. J. Chem. Soc. C, 1969(4):564-570.
    [32]Johnson A W, Oldfield D. The nitration and hydroxylation of aetioporphyrim I [J]. J. Chem. Soc.,1965,4303-4312.
    [33]Inhoffen H H, Nolte W. Zur weiteren kenntnis des chlorophylls und des hamins XV umwandlung des octaathylporphins in octaathyl-geminiporphyrin-polyketone [J]. Tetrahedron Letters,1967,8(23):2185-2187.
    [34]Chang C K, Sotiriou C. C-Hydroxy-and C-methylchlorins. A convenient route to heme d and bonellin model compounds [J]. J. Org. Chem.,1985,50(24):4989-4991.
    [35]Imahori H. Giant Multiporphyrin Arrays as Artificial Light-Harvesting Antennas [J]. J. Phys. Chem. B,2004,108(20):6130-6143.
    [36]Li W S, Jiang D L, Suna Y, et al. Cooperativity in Chiroptical Sensing with Dendritic Zinc Porphyrins [J]. J. Am. Chem. Soc.,2005,127(21):7700-7702.
    [37]吴迪,沈珍,薛兆历,等.卟啉类光敏剂在染料敏化太阳能电池中的应用[J].无机化学学报,2007,23(1),1-14.
    [38]Screen T E O, Thorne J R G, Denning R G, et al. Amplified Optical Nonlinearity in a Self-Assembled Double-Strand Conjugated Porphyrin Polymer Ladder [J]. J. Am. Chem. Soc.,2002,124(33),9712-9713.
    [39]Zhou X L, Kang S W, Kumar S, et al. Self-Assembly of Porphyrin and Fullerene Supramolecular Complex into Highly Ordered Nanostructure by Simple Thermal Annealing [J]. Chem. Mater.,2008,20(11),3551-3553.
    [40]法焕宝,赵朗,王杏乔.利用卟啉中位羧基基团直接缩合卟啉二聚体[J].高等学校化学学报,2006,27:17-19.
    [41]Becker J Y, Dolphin D, Paine J B, et al. The electrochemistry of strapped and capped porphyrin monomers, mono-and doubly-linked dimmers, and their Zn and Mg complexes [J]. J. Electroanal. Chem. Interfacial Electrochem.,1984,164(2): 335-346.
    [42]Park M, Yoon M C, Yoon Z S, et al. Single-Molecule Spectroscopic Investigation of Energy Migration Processes in Cyclic Porphyrin Arrays [J]. J. Am. Chem. Soc., 2007,129(12),3539-3544.
    [43]Adler A D, Longo F R, Kampas F, et al. On the Preparation of Metalloporphyrins [J]. J. Inorg. Nucl. Chem.,1970,32:2443-2445.
    [44]Isin E M, Guengerich F P. Complex Reactions Catalyzed by Cytochrome P-450 Enzymes [J]. Biochim Biaphys Acta,2007,1770(3):314-329.
    [45]Mansuy D. A Brief History of the Contribution of Metalloporphyrin Models to Cytochrome P-450 Chemistry and Oxidation Catalysis [J]. C R Chim,2007,10: 392-413.
    [46]Hutchings G J, Scurrell M S. Designing oxidation catalysts are we getting better? [J]. Cat. Tech.,2003,7(3):90-103.
    [47]Ishii Y, Sakaguchi S. Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides [J]. Catal. Today,2006,117:105-113.
    [48]Montellano de P R O. Hydrocarbon hydroxylation by cytochrome P450 enzymes [J]. Chem. Rev.,2010,110(2):932-948.
    [49]Che C M. Lo V K Y. Zhou C Y, et al. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts [J]. Chem. Soc. Rev.,2011,40(4):1950-1975.
    [50]Groves J T, Kruper Jr W J, Haushalter R C. Hydrocarbon oxidations with oxo-metalloporphinates. Isolation and reactions of a (porphinato) manganese (V) complex [J]. J. Am. Chem. Soc.,1980,102(20):6375-6377.
    [51]Machado G S, Wypych F, Nakagaki S. Anionic iron(III) porphyrins immobilized on zinc hydroxide chloride as catalysts for heterogeneous oxidation reactions [J]. Appl. Catal., A,2012,413-414:94-102.
    [52]Yamazaki S, Senoh H, Yasuda K. New Catalysts for Borohydride Electro-oxidation Using Rh Porphyrins [J]. Electrochem. Commun.,2009,11(6):1109-1112.
    [53]Liu J G, Ohta T, Yamaguchi S, et al. Spectroscopic characterization of a hydroperoxo-heme intermediate:conversion of a side-on peroxo to an end-on hydroperoxo complex [J]. Angew. Chem. Int. Ed.,2009,48(49):9262-9267.
    [54]Ellis P E, Lyons J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins-The search for a suprabiotic system [J]. Coord. Chem. Rev.,1990, 105:181-193.
    [55]Grinstaff M W, Hill M G, Labinger J A, et al. Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins [J]. Science,1994,264(5163):1311-1313.
    [56]Poltowicz J, Tabor E, Pamin K, et al. Effect of substituents in the manganese-oxo porphyrins catalyzed oxidation of cyclooctane with molecular oxygen [J]. Inorg. Chem. Commun.,2005,8:1125-1127.
    [57]Guo C C, Liu X Q, Liu Q, et al. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies [J]. J. Porphyrins Phthalocyanines,2009,13(12): 1250-1254.
    [58]Zhou W Y, Hu B C, Sun C G, et al. Efficient selective oxidation of cyclohexane catalyzed by metallodeuteroporphyrins with air in the presence of L-cysteine [J]. Catal. Lett.,2011,141:1709-1712.
    [59]Sun C G, Hu B C, Zhao D H, et al. Covalently Immobilized Mn(III) deuteron-porphyrin on Chitosan:An Efficient and Recyclable Catalyst for Aerobic Oxidation of Cyclohexane [J]. J. Appl. Polym. Sci.,2012,125:79-87.
    [60]Hu B C, Sun C G, Deng Q Z, et al. Synthesis and catalytic properties of a series of cobalt porphyrins as cytochrome P450 model:the effect of substituents on the catalytic activity [J]. J. Inclusion Phenom.Macrocyclic Chem., Accepted,2012.
    [61]Nam W, Lim M H, Lee H J, et al. Evidence for the Participation of Two Distinct Reaction Intermediates in Iron(III) Porphyrin Complex-catalyzed Epoxidation Reac- tions [J]. J Am Chem Soc,2000,122:6641-6647.
    [62]Poltowicz J, Pamin K, Haber J. Influence of Manganese Tetraarylporphyrins Substi-tuents on the Selectivity of Cycloalkanes Oxidation with Magnesium Monoperoxy-phthalate [J]. J Mol Catal A:Chem,2006,257:154-157.
    [63]Poltowicz J, Pamin K, Haber J. Oxidation of Cyclooctane over Mn (TMPyP) Porphyrin-exchanged Al, Si-mesoporous Molecular Sieves of MCM-41 and SBA-15 type [J]. Catalysis Today,2006,114:287-292.
    [64]Atkinson J K, Ingold K U. Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes [J]. Biochem.,1993,32:9209-9214.
    [65]Ogliaro F, Harris N, Cohen S, et al. A model "Rebound" mechanism of hydroxylation by cytochromeP450:stepwise and effectively concerted pathways, and their reactivity patterns [J]. J. Am. Chem. Soc.,2000,122:8977-8989.
    [66]Ellis Jr P E, Lyons J E. Halogen substituent effects on the catalytic activity of iron porphyrin complexes for selective air-oxidation of alkanes in the liquid phase [J]. Catal. Lett.,1989,3(5):389-397.
    [67]Moore K T, Horvath I T, Therien M J. High-pressure NMR studies of (porphinato) iron-catalyzed isobutane oxidation utilizing dioxygen as the stoichiometric oxidant [J]. J.Am. Chem. Soc.,1997,119(7):1791-1792.
    [68]Haber J, Matachowski L, Pamin K, et al. Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system [J]. J. Mol. Catal. A:Chem.,2000,162: 105-109.
    [69]Guo C C, Song J X, Chen X B, et al. A new evidence of the high-valent oxo-metal radical cation intermediate and hydrogen radical abstract mechanism in hydrocarbon hydroxylation catalyzed by metalloporphyrins [J]. J. Mol. Catal. A:Chem.,2000, 157:31-40.
    [70]Paulson D R, Ullman R, Sloane R B, et al. Catalysis of autoxidation by metallo-porphyrins [J]. J. Chem. Soc., Chem. Commun.,1974,5,186-187.
    [71]Smith J R L, Cooke P R. Alkene Poxidation Atalysed by Ron(III) and Manganese (III) Tetaarylporphyrins Coordinatively Bound to Polymer and Silica Supports [J]. J. Chem. Soc., Perkin Trans.,1994,1:14-19.
    [72]Ma H Z, Suo J S. Oxidation of Cyclohexene Catalyzed by Mn(III) Tetrakis-(Pentafluorophenyl) Porphyrin [J]. J. Mol. Catal.,1999,13(3):165-168.
    [73]Mohajer D, Rezaeifard A. Efficient oxygenation of hydrocarbons with tetrabutyl- ammonium monopersulfate catalyzed by manganese meso-tetraphenyl-porphyrin in the presence of imidazole [J]. Tetrahedron Lett.,2002,43,1881-1884.
    [74]Maraval V, Ancel J E, Meunier B. Manganese(Ⅲ) Porphyrin Catalysts for the Oxidation of Terpene Derivatives:A Comparative Study [J]. J. Catal.,2002,206, 349-357.
    [75]Gunter M J, Turner P. The role of the axial ligand in meso-tetraarylmetallo-porphyrin models of the P-450 cytochromes [J]. J. Mol. Catal.,1991,66(1):121-141.
    [76]Groves J T, Stern M K. Synthesis, characterization, and reactivity of oxoman-ganese (Ⅳ) porphyrin complexes [J]. J. Am. Chem. Soc.,1988,110(26):8628-8638.
    [77]Leger C. Bertrand P. Direct electrochemistry of redox enzymes as a tool for mecha-nistic studies [J]. Chem. Rev.,2008,108,2379-2438.
    [78]Kang X H, Wang J, Wu H, et al. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens. Bioele-ctron.,2009,25,901-905.
    [79]Xu S C, Hu B C, Zhou W Y, et al. The synthesis, self-assembly and electrocatalytic property of a novel disulphide derivatised cobalt(Ⅱ) deuteroporphyrin [J]. Chin. Chem. Lett.,2012,23:157-160.
    [80]Schumacher A L, Hill J P, Ariga K, et al. Highly effective electrochemical anion sensing based on oxoporphyrinogen [J]. Electrochem. Commun.,2007,9: 2751-2754.
    [81]Su B, Hatay I, Trojanek A, et al. Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces [J]. J. Am. Chem. Soc.,2010, 132:2655-2662.
    [82]Shao M, Han J, Shi W, et al. Layer-by-layer assembly of porphyrin/layered double hydroxide ultrathin film and its electrocatalytic behavior for H2O2 [J]. Electrochem. Commun.,2010,12:1077-1080.
    [83]Hu B C, Sun C G, Xu S C, et al. On Biomimetic-Synthesis of Metallo-deutero-porphyrin Derivatives And the Study of Their Biomimetic Catalytic Properties [M]. 2011,163-194.
    [84]Zak J, Kuwana T. Chemically modified electrodes and electrocatalysis [J]. J. Electroanal. Chem. Interfacial Electrochem.,1983,150,645-664.
    [85]Chang C J, Loh Z H, Shi C, et al. Targeted Proton Delivery in the Catalyzed Reduction of Oxygen to Water by Bimetallic Pacman Porphyrins [J]. J. Am. Chem. Soc.,2004,126:10013-10020.
    [86]董绍俊,车广礼,谢远武.化学修饰电极[M].科学出版社,北京,2003:385-386.
    [87]Euihwan S, Chunnian S, Fred C A. Comparison of the Behavior of Several Cobalt Porphyrins as Electrocatalysts for the Reduction of O2 at Graphite Electrodes [J]. Langnuir,1998,14:4315-4321.
    [88]董绍俊,姜荣中.化学修饰电极的研究ⅩⅦ四苯基铁卟啉化学修饰玻碳电极的热处理及其对氧的催化还原[J].物理化学学报,1987,3(6):658-662.
    [89]Buttry D A, Anson F C. New Strategies for Electrocatalysis at Polymer-Coated Electrodes. Reduction of Dioxygen by Cobalt Porphyrins Immobilized in Nafion Coatings on Graphite Electrodes [J]. J. Am. Chem. Soc.,1984,106:59-64.
    [90]Zak J, Yuan H, Ho M, et al. Thiol-Derivatized Metalloporphyrins:Monomolecular Films for the Electrocatalytic Reduction of Dioxygen at Gold Electrodes [J]. Langmuir,1993,9:2772-2774.
    [91]Hutchison J E, Postlethwaite T A, Murray R W. Molecular films of thiol-derivatized tetraphenylporphyrins on gold:film formation and electrocatalytic dioxygen reduc-tion [J]. Langmuir,1993,9:3277-3283.
    [92]Lu X, Jin J, Kang J, et al. The characterization of 5-{[4-(4-mercapto)phenyl-meth-oxy]phenyl}-10,15,20-tris(phenyl)porphyrin cobalt(II) self-assembled monolayers (SAMs) and its electrocatalytic oxidation for ascorbic acid [J]. Mater. Chem. Phys., 2002,77:952-957.
    [93]Nishimura N, Ooi M, Shimazu K, et al. Post-assembly insertion of metal ions into thiol-derivatized porphyrin monolayers on gold [J]. J. Electroanal. Chem.,1999,473: 75-84.
    [94]Viana A S, Leupold S, Montforts F P, et al, Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold [J]. Electrochim. Acta,2005,50: 2807-2813.
    [95]Huang M H, Shen Y, Cheng W L, et al. Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction [J]. Anal. Chim. Acta,2005,535: 15-22.
    [96]Lu X Q, Zhi F P, Shang H, et al. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode [J]. Electrochim. Acta,2010,55:3634-3642.
    [97]Armaroli N, Balzani V. The Future of Energy Supply:Challenges and Opportu-nities [J]. Angew. Chem. Int. Ed..2007.46:52-66.
    [98]Darensbourg M Y. Synthetic chemistry:making a natural fuel cell [J]. Nature,2005, 433(7026):589-591.
    [99]Alper J. Water Splitting Goes Au Naturel [J]. Science,2003,299(5613):1686-1687.
    [100]Cammack R, Frey M, Robson R. Hydrogen as a Fuel:Learning from Nature [M]. London:Tylor & Francis,2001.
    [101]Das D, Veziroglu T N. Hydrogen production by biological processes:a survey of literature [J]. Int. J. Hydrogen Energy,2001,26:13-28.
    [102]Amao Y, Tomonou Y, Ishikawa Y, et al. Photoinduced hydrogen production with water-soluble zinc porphyrin and hydrogenase in nonionic surfactant micellar system [J]. Int. J. Hydrogen Energy,2002,27:621-625.
    [103]Ozawa H, Haga M, Sakai K. A Photo-Hydrogen-Evolving Molecular Device Driving Visible-Light-Induced EDTA-Reduction of Water into Molecular Hy-drogen [J]. J. Am. Chem. Soc.,2006,128(15):4926-4927.
    [104]Li X, Wang M, Zhang S, et al. Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model:Photo-Induced Electron Transfer and Hydrogen Generation [J]. J. Phys. Chem. B,2008,112(27):8198-8202.
    [105]Zhang X, Ju H, Wang J. Electrochemical Sensors, Biosensors and Their Biomedical Applications [M]. Amsterdam:Elsevier.,2007:5-6.
    [106]Tabata M, Nishimoto J, Kusano T. Spectrophotometric determination of lithium ion using a water-soluble octabromoporphyrin in aqueous solution [J]. Talanta,1998, 46(4):703-709.
    [107]龙立平,聂伟安,钟桐生.基于卟啉衍生物荧光熄灭的Pb2+光化学传感器[J].应用化学,2007,24(7):806-809.
    [108]张月霞,杨振华.卟啉及卟啉衍生物的应用[J].广州化学,2008,33(3):50-56.
    [109]Xu S C, Liu W W, Hu B C, et al. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (Ⅲ) deuteroporphyrin and its application in flow injection determination of phenol at trace level [J]. J. Photochem. Photobiol., A, 2012,227:32-37.
    [110]Zhou W Y, Hu B C, Liu Z L. Metallo-deuteroporphyrin complexes derived from heme:A homnogeneous catalyst for cyclohexane oxidation. Appl. Catal. A-General, 2009,358:136-140.
    [111]胡炳成,刘祖亮,吕春绪,等.金属次卟啉化合物制备方法及其应用.中国,CN101337963A.2009-1-7.
    [1]Sternberg E D, Dolphin D. Porphyrin-based photosensitizers for use in photody-namic therapy [J]. Tetrahedron,1998,54:4151-4202.
    [2]王君,康平利,张向东,等.萃取法氯化血红素脱铁的研究[J].药物生物技术,2005,12(1):26-31.
    [3]孙呈郭,周维友,胡炳成,等.2,7,12,18-四甲基-13,17-二(3-羟基丙基)卟啉的合成改进[J].精细化工,2009,26(9):919-922.
    [4]徐士超,胡炳成,崔巧利,等.3,8-双乙酰基次卟啉二甲酯的合成[J].应用化学,2011,28(6):657-661.
    [5]Oliveira K M T, Trsic M. Comparative theoretical study of the electronic structures and electronic spectra of Fe2+, Fe3+porphyrin and free base porphyrin [J]. J. Mol. Struct.,2001,539:107-117.
    [6]Hikal W M, Harmon H J. Photocatalytic self-assembled solid porphyrin microcry-stals from water-soluble porphyrins:Synthesis, characterization and application [J]. Polydedron,2009,28:113-120.
    [7]罗勤慧,沈孟长.配位化学[M].南京:江苏科学技术出版社,1987:300.
    [8]Smith K M. Porphyrins and Metalloporphyrins [M]. Amsterdam:Elsevier.1975.
    [9]朱晓洁,梁飞,王秀宏,等.钻原卟啉对H9c2心肌细胞缺氧/复氧损伤的保护作用[J].中国药理学通报,2009,25(3):352-356.
    [10]陶海鹏,孙振贤,刘明蓉,等.锌叶绿酸a的合成及初步临床应用[J].华西医科大学学报,1990,21(3):341-343.
    [11]余占明,佟凤芝,李丽,等.锌原卟啉(ZPP)在恶性肿瘤诊断中的研究应用[J].中国医疗前沿,2008,3(8):12-13.
    [12]宋顺涛,王永才,李冬梅.锌原卟啉对白血病早期诊断的临床意义[J].世界肿瘤杂志,2008,7(3):219-221.
    [13]Carballo R. Dall'Orto V C, Balbo A L, et al. Determination of sulfite by flow injection analysis using a ploy[Ni-(protoporphyrin IX)] chemically modified elec-trode [J]. Sens. Actuators, B,2003,88(2):155-161.
    [14]邓全知,胡炳成,孙呈郭,等.次卟啉制备新方法及其金属配合物的合成.应用化学,2011,28(11):1263-1268.
    [15]Adler A D, Longo F R, Kampas F, et al. On the Preparation of Metalloporphyrins [J]. J. Inorg. Nucl. Chem.,1970,32:2443-2445.
    [16]钟淑琳.高等无机化学[M].成都:四川科技技术出版社,1987.
    [17]焦向东,黄锦汪,计亮年,等.5,10,15,20-四(2-甲氧基苯基)卟啉合钴的晶体和分子结构[J].无机化学学报,1997,6(13):129-134.
    [18]桑言奎.八甲基trans-四芳基卟啉及其金属配合物的合成、结构分析及荧光性能的研究[D].上海:上海师范大学.
    [19]Collman J P, Boulatov R, Sunderland C J, et al. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin [J]. Chem. Rev.,2004,104:561-588.
    [20]Wu L, Lei J, Zhang X, et al. Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing [J]. Biosens. Bio-electron.,2008,24(4):644-649.
    [21]Heinecke J, Ford P C. Mechanistic studies of nitrite reactions with metallo-proteins and models relevant to mammalian physiology [J]. Coord. Chem. Rev.,2010,254: 235-247.
    [22]Xu S C, Liu W W, Hu B C, et al. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (III) deuteroporphyrin and its application in flow injection determination of phenol at trace level [J]. J. Photochem. Photobiol., A, 2012,227:32-37.
    [23]Baker E W, Ruccia M, Corwin A H. The Preparation of Mesoporphyrin IX and Etioporphyrin III [J]. Anal. Biochem.,1964,8(4):512-518.
    [24]Reboucas S J, James B R. A simple, catalytic H2-hydrogenation method for the synthesis of fine chemicals:hydrogenation of protoporphyrin IX dimethyl ester [J]. Tetrahedron Lett.,2006,47:5119-5122.
    [25]Lara F A, Lins U, Bechara G H, et al. Tracing heme in a living cell:hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus [J]. J. Exp. Biol.,2005,208:3093-3101.
    [26]Rubaltelli F F. Current drug treatment options in neonatal hyperbilirubinaemia and the prevention of kernicterus [J]. Drugs.,1998,56:23-30.
    [27]Caughey W S, Alben J O, Fujimoto W Y, et al. Substituted Deuteroporphyrins. Ⅰ. Reactions at the Periphery of the Porphyrin Ring [J]. J. Org. Chem.,1966,31(8): 2631-2640.
    [28]Muir H M, Neuberger A. The biogenesis of porphyrins. The distribution of 15N in the ring system [J]. Biochem. J.,1949,45(2):163-170.
    [29]Leutenegger U, Madin A, Pfaltz A. Enantioselective Reduction of α,β-Unsaturated Carboxylates with NaBH4 and Catalytic Amounts of Chiral Cobalt Semicorrin Complexes [J]. Angew. Chem. Int. Ed. Engl.,1989,28:60-61.
    [30]Dhawan D, Grover S K. Facile Reduction of Chalcones to Dihydrochalcones with NaBH4/Ni2+System [J]. Synth. Commun.,1992,22(16):2405-2409.
    [31]Ranu B C, Samanta S. Reduction of activated conjugated alkenes by the InCl3-NaBH4 reagent system [J]. Tetrahedron,2003,59,7901-7906.
    [32]Sharma P K, Kumar S, Kumar P, et al. Selective reduction of mono-and disub-stituted olefins by NaBH4 and catalytic RuCl3 [J]. Tetrahedron Lett.,2007,48(49): 8704-8708.
    [33]Kano K, Takeuchi M, Hashimoto S, et al. Porphyrinatoiro-catalysed Reduction of Styrene with Sodium Borohydride:Proposed α-Alkyliron(III) Complex as an Intermediate [J]. J. Chem. Soc., Chem. Commun.,1991,1728-1729.
    [34]Hu B C, Zhou W Y, Ma D S, et al. Metallo-deuteroporphyrins as Catalysts for the Oxidation of Cyclohexane with Air in the Absence of Additives and Solvents [J]. Catal. Commun.,2008,10:83-85.
    [35]马登生,胡炳成,吕春绪.次氯化血红素的合成[J].精细化工,2008,10(25):1031-1033.
    [36]陶海鹏.锌原卟啉的制备[J].华西药学杂志,2003,18(4):264-266.
    [37]王夔.生物无机化学[M].北京:清华大学出版社,1988:94.
    [38]Smith A G, Witty M. Heme, Chlorophyll, and Bilins:Methods and Protocols [M]. Totowa:Humana Press,2002:17-19.
    [39]张广明,计国祯,胡蕙.血卟啉醚类化合物的裂解反应及乙烯基烷氧乙基次卟啉类化合物的合成[J].有机化学,1998,18:425-431.
    [40]于克贵,周成合,李东红.卟啉类抗癌药物研究新进展[J].化学研究与应用,2007,19(12):1296-1303.
    [41]贾志云,邓侯富.血卟啉类化合物在肿瘤诊疗应用的研究进展[J].中国医药工业杂志,2006,37(6):426-429.
    [42]Kim Y S, Song R, Kim D H, et al. Synthesis, Biodistribution and Antitumor Activity of Hematoporphyrin-Platinum(II) Conjugates [J]. Bioorg. Med. Chem., 2003,11:1753-1760.
    [43]Brunner H, Arndt M R, Treittinger B. Porphyrin Platinum Conjugates-New Aims [J]. Inorg. Chim. Acta,2004,357:1649-1669.
    [44]Mroz P, Bhaumik J, Dogutan D K, et al. Imidazole metalloporphyrins as photo-sensitizers for photodynamic therapy:Role of molecular charge, central metal and hydroxyl radical production [J]. Cancer Lett.,2009,282:63-67.
    [45]徐士超,胡炳成,崔巧利,等.[2,7,12,18-四甲基-3,8-二(1-羟基乙基)-13,17-二羧基乙基]-口卜啉的改进合成[J].精细化工,2011,28(2):205-208.
    [46]刘永涟,杨世林,白亦莉,等.血卟啉二甲酯及双乙酰血卟啉二甲酯的制备和鉴定[J].药学学报,1985,20(7):545-547.
    [47]Venkatramaiah N, Soorya V C, Venkatesan R. Optical and photophysical inves-tigation of Meso, Proto and Hematoporphyrin(IX) dimethylester doped hybrid borate glasses [J]. Physica B,2011,406(3):556-561.
    [48]刘小玲,曾育才.超声波辅助高锰酸钾氧化环己醇合成己二酸[J].精细与专用化学品,2010,18(1):50-52.
    [49]李记太,臧洪俊.超声波应用于有机合成方面的新进展[J].河北大学学报,2000,20(1):96-102.
    [50]史玉琳,具本植,张淑芬.超声辅助合成阳离子醚化剂2,4-二(二甲氨基)-6-氯-[1,3,5]-三嗪[J].精细化工,2011,28(10):1024-1027.
    [51]Sun C G, Hu B C, Zhou W Y, et al. Investigations on the demetalation of metalloporphyrins under ultrasound irradiation [J]. Ultrason. Sonochem.,2011,18: 501-505.
    [52]Guilet R, Berlan J, Louisnard O, et al. Influence of ultrasound power on the alky-lation of phenylacetonitrile under solid-liquid phase transfer catalysis conditions [J]. Ultrasound Sonochemistry.1998.5:21-25.
    [53 ]陈志龙,万维勤,陈静蓉,等.2,7,12,18-y四i培-13.17-:-(3-羟基内基)卟啉的合 成及其光敏化活性[J].中国医药工业杂志,1998,29(11):501-502.
    [54]Sylvaina I, Zerrouki R, Granet R, et al. Synthesis and Biological Evaluation of Thioglycosylated Porphyrins for an Application in Photodynamic Therapy [J]. Bioorg. Med. Chem.,2002,10:57-69.
    [55]Dolphin D. The Porphyrins [M]. New York:Acad Press,1978,1:289.
    [56]刘新刚,冯亚青,高博,等.新型尾式硫代苯并噻唑基卟啉化合物的合成与表征[J].有机化学,2005,25(5):540-544.
    [57]杨建东,原慧卿,李秀娟,等.巯基卟啉自组装膜的制备及应用研究进展[J].分析化学,2007,35(11):1679-1684.
    [58]Viana A S, Leupold S, Montforts F P, et al. Self-assembled monolayers of a disul-phide-derivatised cobalt-porphyrin on gold [J]. Electrochim. Acta,2005,50:2807-2813.
    [1]Dolphin D. The Porphyrins [M]. NewYork:Acad Press,1978,1:289.
    [2]周维友,胡炳成,徐士超,等.金属次卟啉二甲酯对空气氧化环己烷的催化作用[J].高等学校化学学报,2010,31(4):723-726.
    [3]O'Connor A E, Gallagher M W, Byrne A T. Porphyrin and Nonporphyrin Photo-sensitizers in Oncology:Preclinical and Clinical Advances in Photodynamic Therapy [J]. Photochem. Photobiol.,2009,85(5):1053-1074.
    [4]Song W J, Seo M S, George S D, et al. Synthesis, Characterization, and Reac-tivities of Manganese(V)-Oxo Porphyrin Complexes [J]. J. Am. Chem. Soc.,2007, 129(5):1268-1277.
    [5]王旭涛,褚明福,郭灿城.咪唑修饰硅胶配位固载锰(Ⅲ)卟啉对环己烷空气氧化的催化作用[J].高等学校化学学报,2005,26(1):64-67.
    [6]Liu S T, Reddy K V, Lai R Y. Oxidative cleavage of alkenes catalyzed by a water/ organic soluble manganese porphyrin complex [J]. Tetrahedron,2007,63 (8): 1821-1825.
    [7]Moghadam M, Tangestaninejad S, Mirkhani V, et al. Mild and efficient oxidation of alcohols with sodium periodate catalyzed by polystyrene-bound Mn(III) porphyrin [J]. Bioorg.& Med. Chem.,2005,13 (8):2901-2905.
    [8]Zhou X T, Ji H B, Yuan Q L, et al. Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (III) meso-tetraphenylporphyrin chloride under ambient conditions [J]. Chin. Chem. Lett.,2007,18(8):926-928.
    [9]Zbik D R, Witko M. Following nature-Theoretical studies on factors modulating catalytic activity of porphyrins [J]. J. Mol. Catal. A:Chem,2006,258:376-380.
    [10]Zhou W Y, Hu B C, Liu Z L. Metallo-deuteroporphyrin complexes derived from heme:A homnogeneous catalyst for cyclohexane oxidation [J]. Appl. Cata. A: Gen.,2009,358(2):136-140.
    [11]Hu B C, Zhou W Y, Ma D S, et al. Metallo-deuteroporphyrins as catalysts for the oxidation of cyclohexane with air in the absence of additives and solvents [J]. Cata. Commun.,2008,10:83-85.
    [12]周维友,金属次卟啉衍生物的合成及其仿生催化性能研究[D].南京:南京理工大学,2010.
    [13]Machii K, Watanabe Y, Morishima I. Acylperoxo-Iron(III) Porphyrin Complexes: A New Entry of Potent Oxidants for the Alkene Epoxidation [J]. J. Am. Chem. Soc.,1995,117:6691-6697.
    [14]Groves J T, Watanabe Y. On the Mechanism of Olefim Epoxidation by Oxo-IronPorphyrins. Direct Observation of an Intermediate [J]. J. Am. Chem. Soc., 1986,108:507-508.
    [15]Filatov M, Harris N, Shaik S. A Theoretical Study of Electronic Factors Afecting Hydroxylation by Model Ferryl Complexes of Cytochrome P-450 and Horseradish [J]. J. Chem. Soc., Perkin Trans.,1999,2(3):399-410.
    [16]Montellano O P R. Cytochrome P-450:Structure, Mechanisms and Biochemistry [M].3rd ed. New York:Plenum Publishers,1986.
    [17]Groves J T, Watanabe Y. Reactive Iron Porphyrin Derivatives Related to The Catalytic Cycles of Cytochrome-P-450 and Peroxidase-Studies of the Mechanism of Oxygen Activation [J]. J. Am. Chem. Soc.,1988,110(25):8443-8452.
    [18]Traylor T G, Hill K W, Fann WP, et al. Aliphatic Hydroxylation Catalyzed by Iron (II) Porphyrins [J]. J. Am. Chem. Soc.,1992,114(4):1308-1312.
    [19]Shikama K. The Molecular Mechanism of Autoxidation for Myoglobin and Hemo-globin:A Venerable Puszzle [J]. Chem. Rev.,1998,98 (4):1357-1373.
    [20]Balch A L, Olmstead M M, Safari N, et al. Iron(III) Porphyrin Complexes with Axial Alkyl and Acyl Ligands-Structures and Reactivity of the Acyl Complex Toward Dioxygen [J]. Inorg. Chem.,1994,33(13):2815-2822.
    [21]Groves J T, Ahn K H. Chraracterization of an Oxoruthenium (Ⅳ) Porphyrin Complex [J]. Inorg. Chem.,1987,26(23):3831-3833.
    [1]Li H, Xu M, Shi Z, et al. Isotherm analysis of phenol adsorption on polymeric adsorbents from nonaqueous solution [J]. J. Colloid Interface Sci.,2004,271:47-54.
    [2]Kafi A K M, Chen A. A novel amperometric biosensor for the detection of nitro-phenol [J]. Talanta,2009,79:97-102.
    [3]Olivati C A, Riul A J, Balogh D T, et al. Detection of phenolic compounds using impedance spectroscopy measurements [J]. Bioprocess. Biosyst. Eng.,2009,32:41-46.
    [4]Ozoner S K, Erhan E, Yilmaz F, et al. Newly synthesized poly (glycidyl metha-crylate-co-3-thienylmethylmethacrylate)-based electrode designs for phenol biosen-sors [J]. Talanta,2010,81:82-87.
    [5]Chen J, Jin Y. Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode [J]. Microchim. Acta,2010,169:249-254.
    [6]Birkett A M, Jones G P, Muir J G. Simple high-performance liquid chromato-graphic analysis of phenol and p-cresol in urine and feces [J]. J. Chromatogr. B,1995, 674:187-191.
    [7]Ye C, Zhou Q, Wang X, et al. Determination of phenols in environmental water samples by ionic liquid-based headspace liquid-phase microextraction coupled with high-performance liquid chromatography [J]. J. Sep. Sci.,2007,30:42-47.
    [8]Vanbeneden N, Delvaux F, Delvaux F R. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chro-matography using electrochemical detection [J]. J. Chromatogr. A,2006,1136:237-242.
    [9]Zhao F Q, Li J, Zeng B Z. Coupling of ionic liquid-based headspace single-drop microextraction with GC for sensitive detection of phenols [J]. J. Sep. Sci.,2008,31: 3045-3049.
    [10]Farina L, Boido E, Carrau F, et al. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection [J]. J. Chromatogr. A,2007,1157:46-50.
    [11]Kang J, Zhang Y, Han L, et al. Utilizing the chemiluminescence of 2-substituted-4, 5-di(2-furyl)-1H-imidazole-H2O2-Cu2+system for the determination of Cu2+[J]. J. Photochem. Photobiol. A:Chem.,2011,217:376-382.
    [12]Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chem. Rev.,2008,108:2506-2553.
    [13]Alpeeva I S, Sakharov I Y. Soybean Peroxidase-Catalyzed Oxidation of Luminol by Hydrogen Peroxide [J]. J. Agric. Food Chem.,2005,53:5784-5788.
    [14]Takayanagi T, Inaba Y, Kanzaki H, et al. Pre-evaluation of metal ions as a catalyst on chemiluminometric sequential injection analysis with luminal-H2O2 system [J]. Talanta,2009,79:1089-1903.
    [15]Baj S, Krawczyk T. Effect of gold nanoparticle as a novel nanocatalyst on luminal-hydrazine chemiluminescence system and its analytical application [J]. J. Photochem. Photobiol. A:Chem.,2006,183:111-120.
    [16]Li T, Wang E, Dong S. Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection [J]. Anal. Chem.,2010,82:1515-1520.
    [17]Ci Y X, Tie J K, Wang Q W, et al. Flow injection and liquid chromatographic postcolumn detection of amino acids by mimetic peroxidase-catalysed chemilu-minescence reaction [J]. Anal. Chim. Acta,1992,269:109-114.
    [18]Tagliatesta P, Giovannetti D, Leoni A, et al. Manganese(III) porphyrins as catalysts for the oxidation of aromatic substrates:An insight into the reaction mechanism and the role of the cocatalyst [J]. J. Mol. Catal. A:Chem..2006,252:96-102.
    [19]Staden J F, Staden R I S. Application of porphyrins in flow-injection analysis:A review [J]. Talanta,2010,80:1598-1605.
    [20]Bastos E L, Romoff P, Eckert C R, et al. Evaluation of Antiradical Capacity by H2O2-Hemin-Induced Luminol Chemiluminescence [J]. J. Agric. Food Chem.,2003, 51:7481-7488.
    [21]Hage R. Oxidation catalysis by biomimetic manganese complexes [J]. Red. Trav. Chim. Pays-Bas,1996,115:385-395.
    [22]Hearn A S, Tu C, Nick H S, et al. Characterization of the Product-inhibited Complex in Catalysis by Human Manganese Superoxide Dismutase [J]. J. Biol. Chem.,1999, 274:24457-24460.
    [23]Water quality-determination of volatile phenolic copounds-4-AAP spectrophotome-tric method, China Environmental Science Press, China,2009.
    [24]Li S, Tao S, Wang F, et al. Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy [J]. Microchim. Acta,2010,169: 73-78.
    [25]Nam W, Lim M H, Lee H J, et al. Evidence for the participation of two distinct reaction intermediates in iron(Ⅲ) porphyrin complex-catalyzed epoxidation reactions [J]. J. Am. Chem. Soc.,2000,122:6641-6647.
    [26]Milaeva E R, Gerasimova O A, Maximov A L, et al. The catalytic activity of immo-bilized on modified silica metalloporphyrins bearing antioxidative 2,6-ditertbutyl-phenol pendants [J]. Catal. Commun.,2007,8:2069-2073.
    [27]Groves J T, Lee J, Marla S S. Detection and characterization of an oxomanganese (V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry [J]. J. Am. Chem. Soc.,1997,119:6269-6273.
    [28]Lee J, Hunt J A, Groves J T. Manganese porphyrins as redox-coupled peroxy-nitrite reductases [J]. J. Am. Chem. Soc.,1998,120:6053-6061.
    [29]Whitehead T P. Thorpe G H G, Maxwell S R J. Enhanced chemiluminescent assay for antioxidant capacity in biological fluids [J]. Anal. Chim. Acta,1992,266:265-277.
    [1]Wang J, Ye H, Jiang Z, et al. Determination of diethylstilbestrol by enhancement of luminol-hydrogen peroxide-tetrasulfonated cobalt phthalocyanine chemilumine-scence [J]. Anal. Chim. Acta,2004,508:171-176.
    [2]Zhao Y, Liang Y, Qian J, et al. Determination of Diethylstilbestrol by Time-resolve Fluoroimmunoassay [J]. Anal. Lett.,2009,42:216-227.
    [3]Odum J, Lefevre P A, Tinwell H, et al. Comparison of the Developmental and Reproductive Toxicity of Diethyl-stilbestrol Administered to Rats in Utero, Lactatio-nally, Preweaning, or Postweaning [J]. Toxicol. Sci.,2002,68:147-163.
    [4]Shamash J, Powles T, Sarker S J, et al. A multi-centre randomised phase III trial of Dexamethasone vs Dexamethasone and diethylstilbestrol in castration-resistant prostate cancer:immediate vs deferred Diethylstilbestrol [J]. Br. J. Cancer,2011,104: 620-628.
    [5]Barkatina E N, Volkovich S V, Venger O N, et al. Simultaneous Determination of Diethylstilbestrol, Testosterone, and 17(3-Estradiol Residues in Meat and Meat Products Using Gas-Liquid Chromatography [J]. J. Anal. Chem.,2001,56:740-743.
    [6]Lopez de Alda M J, Barcelo D. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chro-matography-diode array detection-mass spectrometry [J]. J. Chromatogr. A,2000, 892:391-406.
    [7]Kanimozhi S, Basheer C, Narasimhan K, et al. Application of porous membrane protected micro-solid-phase-extraction combined with gas chromatography-mass spectrometry for the determination of estrogens in ovarian cyst fluid samples [J]. Anal. Chim. Acta,2011,687:56-60.
    [8]Lopez de Alda M J, Barcelo D. Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and proge-stogens in sediment and water [J]. J. Chromatogr. A,2001,938:145-153.
    [9]Lara F J, Garcia-Campana A M, Aaron J J. Analytical applications of photo-induced chemiluminescence in flow systems-A review [J]. Anal. Chim. Acta,2010,679: 17-30.
    [10]Wang L J, Tang Y H, Liu Y H. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system [J]. J Pharm Anal.,2011,1:51-56.
    [11]Xu S, Liu W, Hu B, et al. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (Ⅲ) deuteroporphyrin and its application in flow injection determination of phenol at trace level [J]. J. Photochem. Photobiol. A: Chem.,2012,227:32-37.
    [12]Yamaguchi T, Tsukamoto K, Ikeda O, et al. Oxygen reduction at negatively charged iron porphyrins heat-treated and bridged by alkaline-earth metal ions [J]. Electrochim. Acta,2010,55:6042-6048.
    [13]Staden J F, Stefan-van Staden R I. Application of porphyrins in flow-injection analysis:A review [J]. Talanta,2010,80:1598-1605.
    [14]Wu D, Han Y, Wei Q, et al. A novel chemiluminescent flow-injection analysis of transferrin by its reduction of the luminol-hydrogen peroxide reaction catalysed by meso-tetra-(3-methoxyl-4-hydroxyl) phenyl manganese porphyrin [J]. Luminescence, 2011,26:629-633.
    [15]Zhou W, Hu B, Liu Z. Metallo-deuteroporphyrin complexes derived from heme:A homogeneous catalyst for cyclohexane oxidation [J]. Appl. Catal., A,2009,358: 136-140.
    [16]Bastos E L, Romoff P, Eckert C R, et al. Evaluation of Antiradical Capacity by H2O2-Hemin-Induced Luminol Chemiluminescence [J]. J. Agric. Food Chem.,2003, 51:7481-7488.
    [17]Stynes D V, Stynes H C, Ibers J A, et al. Kinetics of the reaction of amine com-plexes of cobalt(Ⅱ) protoporphyrin IX dimethyl ester with oxygen. Evidence for hydrogen bonding with coordinated oxygen [J]. J. Am. Chem. Soc.,1973,95(4): 1142-1149.
    [18]Smith J R L, Iamamoto Y, Vinhado F S. Oxidation of alkanes by iodosyl-benzene (PhIO) catalysed by supported Mn(III) porphyrins:Activity and mechanism [J]. J. Mol. Catal. A:Chem.,2006,252:23-30.
    [19]Lee J, Hunt J A, Groves J T. Manganese Porphyrins as Redox-Coupled Peroxy-nitrite Reductases [J]. J. Am. Chem. Soc.,1998,120:6053-6061.
    [20]Biryol I, Salci B, Erdik E. Voltammetric investigation of diethylstilbestrol [J]. J. Pharm. Biomed. Anal.,2003,32:1227-1234.
    [21]Chen H, Gao F, He R, et al. Chemiluminescence of luminol catalyzed by silver nanoparticles [J]. J. Colloid Interface Sci.,2007,315:158-163.
    [1]Elbaz L, Korin E, Soifer L, et al. Electrocatalytic oxygen reduction by Co (Ⅲ) porphyrins incorporated in aerogel carbon electrodes [J]. Electroanal. Chem.,2008, 621:91-96.
    [2]Beletskaya I, Tyurin V S, Tsivadze A Y, et al. Supramolecular Chemistry of Metalloporphyrins [J]. Chem. Rev.,2009,109:1659-1713.
    [3]Bagdanoff P, Herrmann I, Hilgendorf M, et al. Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies [J]. J. New Mater. Electrochem. Syst.,2004,7:85-92.
    [4]Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells [J]. Nature,2006,443,63-66.
    [5]Winnischofer H, Otake V Y, Dovidauskas S, et al. Supramolecular tetracluster-cobalt porphyrin:a four-electron transfer catalyst for dioxygen reduction [J]. Electrochim. Acta.,2004,49:3711-3718.
    [6]Lu X Q, Zhi F P, Shang H, et al. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode [J]. Electrochim. Acta,2010,55:3634-3642.
    [7]Chen Y H, Petrovic A G, Roje M, et al. CD-sensitive Zn-porphyrin tweezer host-guest complexes, part 2:Cis-and trans-3-hydroxy-4-aryl/alkyl-b-lactams. A case study [J]. Chirality.,2010,22(1):140-152.
    [8]Berner S, Lidbaum H, Ledung G, et al. Electronic and structural studies of immobilized thiol-derivatized cobalt porphyrins on gold surfaces [J]. Appl. Surf. Sci.,2007,253:7540-7548.
    [9]Cordas C M, Viana A S, Leupold S, et al. Self-assembled monolayer of an iron(III) porphyrin disulphide derivative on gold [J]. Electrochem. Commun.,2003,5:36-41.
    [10]Xu S C, Hu B C, Zhou W Y, et al. The synthesis, self-assembly and electro-catalytic property of a novel disulphide derivatised cobalt(II) deuteroporphyrin [J]. Chin. Chem. Lett.,2012,23:157-160.
    [11]康敬万,王永生,卢小泉.一类巯基衍生卟啉的合成及其电化学性质研究[J].西北师范大学学报,2005,41(6):33-37.
    [12]Lu X, Li M, Yang C, et al. Electron Transport through a Self-Assembled Monolayer of Thiol-End-Functionalized Tetraphenylporphines and Metal Tetraphenylporphines [J]. Langmuir,2006,22:3035-3039.
    [13]Li S. Zhang L, Kim J. et al. Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction [J]. Electrochim. Acta.,2010,55:7346-7353.
    [14]刘新刚,冯亚青,高博,等.新型尾式硫代苯并噻唑基卟啉化合物的合成与表征[J].有机化学,2005,25(5):540-544.
    [15]杨建东,原慧卿,李秀娟,等.巯基卟啉自组装膜的制备及应用研究进展[J].分析化学,2007,35(11):1679-1684.
    [16]Viana A S, Leupold S, Montforts F P, et al. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold [J]. Electrochim. Acta,2005,50: 2807-2813.
    [17]Ribeiro E S, Dias S L P, Gushikem Y, et al. Cobalt (II) porphyrin complex immo-bilized on the binary oxide SiO2/Sb2O3:electrochemical properties and dissolved oxygen reduction study [J]. Electrochim. Acta,2004,49:829-834.
    [18]Gianfranco B, Remo G, Severo S, et al. Evaluation of the Dmt-Tic Pharma-cophore:Conversion of a Potent δ-Opioid Receptor Antagonist into a Potent 8 Agonist and Ligands with Mixed Properties [J]. J. Med. Chem.,2002,45(3):713-720.
    [19]Degrand D. Influence of the pH on the catalytic reduction of oxygen to hydrogen peroxide at carbon electrodes modified by an adsorbed anthraquinone polymer [J]. Electroanal. Chem.,1984,169:259-268.
    [20]Ribeiro E S, Dias S L P, Gushikem Y, et al. Cobalt(II) porphyrin complex immo-bilized on the binary oxide SiO2/Sb2O3:electrochemical properties and dissolved oxygen reduction study [J]. Electrochimica Acta.,2004,49:829-834.
    [21]Santos W J R, Sousa A L, Luz R C S, et al. Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(II) tetrasulfonated phthalocyanine [J]. Talanta,2006,70:588-594.
    [22]Andrieux C P, saveant J M. Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions [J]. J. Electroanal. Chem.,1978,93:163-168.
    [23]Bard A J, Faulkner L R. Electrochemical Methods:Fundamentals and Applica-tions [J]. New York:Wiley,1980.
    [24]Salimi A, MamKhezri H, Hallaj R, et al. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron (Ⅲ)-porphyrin film:Application to chlorate, bromate and iodate detection [J]. Electrochim. Acta,2007,20:6097-6105.
    [1]Leger C, Bertrand P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies [J]. Chem. Rev.,2008,108:2379-2438.
    [2]Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens. Bioele-ctron.,2009,25:901-905.
    [3]Saveant J M. Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects [J]. Chem. Rev.,2008,108:2348-2378.
    [4]Wang F, Hu S S. Electrochemical sensors based on metal and semiconductor nanoparticles [J]. Microchim. Acta,2009,165:1-22.
    [5]Tang J, Tang D P, Su B L, et al, Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts [J]. Biosens. Bioelectron., 2011,26:3219-3226.
    [6]Wu L N, Lei J P, Zhang X J, et al, Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing [J]. Biosens. Bioelectron.,2008,24:644-649.
    [7]Beletskaya I, Tyurin V S, Tsivadze A Y, et al. Supramolecular Chemistry of Metalloporphyrins [J]. Chem. Rev.,2009,109:1659-1713.
    [8]Heinecke J, Ford P C. Mechanistic studies of nitrite reactions with metallo-proteins and models relevant to mammalian physiology [J]. Coord. Chem. Rev.,2010,254: 235-247.
    [9]Xu S C, Liu W W, Hu B C, et al. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (Ⅲ) deuteroporphyrin and its application in flow injection determination of phenol at trace level [J]. J. Photochem. Photobiol. A, 2012,227:32-37.
    [10]Chaiyasith S, Tangkuaram T, Chaiyasith P. Electrocatalytical of chlorophenoxy-carboxylic acids at a protoporphyrin IX cobalt(III) chloride modified glassy carbon electrode [J]. J. Electroanal. Chem.,2005,581:104-110.
    [11]Yamada S, Tasaki T, Akiyama T, et al. Gold nanoparticle-porphyrin self-assembled multistructures for photoelectric conversion [J]. Thin Solid Films,2003,438-439: 70-74.
    [12]Wang W T, Li X J, Wang X Y, et al. Comparative Electrochemical Behaviors of a Series of SH-Terminated-Functionalized Porphyrins Assembled on a Gold Electrode by Scanning Electrochemical Microscopy (SECM) [J]. J. Phys. Chem. B,2010,114: 10436-10441.
    [13]Imahori H, Norieda H, Nishimura Y, et al. Chain Length Effect on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrins on Gold Electrodes [J]. J. Phys. Chem. B,2000,104:1253-1260.
    [14]Viana A S, Leupold S, Montforts F P, et al. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold [J]. Electrochim. Acta,2005,50: 2807-2813.
    [15]Xu S C, Hu B C, Zhou W Y, et al. The synthesis, self-assembly and electro-catalytic property of a novel disulphide derivatised cobalt(II) deuteroporphyrin [J]. Chin. Chem. Lett.,2012,23:157-160.
    [16]Lara F A, Lins U, Bechara G H, et al. Tracing heme in a living cell:hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus [J]. J. Exp. Biol.,2005,208:3093-3101.
    [17]Reboucas S J, James B R. A simple, catalytic H2-hydrogenation method for the synthesis of fine chemicals; hydrogenation of protoporphyrin IX dimethyl ester [J]. Tetrahedron Lett.,2006,47:5119-5122.
    [18]崔巧利,徐士超,孙呈郭,等.Co(II)-3,8-双乙基次卟啉二甲酯的合成及催化空气氧化环己浣应用[J].高等学校化学学报,2011,32(10):2311-2315.
    [19]Lu X, Jin J, Kang J, et al. The characterization of 5-{[4-(4-mercapto)phenyl-methoxy]phenyl}-10,15,20-tris(phenyl)porphyrin cobalt(II) self-assembled monola-yers (SAMs) and its electrocatalytic oxidation for ascorbic acid [J]. Mater. Chem. Phys.,2002,77:952-957.
    [20]Laviron E. Surface linear potential sweep voltammetry:Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account [J]. J. Electroanal. Chem.,1974,52:395-402.
    [21]Wu Y H, Ji X B, Hu S S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin [J]. Bioelectrochemistry,2004,64,91-97.
    [22]Dai Y X, Zhang N, Wu D, et al. Meso-Tetra-(3,5-Dibromo-4-Hydroxydroxy-phenyl) Porphyrin Copper (Ⅱ) Self-Assembled Modified Gold Electrode Through L-Cysteine: The Preparation, Electrochemical Behavior and its Application [J]. J. Inorg. Organo-met. Polym.,2011,21:871-875.
    [23]Zhang X, Duan S, Xu X M, et al. Electrochemical behavior and simultaneous determination of dihydroxybenzene isomers at a functionalized SBA-15 mesoporous silica modified carbon paste electrode [J]. Electrochim. Acta,2011,56:1981-1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700