用户名: 密码: 验证码:
金属离子掺杂二氧化钛的光电性能改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为了解决染料敏化太阳能电池应用中纳米二氧化钛(Ti02)的带隙较宽(约为3.2eV)、光生电子和空穴容易复合等技术难题,人们通过不同的金属离子掺杂Ti02进行改性研究。金属离子掺杂可以在Ti02内引入杂质能级和缺陷位置,增加电子的捕获,减小电子和空穴复合概率,从而提高光电转换效率;但到目前为止,掺杂研究大多都针对个别的金属离子掺杂Ti02光电性能改性进行研究,没有系统地对掺杂金属元素的种类和浓度以及两种金属元素复合掺杂进行全面的比较。
     本论文采用水热法制备了4种第一过渡系金属元素(锰、铁、钴、锌)、2种ⅡA族金属元素(镁和钙)和1种ⅢA族金属元素铝对Ti02进行单掺杂和钙-铁、镁-锌金属元素复合掺杂的新型薄膜电极。采用XRD、SEM、EDX、TEM、 XPS、UV-Vis等分析方法,对掺杂前后Ti02薄膜的微观结构、相组成、组成元素电子结合能、紫外可见光吸收谱进行了表征;通过电化学Mott-Schottky测试方法研究了各种金属离子掺杂对Ti02薄膜电极平带电位的影响;采用强度调制光电流/光电压谱等技术测量掺杂二氧化钛纳晶薄膜中电子的动力学参数,包括电子输运速度和复合概率等。并从理论上分析纳晶膜的紫外可见吸收光谱、动力学性能、能带结构对染料敏化太阳能电池(DSSC)光电性能的影响,以此指导新型高性能半导体纳晶薄膜工作电极的研制。
     本论文的主要结论如下:
     1、在同样的条件下制备了七种金属元素单掺杂Ti02纳晶颗粒,晶粒大小在10-15nm左右;掺杂金属离子均匀分布在Ti02纳晶体相中;掺杂薄膜的形貌呈多孔型;其中第一过渡系金属元素锌掺杂Ti02薄膜电极改性效果最理想,其光电转换效率为7.68%,主要由于其电子传输时间与电子复合时间比值最低;平带电位产生正移,导致电极与染料的最低空轨道能级间距增大,电子的注入效率提高。
     2、制备了不同掺杂量的铁、锌、镁和钙单掺杂Ti02纳晶颗粒。掺杂Ti02后,Ti2p3/2和Ti2p1/2的结合能有所下降,主要由于三种金属原子与钛原子电负性差引起;其中第一过渡系元素铁掺杂量达到2.0mol%时,开路光电压达到最大值,其值为645mV,主要由于掺杂铁薄膜的平带电位出现了负移,与染料的最低空轨道能级差减小,而与氧化还原对的电位差增大。第二主族元素2.0mol%钙掺杂Ti02后,薄膜电极吸收波长向可见光波长移动,电子传输速提高了55.2%,光电转换效率达到8.35%。
     3、制备了不同掺杂量的钙-铁和镁-锌复合掺杂Ti02薄膜电极,最佳浓度均为1.0mol%,光电转换效率分别为6.07%和9.07%,提高了17.6%和26.7%,IMPS数据表明主要由于镁-锌复合掺杂后电子输运速度提高。发现了1.0mol%镁-锌复合掺杂的光电转换性能明显优于1.0mol%锌和1.0mol%镁单掺杂的光电转换性能。
     4、通过金属离子掺杂法对TiO2薄膜电极光电改性行为发现,平带电位和电子传输与复合的速率共同影响TiO2薄膜电极光电性能,三者之间的合理平衡才能得到光电性能优化的掺杂TiO2薄膜电极;同时研究发现掺杂电极中电子传输和复合比值与电极光电转换效率成反比关系。
Abstract:Modification of different metallic ions doped TiO2was used to solve the technical problem of wider band gap (3.2eV) and recobminaiton between electrons and holes for applications of nanometer titanium dioxide in dye sensitized solar cell. Metallic ions doped TiO2always introduced impurity energy levels and surface defect position, increased the electronic capture and reduced the probability of recombination between electron and hole, improving the photoelectric conversion efficiency.But so far, doping research have mostly focued on individual metallic ions doped TiO2to modify photoelectric performance without conducting a comprehensive comparison and systematical research on different types and concentration of metallic elements doped TiO2and two kinds of metallic elements co-doped TiO2.
     In this study,4kinds of the first transition metal elements (Manganese, Iron, Cobalt, Zinc), two kinds of IIA metal elements (Magnesium and Calcium) and1kind of IIIA Aluminum elements single doped TiO2and Calcium-Iron, Zinc-Magnesium co-doped TiO2were prepared by hydrothermal method for new film electrode.The microstructure, phase composition, element structure, the surface electron binding energy spectrum, ultraviolet visible light of TiO2thin films before and after doped TiO2was investigated by using XRD, SEM, EDX, TEM and XPS, UV-Vis analysis method. The flat band potential of TiO2film electrode was studied after various metallic ions doped by electrochemical Mott-Schottky test method; the kinetic parameters of the electrons in the film, including electronic transport speed and the recombination probability were analysed with light intensity modulation optical current/voltage spectrum measurement techniques; and the influence of uv-visible absorption spectrum, dynamic performance, the band structure of TiO2thin film on the photoelectric performance of dye sensitized solar cell (DSSC) were analyzed through theoretical analysis method. The above mentioned methods are beneficial to develop high performance semiconductor nano crystal film for work electrode of DSSC.
     The main conclusions of this paper are as follows:
     1、Doped TiO2crystal grains of seven kinds of metallic elements were prepared under the same condition.The grain size is about the10~15nm. Doping metallic ions were distributed evenly in the TiO2nano crystal phase.The morphology of doped thin films show groove; Zinc metal elements doping TiO2thin film electrode modification effect is ideal in the first transition series.The photoelectric conversion efficiency of electrode doped is7.68%, mainly due to the electronic transmission time increased and the recombination time is the lowest.Band potential shift positively, which leads to energy level spacing between the electrodes and dye the lowest empty orbital increases, the electron injection efficiency increased.
     2、TiO2crystal particles of different doping amounts of Iron, Zinc,Magnesium and Calcium were prepared. Ti2p3/2and Ti2p1/2binding energy decreased after doped TiO2mainly due to electronegativity difference between three types of titanium metal atoms and atomic caused.When Iron doping amount is2.0mol%, the open circuit photovoltage reached maximum value, its value is645mv, mainly because the flat band potential of doped iron film appeared negative shift, and energy level difference between the lowest empty orbital of dye and TiO2reduced, potential difference between the oxidation reduction and TiO2increased.2.0mol%calcium doped TiO2, absorption wavelength of the thin film electrode move to visible light wavelengths,the electron transfer rate increased by55.2%, the photoelectric conversion efficiency is8.35%.
     3、The crystal particles of different doping amounts of Calcium-Iron and Zinc-Magnesium co-doped TiO2were prepared.Photoelectric performance test results show that the ideal doping concentration is1.0mol%, the photoelectric conversion efficiency are6.07%and9.07%respectively, increased by17.6%and26.7%. IMPS data show that mainly because of the zinc and magnesium composite electronic transport speed increase after doping. And the photoelectric conversion properties of zinc-magnesium composites doped TiO2obviously better than that of the single Zinc or Iron doped TiO2.
     4、It was found that joint effect of band potential and the rate of electron transmission and recombination of TiO2thin film electrodes on photoelectric performance through metal ion doping TiO2thin film, the reasonable balance among them can be obtain by optimization of doped TiO2thin film electrode; Also it was found that there is inversely proportional relationship between the ration of electron transmission and recombination and photoelectric conversion efficiency of doped TiO2.
引文
[1]Wang L D, Kang B N, et al. Review of recent progress in solid-state dye-sensitized solar cells. Solar energy materials & solar cells.2006,90,549-573.
    [2]Zhang H, Li L L,Ye C P.Organic solar cells and plastic cells,Chemical industry press,2006, 561-8.
    [3]《中国光伏产业发展研究报告》2004年10月.中国可再生能源发展项目办公室.
    [4]Ichikawa Y, Yoshida T, Hama T, et al.Solar Energy Materials and Solar Cells[J].2001,66, 107-112.
    [5]Roca F, Sinno G, Difrancia G, et al. Process development of amorphous silicon crystalline silicon solar cells. Solar energy materials and solar cells.1997,48(1-4),15-24.
    [6]黄创君,林璇英,林揆训等.低温制备高质量多晶硅薄膜技术及应用.功能材料.2001,32(6),561-563.
    [7]Gratzel M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature.1991,353(6346),737-740.
    [8]Tiwad A N, Krejci M, Haug F J, et al. Progress in Photovoltaics Research And Applications [J].1999,7,393-398.
    [9]Jia L, Yang H, Tan W, Zhou X, Lin Y. Photovoltaic performance improvement of dye sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochimica Acta.2010,56, 396-400.
    [10]Chen L L, Liu J, Zhang J B, Zhou X W, Zhang X L, Lin Y. Low temperature fabrication of flexible carbon counter electrode on ITO-PEN for dye-sensitized solar cells[J]. Chinese Chemical Letter.2007,21(9),1137-1140.
    [11]Loferski J J. The first forty years:A brief history of the modern photovoltaic age. Progress in photovoltaics. Research and applications,1993,1(1),67-78.
    [12]Becquerel A E. "Memoire sur les Effects d'Electriques Produits Sous l' Influence des Rayons Solaires," Comptes Rendus de l' Academie des Sciences.1839,9,561-567.
    [13]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics.1954,25,676-677.
    [14]Tang C W.Two-layer organic photovoltaic cell, Applied Physics Letters.1986,48(2),183-185.
    [15]Vogel H W, Dtsch B. Chem Ges,1873,6,1320.
    [16]Gerischer H, Michel-Beverle M E, Rebentrost F, et al. Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta,1968,13(6),1509-1515.
    [17]Christophe J B, Francine A, Pascal C, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society.1997,80,3157-3171.
    [18]He J J, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B.1999,103(42),8940-8943.
    [19]Guo P, Aegerter M A.Ru(II) sensitized Nb2Os solar cell made by the sol-gel process. Thin Solid Films.1999,351 (1-2),290-294.
    [20]Sayama K. H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chemistry of Materials.1998,10(12),3825-3832.
    [21]Kim S S, Yum J H, Sung Y E. Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. Journal of Photochemistry and Photobiology A:Chemistry.2005,171,269-273.
    [22]Zhang X T, Liu H W, Taguchi T, et al. Slow interfacial charge recombination insolid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films. Solar Energy Materials Solar Cells.2004,81,197-203.
    [23]解东梅,冯树京,林原等.丝网印刷纳晶多孔Ti02薄膜电极的制备.科学通报,2007,52(9),1007-1011.
    [24]解东梅,冯树京,林原等.丝网印刷胶体组成中不同造孔剂对Ti02薄膜性能的影响.化学工程师,2006,134(11),46-48.
    [25]Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Philoshophical transactions of the royal society A-Mathematical physical and engineering sciences,2007,365: 993-1005
    [26]Hagfeldt A.Brief Overview of Dye-Sensitized Solar Cells, AMBIO.2012,41 (Supplement 2), 151-155.
    [27]Thavasi V, Renugopalakrishnan V, Jose R S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering R. 2009,63,81-99.
    [28]Fernando F DT, Juan M. Hungria and Javier Soria, Influence of Sn on the structural and electronic properties of Ti1-xSnxO2 nanoparticles used as photocatalysts. Phys. Chem. Chem. Phys.2006,8,2421-2430.
    [29]Wang Z S, Huang C H, Wang L M, Wei L P,Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives,. J. Phys. Chem. B.2000,104,9676-9684.
    [30]Chen S G, Chappel S, Diamant Y, et al. Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells. Chemistry Material.2001,13, 4629-4634.
    [31]Zheng Y Z, et al. Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells. Chemistry of Materials, 2010,22(3),928-934.
    [32]刘佳.金属掺杂Ti02在染料敏化太阳能电池的应用,博士学位论文,中国科学院.2010,5-6.
    [33]Janne H, Peter L.Effect of Nonuniform Generation and Inefficient Collection of Electrons on the Dynamic Photocurrent and Photovoltage Response of Nanostructured Photoelectrodes. J. Phys. Chem. C.2008,112,20491-20504.
    [34]Bergeron B V, Marton A, Oskam G, J Meyer G.Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators, Journal of Physical Chemistry B,2005,109,937-943.
    [35]Hoshikawa T, Yamada M, Kikuchi R, Eguchi K... Impedance analysis for dye-sensitized solar cells with athree-electrode system, Journal of Electroanalytical Chemistry.2005,577,339-348.
    [36]Chien Y, Yu K S,et al. Electrochemical impedance parameters elucidate performance of carbazole-triphenylamine-ethylenedioxythiophene-based molecules in dye-sensitized solar cells. Electrochimica Acta.2012,69,256-267.
    [37]Motonari A, Masaru Sakamoto,Jinting J. Determination of parameters of electron transport in Dye-Sensitized Solar Cells using electrochemical impedance spectroscopy, J. Phys. Chem. B. 2006,110,13872-13880.
    [38]Francisco F S, Germa G B.Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy, Phys. Chem. Chem. Phys.2011,13,9083-9118.
    [39]Peter L.Transport,trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells, Journal of Electroanalytical Chemistry.2007,599,233-240.
    [40]Zhang X T, Liu H W, Taguchi T, et al. Slow interfacial charge recombination insolid-state dye-sensitized solar cell usingAl2O3-coated nanoporous TiO2 films. Solar Energy Materials Solar Cells.2004,81:197-203.
    [41]Palomares E, Clifford J N, Haque S A, et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metallic oxide blocking layers. J. AM. CHEM. SOC.2003,125,475-482.
    [42]Galoppini E, Rochford J, Chen H H, Saraf G, Lu Y C, Hagfeldt A.Boschloo G,Fast electron transport in metallic organic vapor deposition grown dye-sensitized ZnO nanorod solar cells, Journal of Physical Chemistry B.2006,110,16159-16161.
    [43]Wang Z S, Yanagida M, Sayama K, et al. Electronic-insulatiatiing coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells:Improvement of electron lifetime and efficiency. Chem. Mater.2006,18,2912-2916.
    [44]Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:A study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B.1997,101,8141-8155.
    [45]Kanmani S S, Ramachandran K. Role of aqueous ammonia on the growth of ZnO nanostructures and its influence on solid-state dye sensitized solar cells. Journal of Materials Science.2013,48(5),2076-2091.
    [46]Kim Y T, Park J Y. Sputter-deposited ZnO thin films consisting of nano-networks for binder-free dye-sensitized solar cells. Current Applied Physics Physics.2013,13(2),381-385.
    [47]Ling T, Song J G,et al. Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. Journal of Alloys and Copounds.2013,546(6),307-313.
    [48]Magne C, Moehl T,et al. Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells. Journal of Materials Chemistry A.2013,6,2079-2088.
    [49]Sabba D, Wang Q,et al. High-surface-area, interconnected, nanofibrillar TiO2 structures as photoanodes in dye-sensitized solar cells. Scripta Materiall A.2013,68(7),487-490.
    [50]尹峰,林原,林瑞峰,肖绪瑞.强度调制光电流谱研究Ti02悬浮体系光催化机理.物理化学学报.2002,180,21-25.
    [51]Hiroto K, Hideki M. Study for improvement of solar cell efficiency by impurity photovoltaic effect. Solar Energy Materials and Solar Cells.1997,48,93-98.
    [52]Wang YQ,et al.The photoelectrochemistry of transition metallic-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. Journal of Materials Science.1999,34(12),2773-2779.
    [53]Lu X J, et al. Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes:Efficient Electron Injection and Transfer. Advanced Functional Materials.2010, 20(3),509-515.
    [54]Chen S G., Diamant Y, Zaban A. Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells. Chem. Mater.2001,13,4629-4634.
    [55]Arthi G, Archana J, Navaneethan, M. Hydrothermal growth of ligand-passivated high-surface-area TiO2 nanoparticles and dye-sensitized solar cell characteristics. Scripta Materialia.2012,68,396-399.
    [56]Yang S M, Huang. C H, Zhai J, Wang ZS, Jiang L. High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides, Journal of Materials Chemistry.2002,12,1459-1464.
    [57]Yune J H,Karatchevtseva I,Triani G, et al. A study of TiO2 binder-free paste prepared for low temperature dye-sensitized solar cells. Journal of Materials Research.2013,28(3)488-496.
    [58]Li Z D,Zhou Y,et al. Versatile nanobead-scaffolded N-SnO2 mesoporous microspheres:one-step synthesis and superb performance in dye-sensitized solar cell, gas sensor, and photocatalytic degradation of dye. Journal of Materials Chemistry A 1.2013,3,524-531.
    [59]Liu RM.Du W.Chen Q.et al. Fabrication of Zn2SnO4/SnO2 hollow spheres and their application in dye-sensitized solar cells. Rsc Advances.2013,9,2893-2896.
    [60]Chappel S, Zaban A.Nanoporous SnO2 electrodes for dye-sensitized solar cells:improved cell performance by the synthesis of 18 nm SnO2 colloids, Solar Energy Materials and Solar Cells. 2002,71,141-152.
    [61]Bin X J, et al. Composite electrode SnO2/TiO2 for dye-sensitized solar cells. Chinese Chemical Letters,2004,15(5):p.619-622.
    [62]Chen Z,Tian YF,et al. Electrodeposition of arborous structure nanocrystalline SnO2 and application inflexible dye-sensitized solar cells.Journal of Alloysand Compounds.2012, 515,57-62.
    [63]Gao Q. Microstructural and functional stability of large-scale SnO2:F thin film with micro-nano structure. Journal of Alloys and Compounds,2012,15,31-34.
    [64]Guo P, Aegerter M A.Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process, Thin Solid Films,1999,351,290-294.
    [65]Kim H N,Moon J H. Enhanced Photovoltaic Properties of Nb2O5-Coated TiO23D Ordered Porous Electrodes in Dye-Sensitized Solar Cells. Acs Applied Materials & Interfaces 2012,4(11),5821-5825.
    [66]Xia J B, Masaki N,et al. Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells. Chemical Communications 2007,2,138-140.
    [67]Ghosh R,Brennaman M K. Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition.Acs Applied Materials & Interfaces.2011,3(10),3929-3935.
    [68]Kyung H K, Young C L, Young J J. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metallic ions. Journal of Colloid and Interface Science.2005,83,482-487.
    [69]Yen CC, Wang DY.et al. Improving conversion efficiency of dye-sensitized solar cells by metallic plasma ion implantation of ruthenium ions. Thin Solid Films.2011,5119(15), 4717-4720.
    [70]Xie Y,Huang N,et al. Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. Journal of Power Sources.2013,224,168-173.
    [71]Yu L,Wang Z, et al. Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays.Applied Catalysis B-environmetallic.2011,113,318-325.
    [72]Raghavender A T, Samantilleke A P, et al. Simple way to make Anatase TiO2 films on FTO glass for promising solar cells. Materials Letters.2012,69,59-62.
    [73]牛新书,李红花等.金属离子掺杂纳米Ti02光催化研究进展.电子元件与材料.2004,23,39-45.
    [74]Liu Y P.Wang S R.et al. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta.2012,60,422-427.
    [75]Hou J W,Yang XC, Lv XY, et al. Controlled synthesis of TiO2 mesoporous microspheres via chemical vapor deposition. Journal of Alloys and Compounds.2011,511,202-208.
    [76]Parreira P, Torres E, Nunes C. Dye-sensitized ID anatase TiO2 nanorods for tunable efficient photodetection in the visible range. Sensors and Actuatiors B-chemical.2011,161,901-907.
    [77]Huang C Y, Hsu Y C, Chen J G, et al. The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Solar Energy Materials & Solar Cells.2006,90,2391-2397.
    [78]Park N G, Lagemaat J,Van de, Frank A J. Comparison of dye-sensitized rutile-and Anatase-based TiO2 solar cell. Journal of Physical Chemistry B,2000,104,8989-8994.
    [79]Tsubomura H, Matsumura M, Nakatani K., Yamamoto K..wet type solar cells with semiconductor electrodes.Solar Energy.1978,2,93-98.
    [80]Takahiro O, Yoshihiko M, Tadayoshi M, Michio M,Determination of photo-active region in organic thin film solar cells with an organic heterojunction.Solar Energy Materials and Solar Cells.2006,(90)18,3136-3142.
    [81]李超,张宝文,王雪松.方酸染料在染料敏化太阳能电池及氰离子检测中的应用研究.感光科学与光化学.2005,23(4),314-317.
    [82]Sivakumar R. Marcelis A T M. Synthesis and characterization of novel heteroleptic ruthenium sensitizer for nanocrystalline dye-sensitized solar cells. Journal of Photocheistry and Photbiology A-Chemistry.2009,2008,154-158.
    [83]Campbell W M, Jolley K W, Wagner P, et al.Highly efficient porphyrin sensitizers for dye-sensitized solar cells. The journal of Physical Chemistry C.2007,111,11760-11762.
    [84]Chung J Y,Myoung J Y, et al.Synthesis of a ZnS Shell on the ZnO Nanowire and Its Effect on the Nanowire-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C.2010,114,21360-21365.
    [85]Lee GY, Lee HY,et al. Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhck-shaped CdS-TiO2 Composites. Bulletin of The Korean Chemical Society.2012,33,3043-3047.
    [86]Reda S M. El S, Said A,et al. J Dye-sensitized nanocrystalline CdS and ZnS solar cells with different organic dyes. Ournal of Materials Reseearch.2012,25,522-528.
    [87]Liu Y,Wang J. Co-sensitization of TiO2 by PbS quantum dots and dye N719 in dye-sensitized solar cells. Thin Solid Films.2010,518,E54-E56.
    [88]Pang A, Chen C,et al. Flexible dye-sensitized ZnO quantum dots solar cells. Rsc Advances.2012,2,9565-9570.
    [89]Wu J H, Lan Z, Lin J M, et al. Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources,2007,173:585-591.
    [90]Itzhakov S, Buhbut S,et al. Design Principles of FRET-Based Dye-Sensitized Solar Cells with Buried Quantum Dot Donors. Advanced Energy Materials.2011,1,626-633.
    [91]Che Yu Lin, Jeng-Yu Lin, Jo-Lin Lan,Tzu-Chien Wei, Chi-Chao Wan.Electroless Platinum Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembly Monolayer Modification.Electrochemical and Solid-State Letters.2010,13, D77-D79.
    [92]Gloaguen F, Le J M, Lamy C, Marmanna A, Stimming U, Vogela R.Platinum electrodeposition on graphite:electrochemical study and STM imaging.Electrochimica Acta.1999,44, 1805-1816.
    [93]Chen L L, Tan W W, Zhang J B, Zhou X B, Zhang X L, Lin Y. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochimica Acta.2010,55,3721-3726.
    [94]Papageorgiou N, Maier W F, Gratzel M. An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media Journal of The Electrochemical Society.1997,144,876-884.
    [95]黄宇剑.染料敏化太阳能电池固态电解质的研究,中国科学院博士学位论文,2012
    [96]Ramasamy E, Lee W J, Lee D Y, Song J S.Nanocarbon counterelectrode for dye sensitized solar cells, Applied Physics Letters.2007,90,173103-173103-3.
    [97]Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J-i, Murata K.High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells.2003,79,459-469.
    [98]Suzuki K, Yamaguchi M, Kumagai M, Yanagida S.Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chemistry Letters.2003,32,28-29.
    [99]林红,染料敏化太阳能电池用电解质的研究现状.
    [100]William V B, Theodore K. Preparation and properties of thin gold and platinum films of glass or quartz for transparent electrode. Analytial Chemistry.1970,42(9),1114-1116.
    [101]李胜军.染料敏化太阳能电池新型TiO2薄膜电极的制备及性能研究,哈尔滨工程大学博士学位论文.2011.
    [102]Ensinger W, Muller H R.Nobel metallic deposition on aluminum oxide powder surfaces by ion beam sputtering. Nuclear Instruments and Methods in Physics Research B.1998,141, 693-698.
    [103]Valet O, Doppelt P, et al. Study of platinum thin films deposited by MOCVD as electrodes for oxide application. Microelectronic Engineering.2002,64,457-463.
    [104]Peter L M, et al. Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry.2002,524, p.127-136.
    [105]Kumara G R A, Okuya M, Murakami K, et al. Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films:enhancement of the efficiency. Journal of Photochemistry and Photobiology A:Chemistry.2004,164,183-185.
    [106]Peter L. Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry.2007,599,233-240.
    [107]Liang K K,et al. Calculation of the vibrationally non-relaxed photo-induced electron transfer rate constant in dye-sensitized solar cells. Physical Chemistry Chemical Physics 2007,9,853-861.
    [108]Yanagida M R,et al. electron transfer at the interface of semiconductor film in dye sensitized solar cells. Journal of Photochemistry and Photobiology A Chemistry.2006,182,288-295.
    [109]Durr M, Schmid A,et al. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials.20054,607-611.
    [110]Pollard J A, McHale J L.Resonance Raman study of interfacial electron transfer in dye sensitized solar cells.Abstracts of Papers of The American Chemical Society.2005,229,U713-U713.
    [111]Nguyen T V,Choi D J,Lee H C.Kim KJ,Charge storage and transfer in dye-sensitized solar cells:A study by electrochemical impedance spectroscopy. IEEE Photovoltaic Specialists Conference.2005,35,167-170.
    [112]Penny M, Farrell, Will G, Bell J.Modelling interfacial charge transfer in dye-sensitised solar cells. Journal of Photochemistry and Photobioloty A-Chemistry.2003,164,41-46.
    [113]Bay L, West K, Winther-Jensen B, Jacobsen T.Electrochemical reaction rates in a dye-sensitised solar cell the iodide/tri-iodide redox system, Solar Energy Materials and Solar Cells.2006,90,341-351.
    [114]Fukui A, Komiya R, Yamanaka R, Islam A, Han L Y.Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell, Solar Energy Materials and Solar Cells.2006,90,649-658.
    [115]Hara K, Nishikawa T, Kurashige M, Kawauchi H Kashima T, Sayama K,Alka K, Arakawa H.Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(Ⅱ terpyridyl complex photosensitizer, Solar Energy Materials and Solar Cells. 2005,85,21-30.
    [116]Boschloo G, Haggman L, Hagfeldt A. Quantification of the Effect of 4-tert Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. 2006,110,13144-13150.
    [117]Kawata K,Zakeeruddin S M, Gratzel M. Solvent free dye-sensitized nanocrystalline solar cell using room-temperature molten salt electrolyte. Electrochemical Society Series. 2002,2002,16-30.
    [118]Li L,et al.Ionic liquid based gel electrolyte compositions for dye sensitized solar cells. Materials Research Society Symposium Proceedings.2003,736,245-250.
    [119]Lu X J, et al. Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes:Efficient Electron Injection and Transfer. Advanced Functional Materials. 2010,20(3),509-515.
    [120]Komiya R,Han L. Yamanaka R, Mitate T. Quasi-solidification dye sensitized solar cell with superior ion conducting polymer electrolyte. Proceedings of 3RD World Conference on Photovoltaic Energy Conversion.2003,30,295-298.
    [121]Min J,et al. Benzimidazole derivatives in the electrolyte of new-generation organic dye-sensitized solar cells with an iodine-free redox mediator. Journal of Photochemistry and Photobiology A-Chemistry.2011,219,148-150.
    [122]Nejati S, Lau K K.Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical vapor deposition.Thin Solid Films.2010,519,4551-4554.
    [123]Kuang DB,et al.Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte.Solar Energy.2011,85,1189-1194.
    [124]Luka B, Mende S, Bach U, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advance Materials,2005,17(7),813-815.
    [125]SaitoY,KitamuraT,WadaY,et al. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chemistry Letters.2002,31,1060-1061.
    [126]Yu Z, Lingling W, Bingkun L, Jiali Z, Haimei F, Dejun W,Yanhong L, Tengfeng X. Synthesis of Zn-doped TiO2 microspheres with enhanced photovoltaicperformance and application for dye-sensitized solar cells. Electrochimica Acta.2011,56,6517-6523.
    [127]Huang XY, Wang J X, Yu SY,Zhang XW.Spectral conversion for solar cell efficiency enhancement usingYVO4:Bi31,Ln31 (Ln5Dy, Er, Ho, Eu, Sm, and Yb) phosphors. Journal of Applied Physics.2011,109,1135-1137.
    [128]Ning Y, Junjie Q,et al. Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. Journal of Power Sources.2010,195,5806-5809.
    [129]Wei G, Yihua S,et al. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells. Electrochimica Acta.2011,56,4611-4617.
    [130]Zhang Y, Shen Y,et al. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science.2009,256,85-89.
    [131]Sining Y, Sangwoo L. Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment. Journal of Solid State Chemistry.2011,184,273-279.
    [132]Xiangchao Z, Huaming Y, Aidong T. Optical, Electrochemical and Hydrophilic Properties of Y2O3 Doped TiO2 Nanocompositev films. J. Phys. Chem. B.2008,112,16271-1627.
    [133]Zhou H L, DeHui S, CaiXia L, MingMing D, and Wen L. Preparation and Performance of Ordered PorousTiO2 Film Doped with Gd3+ JMEP.2011,20:1319-1322
    [134]Perera V P S,et al. Doping CuSCN films for enhancement of conductivity:Application in dye-sensitized solid-state solar cells. Solar Energy Materials & Solar Cells.2005),86,443-450.
    [135]Verwey JF, Ruis W, Sens I. Charge Transport in Oxygen-Doped Polysilicon Layers on Si. Revue De Physique Appliquee.1978,13(12), p.821-824.
    [136]Chang Z,et al. Charge Recombination and Band-Edge Shift in the Dye-Sensitized Mg2+-Doped TiO2 Solar Cells.Phys. Chem. C.2011,115,16418-16424.
    [137]Zhang Y, Shen Y.Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science.2009,256,85-89.
    [138]Kim Y J, Lee Y H, Lee M H, Kim H J, Pan J H, Lim G I, Choi YS, Kim K,Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film, Langmuir,2008,24,13225-13230.
    [139]崔旭梅等.稀士元素掺杂Ti02薄膜的制备及其光学性能研究Journal of Materials Engineering.2008,12,55-57.
    [140]Chi H H,et al. Synthesis of Amorphous Er3-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells. Bull. Korean Chem. Soc.2009,30, 1219-1220.
    [141]Zhang X J,Chen W B,et al. Preparation and Photocatalysis Properties of Bacterial Cellulose/TiO2 Composite Membrane Doped with Rare Earth Elements. Synthesis and reactivity in inorganic me.tal-organic nano-metal chemistry.2011,41,997-1004.
    [142]Lu Y G,et al. Enhanced photoluminescence of Eu3+activated calcium molybdate system by co-doping Li+ and Si4+ ions. Opticalmaterials,2012,34,1926-1929
    [143]于仙仙.染料敏化太阳能电池阳极改性技术研究进展.Chinese Journal of Power Sources.2007,31,545-547.
    [144]Verwey J F, Aalberts J H, Demaagt B J. Drift of Breakdown Voltage in Highly Doped Planar Junctions. Microelectronics and Reliability.1973,12(1),51-56.
    [145]谢先法,吴平霄,党志,唐建文.过渡金属离子掺杂改性Ti02研究进展.Chemical Industry and Engineering Progress.2005,24(12),1358
    [146]黄毅.金属离子掺杂对纳米Ti02光催化活性的影响及其机理研究进展.功能材料.2007,38,2394-2396.
    [147]向鹏.染料敏化太阳能电池光阳极研究,华中科技大学博士学位论文,2012,62
    [148]李凡修.金属离子掺杂对纳晶Ti02晶型转变影响作用机制的研究进展,材料导报,2006,20,13-14.
    [149]张华星,张玉红.掺杂对于Ti02结构和光催化性质的研究.化学学报,2003,61,1813.
    [150]许振华,马玉芹.铁掺杂Ti02纳米粒子光催化氧化庚烯的研究.吉林大学学报,2005,43,372-376.
    [151]William V B, Theodore K. Preparation and properties of thin gold and platinum films of glass or quartz for transparent electrode. Analytial Chemistry.1970,42(9),1114-1116.
    [152]Ensinger W, Muller H R.Nobel metallic deposition on aluminum oxide powder surfaces by ion beam sputtering. Nuclear Instruments and Methods in Physics Research B.1998, 141,693-698.
    [153]容齐坤,曾凡菊,李玲.金属离子掺杂纳米Ti02薄膜光阳极的性能研究.电子元件与材料.2011,30(1),13-16.
    [154]Janne H KM, Peter L.Effect of Nonuniform Generation and Inefficient Collection of Electrons on the Dynamic Photocurrent and Photovoltage Response of Nanostructured Photoelectrodes. J. Phys. Chem. C.2008,112,20491-20504.
    [155]Zhu F, Zhang P,et al. The Origin of Higher Open-Circuit Voltage in Zn-Doped TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells. Chemphyschem.2012,13,3731-3737.
    [156]Jung K, Meng J Y.Progress in light harvesting and charge injection of dye-sensitized solar cells. Materials Science and Engineering B.2011,176,1142-1160.
    [157]Ping K W,Sheng T. Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.,2009, 11,9489-9496.
    [158]Zhu F, Zhang P,et al. The Origin of Higher Open-Circuit Voltage in Zn-Doped TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells. Chemphyschem.2012,13,3731-3737.
    [159]Jung K, Meng J Y.Progress in light harvesting and charge injection of dye-sensitized solar cells. Materials Science and Engineering B.2011,176,1142-1160.
    [160]张青龙,李飞.Ag+/Fe3+复合掺杂纳米Ti02薄膜光催化性研究[J].武汉理工大学学报. 2007,29(1),323-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700