用户名: 密码: 验证码:
钌铁系列铌酸锂晶体光折变及非挥发存储性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体全息存储由于具有高的存储密度、快速并行访问和快速传输速度等特点而被认为是新一代的存储技术。铌酸锂(LiNbO3,缩写LN)晶体是最重要的全息存储介质材料之一,它具有良好的光折变性能,如长的存储寿命和高的衍射效率等。但是,纯铌酸锂晶体存在响应速度慢、抗光致散射能力弱和读出过程的挥发性等问题,这些缺点限制了铌酸锂晶体的实际应用。近年来改进和优化铌酸锂晶体的全息存储性能具有越来越重要的意义。本论文中生长钌铁系列掺杂铌酸锂晶体并研究了晶体的结构和光学性能;根据光谱特性研究了钌铁系列铌酸锂晶体的缺陷结构;基于钌铁双光折变中心结构提出了光折变动力学方程,并详细分析了影响光折变效应的因素;最后采用双波长技术测试了晶体的非挥发全息存储性能。
     采用提拉法生长出了无宏观缺陷、光学均匀性良好的钌铁系列铌酸锂晶体。在晶体生长过程中,确定了最佳工艺参数(温度梯度、旋转速度和提拉速度),保证了固液界面的平坦,减小了分凝造成的晶体成分的不均匀。通过X射线衍射谱、红外吸收光谱和紫外可见吸收光谱研究了钌铁系列铌酸锂晶体的缺陷结构和离子占位。ICP-AES测试结果表明锆离子的分凝系数在1附近变化。钌铁铌酸锂晶体和锆钌铁铌酸锂晶体的光学均匀性采用双折射梯度表征,结果显示随着锆掺杂晶体的光学均匀性下降。测试了晶体的OH-红外吸收光谱并采用洛伦兹方程拟合分析了锆离子的占位信息。和钌铁铌酸锂晶体相比,掺锆后吸收边向短波长方向移动,表明锆离子以取代反位铌的方式进入晶格。当晶体中锂数量增加,吸收边先蓝移后红移。当锆的掺杂浓度超过阈值时,锆离子同时占据锂位和铌位,形成Zr3+-Li-ZrN b缺陷保持电荷平衡,由此提出了离子取代模型。
     通过传统二波耦合实验研究了钌铁系列铌酸锂晶体的光折变性能。讨论了影响晶体光折变性能的因素如入射光波长、锆离子掺杂浓度、氧化还原处理和锂铌比等。结果显示钌铁铌酸锂晶体在蓝光下的衍射效率、响应时间、记录灵敏度和动态范围等均优于在红光下的数值。另外,在钌铁铌酸锂晶体中掺杂锆离子可以提高晶体的蓝光光折变性能。当晶体中锂铌比接近化学计量比时响应时间进一步缩短。由于锆离子掺杂和锂铌比提高使晶体中本征缺陷(反位铌和锂空位)数量减少使得性能参数的提高。
     采用透射光束光斑畸变和曝光能量流两种方法研究了钌铁系列铌酸锂晶体的抗光致散射性能。实验中系统研究了锆掺杂、氧化处理和锂铌比改变对晶体光致光散射的影响。结果显示生长态的钌铁铌酸锂晶体的光散射强于氧化态的晶体。锆掺杂和提高锂铌比可以有效抑制晶体中的光散射现象。
     分别使用双波长和双色技术研究了钌铁系列铌酸锂晶体的非挥发存储性能。载流子实验结果显示生长态钌铁铌酸锂和氧化态锆钌铁铌酸锂晶体在使用蓝光激光记录时的优势载流子是空穴,而用红光激光记录时优势载流子为电子。非挥发存储实验结果显示双波长存储技术能获得更强的存储性能,这是由于光栅直接记录、同相位特点以及晶体对蓝光更合适的光吸收。掺锆的钌铁铌酸锂晶体会获得更好的非挥发存储性能,表明锆钌铁铌酸锂晶体是优良的蓝光全息存储介质材料。
The holographic volume storage is recognized as the next-generation storagetechnology due to its high storage density, fast parallel access and transfer speed.Lithium niobate (LiNbO_3, short for LN) crystal is believed to be one of the mostimportant holographic storage media because of its excellent photorefractiveproperties, such as long storage lifetime and high diffraction efficiency. However,slow response speed, weak light-induced scattering resistance and volatile duringreadout which exist in pure LiNbO_3crystal limit the practical application. Soimproving and optimizing the holographic properties of LiNbO_3crystal becomesmore and more significant in recent years. In this dissertation, a series of Ru and Fecodoped LiNbO_3crystals is grown and studied. The photorefractive kinetics formulawas proposed based on two-centered Ru and Fe codoped LiNbO_3crystal. Theinfluencing factor of photorefractive effect were studied and discussed in detail. Atlast, the nonvolatile holographic storage properties were measured by two-wavelength technology.
     Ru and Fe series codoped LiNbO_3crystals were grown by Czochralski method,and the crystals had no macroscopic defect and exhibited good optical homogeneity.In the process of crystal growth, optimum parameters (temperature gradient, pullingspeed and rotating speed) were selected to maintain the flat solid-liquid interface,and the nonuniform component which origined from the solute segregation wasdecreased. The defect structure and ion occupying of Ru:Fe:LiNbO_3crystals wereinvestigated by means of X-ray diffraction, OH-absorption spectra, ultravioletvisible absorption spectra. The results showed that the segregation coefficient of Zrwas close to one. The optical homogeneity of Ru:Fe:LiNbO_3and Zr:Ru:Fe:LiNbO_3crystal was measured via birefringence gradient. The results showed that Zr dpoingwould lead to the decrease of optical quality. The OH-infrared absorption spectrawere measured and fitted by means of Lorentzian function to analysis the Zr ionoccupition. The absorption edge of Zr doped Ru:Fe:LiNbO_3crystal shifted to shortwavelength compared with Ru:Fe:LiNbO_3crystal, which manifested that Zr ionswould enter the lattice by replacingNb4+
     Li. With the increase of Li-composition, theabsorption edge exhibited blue shift then red shift. When the doping concentrationof Zr ions exceeded its threshold Zr4+would occupy Li and Nb at the same time,Zr3+-Zr-Li Nbcomplex could form and maintained charge balance. The ions replacingmodel was proposed.
     The photorefractive performance of Ru-Fe series codoped LiNbO_3crystals were investigated by means of conventional two-wave coupling experiment. Thefactors which could affect the photorefractive properties of the crystals such as theincident light wavelength, Zr doping concentration, oxidation or reduction treatmentand Li/Nb ratio in the crystals were discussed. The results showed that forRu:Fe:LiNbO_3crystal, the photorefractive parameters including diffractionefficiency, response time, recording sensitivity and dynamic range at blue light(476nm) were all better than those at red light (633nm). In addition, doping Zr ionsinto Ru:Fe:LiNbO_3crystals could dramatically enhance the blue photorefractiveproperties. When the Li/Nb ratio in Zr:Ru:Fe:LiNbO_3crystal was close tostoichiometric proportion, the response time would be further shortened. Theimprovement mentioned above was attributed to the decreasing concentration ofintrinsic defects (antisite Nb and Li vacancy).
     The light-induced scattering resistance ability of Ru-Fe series codoped LiNbO_3crystals was studied by means of transmitted beam pattern distortion and light-induced scattering exposure energy flux. The influence of Zr doping, oxidation orreduction and Li/Nb ratio in the crystals on the light-induced scattering resistancewas investigated systematically. The results showed that light-induced scattering inas-grown Ru:Fe:LiNbO_3crystal was weaker than that in oxide Ru:Fe:LiNbO_3crystal.Additionally, Zr doping and increasing Li-composition could suppress the light-induced scattering in LiNbO_3crystals.
     The nonvolatile holographic storage of Ru:Fe:LiNbO_3crystal was measured bymeans of two-wavelength and two-color nonvolatile technology. The dominantcarries of as-grown Ru:Fe:LiNbO_3and oxide Zr:Ru:Fe:LiNbO_3crystal at476nmirradiation was holes, while the dominant carries at633nm irradiation was electrons.The nonvolatile experimental results showed that enhanced nonvolatile storageproperties were obtained in two-wavelength nonvolatile storage. This was attributedto the merits of direct writing, being in the same phase between deep trap centersand shallow trap centers as well as stronger absorption at476nm wavelength than633nm wavelength. Then the nonvolatile properties of Zr doped Ru:Fe:LiNbO_3crystals were studied via two-wavelength nonvolatile technology. Compared withthe properties of two-wavelength and two-color nonvolatile technology crystal, Zrdoping could greatly improve the nonvolatile storage properties, andZr:Ru:Fe:LiNbO_3crystal was outstanding medium for holographic storageapplication.
引文
[1] Lambertus H. Storage Photorefractive Materials for Nonvolatile VolumeHolographic Data [J]. Science,1998,282:1089-1094.
    [2] Haw M. Holographic data storage: The Light Fantastic. Nature,2003,422:556-558.
    [3]刘思敏,郭儒,凌振芳编著.光折变非线性光学[M].北京:标准出版社.1992:5-10
    [4] Kogelnik H. Coupled Wave Theory for Thick Holograms Gratings [J]. BellSystem Technical Journal,1969,5(48):2909-2949.
    [5] Dhar L, Curtis K, Facke T. Holographic Data Storage: Coming of Age [J].Nature Photonics,2008,2:403-405.
    [6] Mok F, Tackitt M, and Stoll H. Storage of500High-Resolution Hologram in aLiNbO3Crystal [J]. Optics Letters,1991,16:605-607.
    [7] Mok F. Angle-Multiplexed Storage of5,000Holograms in LiNbO3[J]. OpticsLetters,1993,18(11):915-917.
    [8] Burr G, Mok F, and Psaltis D. Storage of10,000Holograms in LiNbO3:Fe [J].Conference On Laser and Electro-Optics(CLEO), Anaheim CA,1994,8:3463-3467.
    [9] Puand A, and Psaltis D. Topical Meeting on Optical Data Storage-Digest ofTechnical Papers [J]. IEEE Optical Society of America,1997,4(7-9):48-49.
    [10] Burr G, and Jefferson C. Volume Holographic Data Storage at an Area Densityof250Giga Pixels/in2[J]. Optics Letters,2001,26(7):444-446.
    [11] Orlov S, Phillips W, Bjornson E, Hesselink L, and Okas R. High Data Rate(10Gbit/s) Demonstration in Holographic Disk Digital Data Storage System[J]. Pacific Rim Conference on Laser and Electro-optics (CLEO-TechnicalDigest),2002:70-71.
    [12] John W.500GB体全息光盘实现蓝光速度写入[J].2011,11:12-13.
    [13] Micheron F, Bismuth G. Electrical Control of Fixation and Erasure HolographicPatterns in Ferroelectric Materials [J]. Appleid. Physics Letters,1972,20(2):79-81.
    [14] Heanue J, Bashaw M, Daiber A, Snyder R. Digital Holographic Storage SystemIncorporating Thermal Fixing in Lithium Niobate [J]. Optics Letters,1996,21(19):1615-1617.
    [15] Bai Y, Neurgaonkar R, Kachru R. High-Efficiency Nonvolatile HolographicStorage with Two-step Recording in Praseodymium-Doped Lithium Niobate byUse of Continuous-Wave Lasers. Optics Letters,1997,22(5):334-336.
    [16] Buse K, Adibi A and Psaltis D. Non-Volatile Holographic Storage in DoublyDoped Lithium Nibate Crystals [J]. Nature,1998,393:665-668.
    [17] Adibi A, Buse K, and Psaltis D. Multiplexing Holograms in LiNbO3:Fe:MnCrystals [J]. Optics Letters,1999,24(10):652-654.
    [18] Liu Y, Liu L, Zhou C, Xu L. Nonvolatile Photorefractive Holograms inLiNbO3:Cu:Ce Crystals [J]. Optics Letters,2000,25(12):908-910.
    [19]刘德安,刘立人,周常河.双掺杂LiNbO3:Fe:Cu晶体中的漂白效应及其非挥发性全息存储[J].科学通报.2002,47(22):1693-1697.
    [20] Zhang G, Y Tomita. Ultraviolet-Light-Induced Near-Infrared Photorefractivityand Two-Color Holography in Highly Mg-doped LiNbO3[J]. Applied PhysicsLetters,2003,93:9456-9459
    [21] Adibi A, Buse K, Psaltis D. Sensitivity Improvement in Two-CenterHolographic Recording [J]. Optics Letters,2000,25(17):539-541.
    [22] Liu D, Liu L, Chai Z, Dai C, Zhu L. High Sensitivity Nonvolatile HolographicStorage by Direct Recording with Ultraviolet Light in LiNbO3:Ce:Cu crystals[J]. OSA Trends in Optics and Photonics (TOPS) Vol.99, PhotorefractiveEffects, Materials, and Devices, Proceedings Volume (Optical Society ofAmerica, Saya,2005), page643-648.
    [23] Sun X, Luo S, Jiang Y, Meng Q. Enhancement of Nonvolatile BluePhotorefractive Properties in LiNbO3:In:Fe:Cu crystals [J]. Appl. Phys. B,2008,92:83-87
    [24]陶世荃,王大勇,江竹青,袁泉.光全息存储[M].北京:北京工业大学出版社,2001:259-260.
    [25] Komori Y, Ishii Y. Holographic Recording in a Doubly Doped Lithium NiobateCrystal with Two Wavelengths: a Blue Laser Diode and a Green Laser [J].Photonic Fiber and Crystal Devices: Advances in Materials and Innovations inDevice Applications.2010,7781(778119):1-7
    [26] Gunter P, Huignard J. Photorefractive Materials and Their Applications[M].Springer Verlag, Vols.ⅠandⅡ,1988,1989.
    [27]刘建成,冯锡淇,金幼华.不同组分LiNbO3的晶体数据和缺陷结构[J].人工晶体.1987,16(2):148-157.
    [28] Wilkinson A, Cheetham A, Jarman R. The Defect Structure of CongruentlyMelting Lithium Niobate [J]. Applied Physics,1993,74(5):3080-3083.
    [29] Peterson G, Carnevale A.93Nb NMR Linewidths in Nonstoichiometric LithiumNiobate [J]. Journal of Chemical Physics,1972,56(11):4848-4852.
    [30]代丽.镁/铟/铪与钬双掺铌酸锂晶体微观结构和光学特性[D].哈尔滨工业大学,2012:9-11.
    [31]刘思敏,张光寅,荣放,吴斯佳.固液同成分点组分的LiNbO3晶体吸收边的异常紫移[J].物理学报,1985,34(2):275-279.
    [32]刘思敏,张光寅,郭建斌.不同组分的LiNbO3晶体的吸收边研究[J].物理学报,1986,35(10):1357-1363.
    [33] Schirmer O, Thiemann O, Wohleche M. Defects in LiNbO3-I. ExperimentalAspects [J]. Journal of Physics and Chemistry of Solids,1991,52(1):185-200.
    [34] Fraust B, Muller H, Schirmer O. Free Small Polarons in LiNbO3[J].Ferroelectrics,1994,153(1):297-302
    [35] Ketchum J, Sweeney K, Halliburron L. Vacuum Annealing Effects in LithiumNiobate [J]. Physical Letter A,1983,94(6):450-453.
    [36] Akhmadullin I, Golenishchev-Kutuzov V, Migachev S. Electronic Structure ofDeep Centers in LiNbO3[J]. Physics of the Solid State,1998,40(6):1012-1018.
    [37] Yan W, Shi L, Chen H. The UV-Light-Induced Absorption in Pure LiNbO3Investigated By Varying Compositions [J]. Journal of Physics D-AppliedPhysics,2008,41(8):085410-1-085410-5.
    [38] Buse K. Light-Induced Charge Transport Processes in Photorefractive CrystalsII: Materials [J]. Applied Physics B,.1997,64:391-407.
    [39] Chen H, Shi L, Yan W, Chen G, Shen J. Study on UV-Light-InducedAbsorption in LiNbO3:Fe,Co crystal [J]. Chinese Physics B,2010,19(8):364-368.
    [40] Xu Z, Gong J, Xu S, Xu Y. Photorefractive Properties for HolographicApplication of Ce:Fe:LiNbO3Crystals with Various [Li]/[Nb] ratios [J]. SolidState Communications,2012,152(6):473–477.
    [41]申岩,张国庆,于文斌,郭志忠,赵业权. LiNbO3:Cu:Ce晶体非挥发全息存储性能的理论研究[J].物理学报,2012,61(18):184205-1-184205-7.
    [42] Heanue J, Bashaw M, Hesselink L. Volume Holographic Storage and Retrievalof Digital Data [J]. Science,1994,265:749-752.
    [43] Dong Y, Liu S, Li W. Improved Ultraviolet Photorefractive Properties ofVanadium-Doped Lithium Niobate Crystals [J]. Optics Letters,2011,36(10):1779-1781
    [44] Dong Y, Liu S, Kong Y, Chen S. Fast Photorefractive Response of Vanadium-Doped Lithium Niobate in the Visible Region [J]. Optics Letters,2012,37(11):1841-1843.
    [45] Tian T, Kong Y, Liu S. Photorefraction of Molybdenum-Doped LithiumNiobate Crystals [J]. Optics Letters,2012,37(13):2679-2681.
    [46] Chiang C, Chen J. Growth and Properties of Ru-Doped Lithium NiobateCrystal [J]. Journal of Crystal Growth,2006,294(2):323-329.
    [47] Chiang C, Chen J, Huang T. Properties of Ru-doped Near-stoichiometricLithium Niobate Crystals Produced by Vapor Transport Equilibration [J].Journal of Crystal Growth,2008,310(10):2678-2682.
    [48] Chiang C, Chen J, Lee Y. Photorefractive Properties of Ru Doped LithiumNiobate Crystal [J]. Optical Materials,2009,31(6):812-816.
    [49]柴志方,刘德安,职亚楠,郭袁俊,刘立人. LiNbO3:Ru晶体的光折变特性研究[J].2006,26(8):1245-1249.
    [50] Fujimura R, Shimura T, Kuroda K. Two-color Nonvolatile HolographicRecording and Light-Induced Absorption in Ru and Fe Codoped LiNbO3Crystals [J]. Optical Materials,2009,31(8):1194-1199.
    [51] Chai Z, Zhi Y, Zhao Q. Two-wave Coupling in LiNbO3:Fe:Ru Crystals [J].Photonic Fiber and Crystal Devices: Advances In Materials And Innovations InDevice Applications IV, Proceedings of SPIE-The International Society forOptical Engineering.2010,7781:77810X-1-77810X-8.
    [52] Phillips W, Amodei J, Staebler D. Optical and Holographic StorageProperties of Transition Metal Doped Lithium Niobate [J].RCA Review,1972,33:94-109.
    [53] Zhong J, Jin J, Wu Z. Measurement of Optically Induced Refractive-indexDamage of Lithium Niobate Doped with Different Concentration of MgO [J].11th International Quantum Electronics Coference, New York, IEEE catalog.No.80,CH1561-0,1980,631-637
    [54] Bryan D,Gerson R,Tomaschke H.Increased Optical Damage Resistance inLithium Niobate [J].Applied Physics Letters,1984,44:847-849.
    [55] Wen J,Wang L,Tang Y.Enhanced Resistance to Photorefraction andPhotovoltaie Effect in Li-rich LiNbO3: Mg crystals [J]. Applied PhysicsLetters,1988,53:260-262.
    [56] Furukawa Y, Kitamura K, Takekawa S.Stoichiometric Mg:LiNbO3as anEffective Material for Nonlinear Optics [J].Optics Letters,1998,23:1892-1894.
    [57] Volk T, Pryalkin V, Rubinina N. Optical-damage-resistant LiNbO3:Zn Crystal[J]. Optics Letters,1990,15(18):996-998.
    [58] Xin F, Zhai Z, Wang Xiaojie. Threshold Behavior of the Einstein Oscillator,Electron-phonon Interaction, Band-edge Absorption, and Small Hole Polaronsin LiNbO3:Mg crystals [J]. Physical Review B,2012,86(16):165132-1-165132-6.
    [59] Yamamoto J, Yanazaki T, Yamagishi K. Noncritical Phase Matching andPhotorefractive Damage in Sc2O3:LiNbO3[J]. Applied Physics Letters,1994,64(24):3228-3230.
    [60] Kong Y, Wen J, Wang H. New Doped Lithium Niobate Crystal with HighResistance to Photorefraction-LiNbO3:In [J]. Applied Physics Letters,1995,66(3):280-281.
    [61]李昕睿.掺钇铌酸锂晶体的生长及其性能研究[M].天津:南开大学,2010:20-22
    [62] Kokanyan E E Razzari L,Cristiani I,et a1.Reduced Photorefraction inHafnium Doped Single-domain and Periodically Poled Lithium NiobateCrystals [J].Applied Physics Letters,2004,84(12):1880-1882.
    [63] Li S,Liu S,Kong Y.The optical Damage Resistance and AbsorptionSpectra of LiNbO3: Hf crystals [J].Journal of Physics-Condensed Matter,2006,18(13):3527-3534.
    [64] Wang L, Liu S, Kong Y. Increased Optical-damage Resistance in Tin-dopedLithium Niobate [J]. Optics Letters,2010,35(6):883-885.
    [65] Xin F, Zhang G, Ge X. Ultraviolet Band Edge Photorefractivity in LiNbO3:SnCrystals [J]. Optics Letters,2011,36(16):3163-3165.
    [66] Kong Y, Liu S, Zhao Y. Highly Optical Damage Resistant Crystal: Zirconium-Oxide-doped Lithium Niobate [J]. Applied Physics Letters,2007,91(8):081908-1-081908-3
    [67] Zhang C, Yang J, Chen F. Optical Damage of Zr:LiNbO3Waveguides Producedby Proton Implantation [J]. Nuclear Instruments&Methods In PhysicsResearch Section B-Beam Interactions With Materials and Atoms.2012,286:209-212.
    [68] Shur J, Lee H, Yoon D. Near-stoichiometric LiNbO3:ZrO2Single CrystalGrowth by Micro-pulling Down Method [J]. Crystal Research and Technology,2010,45(2):115-118.
    [69] Liu H, Liang Q, Zhu Me. An Excellent Crystal for High Resistance AgainstOptical Damage in Visible-UV Range: Near-stoichiometric Zirconium-dopedLithium Niobate [J]. Optics Express,2011,19(3):1743-1748.
    [70] Yan W, Shi L, Chen H. Investigations on the UV Photorefractivity ofLiNbO3:Hf [J]. Optics Letters,2010,35(4):601-603.
    [71] Xin F, Zhang G, Bo F. Ultraviolet Photorefraction at325nm in Doped LithiumNiobate Crystals [J]. Journal of Applied Physics,2010,107(3):033113-1-033113-5.
    [72] Shur J, Choi K, Yoon D. Growth of Zr co-doped Tm:LiNbO3Single Crystal forImprovement of Photoluminescence Property in Blue Wavelength Range [J].Journal of Crystal Growth,2011,318(1):653-656.
    [73] Zhou Z, Wang B, Lin S. Investigation of Optical Photorefractive Properties ofZr:Fe:LiNbO3Crystals [J]. Optics and Laser Technology,2012,44(2):337-340.
    [74] Luo S, Wang J, Shi H, Sun X. Photorefractive and Optical Scattering Propertiesof Zr:Fe:LiNbO3Crystals [J]. Optics and Laser Technology,2012,44(7):2245-2248.
    [75] Xu Z, Ben Y, Han Y, Zhao Y. Optical Damage Resistance of Ce:Fe:LiNbO3Crystals with Various Li/Nb Ratios [J]. Optik,2012,123(6):1397-1399.
    [76] Shen X, Yan W, Shi L. Photorefractive Properties Varied With Li Compositionin LiNbO3:Fe Crystals [J]. IEEE Photonics Journal,2012,4(5):1892-1899.
    [77]李晓春,屈登学,王文杰.近化学计量比LiNbO3:Fe:Mn晶体中改进的非挥发全息存储灵敏度[J].中国光学快报,2012,10(12):122101-1-122101-4
    [78] Bhatt R, Ganesamoorthy S, Indranil B. Photorefractive Properties of Fe, Zn co-doped Near Stoichiometric LiNbO3Crystals at Moderate Intensities [J]. Opticsand Laser Technology,2013,50(11)112-117.
    [79] Zhang T, Fang Z, Liu G, Li X. Crystal Growth and Its Large-capacity StorageProperties for Sc:Ce:Cu:LiNbO3[J].6th International Symposium onAdvanced Optical Manufacturing and Testing Technologies: OptoelectronicMaterials and Devices for Sensing, Imaging, and Solar Energy,2012,8419:841926-1-841926-5.
    [80] Fang S, Qiao Y, Fu Y, Cui X. Preparation and Holographic Storage Propertiesof Tri-doped Mg:Mn:Fe:LiNbO3Crystals [J]. Optik,2011,122(20):159-161.
    [81]吴胜青.锆铁铌酸锂晶体的生长及其光折变性能研究[M].天津:南开大学,2008:26-29.
    [82] Kong Y, Liu F, Tian T. Fast Responsive Nonvolatile Holographic Storage inLiNbO3Triply Doped with Zr, Fe, and Mn [J]. Optics Letters,2009,34(24):3896-3898.
    [83] Liu F, Kong Y, Ge X. Improved Sensitivity of Nonvolatile Holographic Storagein Triply Doped LiNbO3:Zr,Cu,Ce [J]. Optics Express,2010,18(6):6333-6339.
    [84] Li X, Qu D, Zhao X. Nonvolatile Holographic Storage in Triply DopedLiNbO3:Hf,Fe,Mn crystals [J]. Chinese Physics B,2013,22(2):024203-1-024203-5.
    [85] Kong Y, Liu S, Xu J. Recent Advances in the Photorefraction of Doped LithiumNiobate Crystals [J]. Materials,2012,5:1954-1971.
    [86] Kasemir K, Betzler K, Matzas B, Tiegel B, Wahlbrink T, Volk T. Influence ofZn/In Codoping on the Optical Properties of Lithium Niobate [J]. Journal ofApplied Physics,1998,84(9):5191-5193.
    [87] Kovacs L, Szaiay V, Capelletti R. Stoichiometry Dependence of OH-Absorption Band in LiNbO3Crystals [J]. Solid StateCommunions,1984,52:1029-1035.
    [88]张克从,张乐潓.晶体生长科学与技术(上册)[M].北京:科学出版社,1997:411-413.
    [89] Palatnikov M, Biryukova I, Makarova O. Growth of Large LiNbO3Crystals [J]. Inorganic Materials,2013,49(3):288-295.
    [90] Shi H, Ren C, Luo S. Optical Damage Resistance of Hf:Fe:LiNbO3Crystalswith Various [Li]/[Nb] Ratios [J]. Crystal Research and Technology,2011,46(9):931-934.
    [91]刘波,毕建聪,李春亮,徐玉恒. Hf:LiNbO3晶体的生长与其抗光损伤性能[J].硅酸盐学报,2008,36(11):1586-1589.
    [92] Smith R, Fraser D, Denton R, et al. Correlation of Reduction in OpticallyInduced Refractive-index Inhomogeneity with OH Centent in LiTaO3andLiNbO3[J]. Applied Physics,1968,39(10):4600-4602.
    [93] Schirmer O, Thiemann O, Wohlecke M. Defects in LiNbO3-I. ExperimentalAspects [J]. Journal of Physics and Chemistry of Solids,1991,52(1):185-200.
    [94] Cabrera J, Olivares J, Carrascosa M, et al. Hydrogen in Lithium Niobate [J].Advanced Physics,1996,45(5):349-392.
    [95] Kong Y, W Zhang, Xu J. The OH-Absorption Spectra of Low Doped LithiumNiobate Crystals [J]. Infrared Physics&Technology,2004,45(4):281-289.
    [96] Kong Y, Zhang W, Chen S. Absorption Spectra of Pure Lithium NiobateCrystals [J]. Journal of Physics: Condensed Matter,1999,11(25):2139-2143.
    [97] Grone A, Kapphan S. Sharp, Temperature Dependent OH/OD IR-absorptionBands in Nearly Stoichiometric (VTE) LiNbO3[J]. Journal of Physics andChemistry of Solids,1995,56(5):687-701.
    [98] Polgar K, Peter A, Kocacs L. Growth of Stoichiometric LiNbO3Single Crystalsby Top Seeded Solution Growth Method [J] Journal of Crystal Growth,1997,177(3-4):211-216.
    [99]孔勇发.铌酸锂晶体的缺陷结构及其相关问题的研究[D].天津:南开大学,1999:52-56.
    [100]Kong Y, Wu S, Liu S, Chen S. Fast Photorefractive Response and HighSensitivity of Zr and Fe Codoped LiNbO3Crystals [J]. Applied Physics Letters,2008,92:251107-1-251107-3.
    [101]Zhang P, Hang Y, Yin J. Growth and Properties of LiNbO3co-doped withYb3+/Er3+/Mg2+[J]. Journal of Crystal Growth,2013,363(135):118-121.
    [102]Xu Z, Gong J, Li A. Spectroscopic Properties of Near-stoichiometricIn:Er:LiNbO3Crystals [J]. Journal of Luminescence,2013,135:10-14.
    [103]王佳. Zn:Er:LiNbO3晶体的生长及其上转换发光性能的研究[M].哈尔滨:哈尔滨工业大学.2008:24-27.
    [104]Sweeney K, Halliburton L, Bryan D. Point Defects in Mg-Doped LithiumNiobate [J]. Journal of Applied Physics,1985,57(4):1036~1038.
    [105]马德才.锌掺杂铌酸锂和钽酸锂晶体的生长和结构及性能的研究[D].哈尔滨:哈尔滨工业大学,2007:17-23.
    [106]林宏昌.锆铁铌酸锂晶体的生长及其光折变性能研究[M].哈尔滨:哈尔滨工业大学.2009:20-22.
    [107]张建.锂铌比对双掺铟铁铌酸锂晶体性能的影响[M].哈尔滨:哈尔滨工业大学.2004:33-34.
    [108]Chiang C, Chen J, Chang J, Lu C. Effect of Post Treatment on thePhotorefractive Properties of Ru-doped Lithium Niobate [J]. Crystal Researchand Technology,2007,42(12):1302-1307.
    [109]莫阳.钌系铌酸锂晶体的全息存储性能研究[M].哈尔滨:哈尔滨理工大学.2011:13-16.
    [110]孙亮.抗光损伤元素与铒双掺铌酸锂晶体的微观结构及发射性能[D].哈尔滨:哈尔滨工业大学.2008:38-45.
    [111]Xue D, He X. Dopant Occupancy and Structural Stability of Doped LithiumNiobate Crystals [J]. Physical Review B,2006,73:064113-1-064113-7.
    [112]Valley G. Competition Between Forward and Backward-simulated Photo-Refractive Scattering in BaTiO3[J]. The Journal of the Optical Society ofAmerica,1987, B4(1):14-19.
    [113]Joseph J, Pillai P, Singh K. High-Gain, Low-Noise Signal Beam Amplificationin Photorefractive BaTiO3[J]. Applied Optics,1991,30(23):3315-3318.
    [114]Zhang Z, Ding X, Zhu Y, Jiang Q. Noise Reduction in Image Amplification inPhotorefractive BaTiO3[J]. Optics Communications,1993,97(1,2):105-108.
    [115]Yue X, Shao Z, Chen J. Contradirectional Two-Wave Mixing In A StrontiumBarium Niobate Self-Pumped Phase-Conjugate Mirror [J]. Optics Letters,1992,17(2):142-144.
    [116]Adibi A, Psaltis D. Multiplexing Holograms in LiNbO3:Fe:Mn Crystals [J].Optics Letters,1999,24(10):652-654.
    [117]Nouel Y, Zhang G, Liu S, Mikha S. Study of the Self-defocusing inLiNbO3:Fe:Mg Crystals [J]. Optics Communications,2000,184(2):475-483.
    [118]Xu J, Zhang G, Li F, Zhang X, Sun Q. Enhancement of UltravioletPhotorefraction in Highly Magnesium-Doped Lithium Niobate Crystals [J].Optics Letters,2000,25(2):129-131.
    [119]Kang B. Measurement of Space-charge Field in Doped LiNbO3Single Crystals[J]. Journal of Electroceramics,2013,30(10):2-5.
    [120]王义杰,莫阳,刘威.激光波长对镁钌铁铌酸锂的全息存储性能影响[J].压电与声光,2011,33(5):784-787.
    [121]Nakamura M, Takekawa S, Liu Y, Kitamura K. Crystal Growth of Sc-dopedNear-stoichiometric LiNbO3and Its Characteristics [J]. Journal of CrystalGrowth,2005,281:549-555.
    [122]Bashaw M, Ma, Barker P. Comparison of Single-and Two-Species Models ofElectron-Hole Transport in Photorefractive Media [J]. Journal of the OpticalSociety of America,1992,9(9):1666-1672.
    [123]Buse K. Light-induced Charge Transport Processes in Photorefractive CrystalsI: Models and Experimental Methods [J]. Applied Physics B,1997,64:273-291.
    [124]Kukhtarev N, Markov V, Odulov S, Soskin M. Holographic Storage inElectrooptic Crystals [J]. Ferroelectrics,1979,22(4):949-953.
    [125]Valley G, Klein M. Optimal Properties of Photorefractive Materials for OpticalData Processing [J]. Optical Engineering.1983,22(6):704-711.
    [126]陶世荃,王大勇,江竹青,袁泉.光全息存储[M].北京:北京工业大学出版社,1998:61-75,110-112,112-115,215-235.
    [127]Sun L, Wang J, Lv Q, Liu B, Guo F. Defect Structure and Optical DamageResistance of In:Mg:Fe:Linbo3Crystals With Various Li/Nb Ratios [J]. Journalof Crystal Growth,2006,297:199-203.
    [128]Zheng W, Gui Q, Xu Y. Defect Structure and Optical Fixing HolographicStorage of Mg:Mn:Fe:LiNbO3Crystals [J]. Crystal Research and Technology,2008,43(5):526-530.
    [129]Dai Li, Su Yanqing, Wu Shiping. In Doping Effect on Optical Properties inZn:In:Fe:LiNbO3Crystals [J]. Crystal Research and Technology,2009,44(7):754-758.
    [130]Yan W, Chen H, Shi L, Liu S, Kong Y. Investigation of the Light-inducedScattering Varied with HfO2Codoping in LiNbO3:Fe crystals [J]. AppliedPhysics Letters,2007,90:211108-1-211108-3.
    [131]Pálfalvi L, Almási G, Hebling J, Péter A, Polgár K. Measurement of Laser-induced Refractive Index Change of Mg-doped Congruent and StoichiometricLiNbO3[J]. Applied Physics Letters,2002,80:2245-2247.
    [132]Magnusson R, Grylord T. Laser Scattering Induced Holohraphic in LithiumNiobate [J]. Applied Optics,1974,13:1545-1548.
    [133]Zhang G, Xu J, Liu S. Study of Resistance Against Photorefractive Light-Induced Scattering in LiNbO3:Fe,Mg Crystal [J]. SPIE,2005,5636:505-511.
    [134]Wang M, Wang R, Li C, Xu Y, Wang J. Optical Properties of Ce:Mn: LiNbO3Crystal with Various Li/Nb ratios [J]. Journal of Crystal Growth,2008,310(18):3820-3824.
    [135]Fontana M, Chah K, Aillerie M, et al. Optical Damage Resistance in UndopedLiNbO3Crystals [J]. Optical Materials,2001,16(1-2):111-117.
    [136]袁泉,陶世荃,江竹青,杨兴昌.体光栅的垂直角度选择角和光栅简并[J].中国激光,1997,24(4):337~341.
    [137]Zhang G, Zhang G, Liu S. The Threshold Effect of Incident Light Intensity ForThe Photorefractive Light-Induced Scattering in LiNbO3:Fe:M (M=Mg2+,Zn2+, In3+) crystals [J]. Journal Applied Physics,1998,83(8):4392-4396.
    [138]Kovács L, Ruschhaupt G, Polgár K, W hlecke M. Composition Dependence ofthe Ultraviolet Absorption Edge in Lithium Niobate [J]. Applied PhysicsLetters,1997,70(21):2801-2803.
    [139]Kamber N, Xu J, Mikha S, et al. Threshold Effect of Incident Light Intensityfor the Resistance Against the Photorefractive Light-Induced Scattering inDoped Lithium Niobate Crystals [J]. Optics Communications,2000,176(1-3):91-96.
    [140]Schlarb U, Betzler K. Refractive Index of Lithium Niobate as a Function ofTemperature, Wavelength, and Composition: A Generalized Fit [J]. PhysicalReview B,1993,48:15613-15620.
    [141]Li S, Liu S, Kong Y, Xu J, Zhang G. Enhanced Photorefractive Properties ofLiNbO3:Fe Crystals by HfO2Codoping [J]. Applied Physics Letters,2006,89:101126-1-101126-3.
    [142]Luo S, Wang J, Shi H. Photorefractive and Optical Scattering Properties ofZr:Fe:LiNbO3Crystals [J]. Optics and Laser Technology,2012,44(7):2245-2248.
    [143]Luo S, Wu F, Wang J. Effect of [Li]/[Nb] Ratios on the Photorefraction andScattering Properties in In:Fe:Cu:LiNbO3Crystals at488nm Wavelength [J].Optics Communications,2011,284(19):4452-4457.
    [144]Amodei J, Staebler D. Holographic Pattern Fixing in Electro-optic Crystal [J].Applied Physics Letters,1971,18(12):540-542.
    [145]Micheron F, Bismuth G. Electrical Control of Fixation and Erasure ofHolographic Patterns in Ferroelectric Materials [J]. Applied Physics Letters,1972,20(2):79-81.
    [146]Adibi A, Buse K, Psaltis D. Sensitivity Improvement in Two-centerHolographic Recording [J]. Optics Letters,2000,25(17):539-541.
    [147]Staebler D, Amodei J. Coupled-wave Analysis of Holographic Storage inLiNbO3[J]. Journal of Applied Physics,1972,43(3):1042-1049.
    [148]Pei Z, Hu Q, Kong Y, Liu S, Chen S. Investigation on p-type Lithium NiobateCrystals [J]. AIP Advances,2011,1(3):032171-1-032171-8.
    [149]孔世江,张耘,吴论生.不同组分铌酸锂晶体的光致吸收研究[J].西南师范大学学报(自然科学版),2010,35(6):43-47.
    [150]Motes A, Kam J. Intensity Dependence Absorption Coefficient inPhotorefractive BaTiO3Crystals [J]. Journal of the Optical Society of AmericaB-Optical Physics,1987,4(9):1379-1381.
    [151]李晓春,王利忠,刘宏德.近化学计量比双掺铁锰铌酸锂晶体紫外光致吸收特性的研究[J].光谱学与光谱分析,2010,30(4):1035-1038.
    [152]Sun X, Luo S, Wang J, Jiang Y, Shi H. Improvement of Blue PhotorefractiveProperties in In-doped LiNbO3:Fe:Cu Crystals [J]. Journal of Physics D:Applied Physics.2009,42(9):115413-1-115413-7.
    [153]陈宝东,刘红霞,温静. Fe:In:LiNbO3晶体近红外非挥发全息存储实验研究[J].信息记录材料,2010,11(6):22-25.
    [154]Philips W, Staebler D. Control of the Fe2+Concentration in Iron-dopedLithium Niobate [J]. Journal of Electronic Materials,1974,3(4):601-607.
    [155]Peithmann K, Hukriede J, Kuse K. Photorefractive Properties of LiNbO3Crystals Doped by Copper Diffusion [J]. Physical Review B,2000,61(7):4615-4620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700