用户名: 密码: 验证码:
广域电磁测深理论的有效性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广域电磁法是何继善院士于本世纪初提出的一种新的人工源频率域电磁勘查方法。为了研究这一新方法在实践中的有效性,选择大杨树盆地(油气远景区)进行了首次野外试验,并以此作为论文的主题。
     本文首先回顾了电磁法发展的历史,评述了大地电磁法(MT)和可控源音频大地电磁法各自的优点和不足,叙述了广域电磁法提出的技术背景。然后以电磁场理论为指导,推导了均匀半空间和层状半空间条件下,水平电偶极源和垂直磁偶极源电磁场的理论公式,作为广域电磁法有效性试验研究的理论基础。论述了广域电磁法的基本原理、提取视电阻率的方法,以及广域电磁法的主要优点。研究了实际采用的双极源与标准的偶极源的差异,分析计算了用双极源替代偶极源引起的误差,指出用双极源代替偶极源的使用范围。
     接着介绍了大杨树盆地的地理位置、地质构造、地层岩性特征和油气勘查远景,
     重点介绍了大杨树盆地以往获得的岩石电性参数,分析了电磁法运用于大杨树盆地的可行性以及可能遇到的地电断面类型。阐述了选择大杨树盆地进行广域电磁法有效性试验研究的理由和实际意义。叙述了大杨树盆地广域电磁法试验研究工作的测区选择、测线测点布置、野外工作参数、完成的工作量和数据质量。
     选择LYC1线100、110、120、130、140和149共6个测深点的广域电磁测深进行地质—地球物理解释,采用的解释方法是:设计地电模型,理论计算正演视电阻率曲线并与实测曲线比较拟合,逐次修改模型参数,直到理论曲线与实测曲线拟合到满意的精度为止。并在此基础上进行二维反演。
     根据解释结果勾绘了LYC1线的物理解释地电断面,并与钻井控制的地质剖面和地震勘探资料相比较,获得了LYC1线广域电磁法的地质解释断面:广域电磁法反映的深度为1350m~1600m的第二、第三电性层的分界面,与杨参1井1600m深度的白垩系下统甘河组与九峰山组的分界面很接近,而杨参1井在九峰山组见到了含油显示。
     对比研究了广域电磁法与可控源音频大地电磁法对大杨树盆地油气构造的反映,确认广域电磁法勘查大杨树盆地类型的油气构造是有效的。
     广域电磁法在大杨树盆地的有效性试验研究获得了令人鼓舞的成果,建议在大杨树盆地的其他地区或类似地区进一步开展广域电磁法普查油气构造的试验研究。
Wide-field electromagnetic method (WFEM) is a new frequency domain controlled source electromagnetic prospecting method proposed by He Jishan academician.In order to study the validity of this new method, the Dayangshu basin (an oil and gas prospect area) was selected to do fitst field experiment, and use it as the topic of this paper.
     Firstly, the history of development of electromagnetic prospecting methods are reviewd, the advantages and disadvantages of MT and CSAMT are discussed, the technical background of WFEM are introduced in this paper. Under the guidance of electromagnetic field theory, theoretical expressions of horizontal electrical dipole and vertical magnetic dipole in the uniform and layered conductive half space are derived as the theoretic base. The basic principle of WFEM, method of collecting apparent resistivity and the main advantages of WFEM are discussed. The difference between bipolar source and standard dipole source in actual use is studied,then errors using bipolar instead of dipole source is analyzed and calculated, and points out the applying range of use bipolar source to replace dipole source.
     The geographic position, regional geological construct, characters of stratum and lithology and oil and gas prospecting perspective of Dayangshu basin are recounted, electrical parameters of rock measured at Dayangshu area before this experimant are emphatically narrated, feasibility of electromagnetic method used to Dayangshu area and types of geoelectrical section which could be meeted are analyzed.It is recounted such as selected survey regions, laid surveying lines and points, working parameters in field, finished quantity and quality, etc.
     Selecting100、110、120、130、140and149measuring point of LYC1line (6points together), geological and geophysical interpretations of Dayangshu area are made. Designed geoelectrical model for interpretaion, theoretically calculating forward apparent resistivity curve and to compare it with the measured apparent resistivity value, parameters of the model to be repeatedly corrected until to the theoretical forward apparent resistivity curve fited with measured apparent resistivity curve in a satisfying precision.
     According to the results of interpretation, the physical interpretating geoelectrical section of LYC1line wouls be drawes. Then this section is compared with geological
     section exposed by drilling hole and seismic exploring informations, The geological section of LYC1line interpreted by WFEM are obtained. The interface depth between second electrical layer and third electrical layer obtained by WFEM (which is1350-1500m) and the interface depth between ganhe group and jiufengshan group of Cretaceous (which is1600m) are nearly equal. The oil and gas show of jiufengshan group are exposed by Yangcan1well. The reflect to Dayangshu basin oil and gas formation of WFEM and CSAMT is compared and studied, the effectivity of WFEM to prospect Dayangshu basin oil and gas formation would be affirmed
     The results of WFEM effectivity experiment at dayangshu basin WFEM are stimulative. So it is suggested that prospecting oil and gas resource used WFEM should be further made at Dayangshu or similar area.
引文
[1]曹昌祺.垂直磁极变频测深的低频特性和高阻层的穿透问题[J].地球物理学报,1981,24(2):192-206.
    [2]底青云,王光杰,王妙月,等.长偶极大功率可控源激励下目标体电性参数的频率响应[J].地球物理学报,2009,52(1):275-280.
    [3]底青云,王若.可控源音频大地电磁数据正反演及方法应用[M].北京科技出版社,2008.
    [4]何继善.广域电磁法和伪随机信号电法.北京高等教育出版社2010
    [5]何继善.频率域电法的新进展[J].地球物理学进展,2007,22(4):1250-1254.
    [6]何继善.双频激电法[M].北京高等教育出版社,2006
    [7]何继善,熊彬,鲍力知,傅国红.直接消除电磁耦合得斩波去耦方法[J].地球物理学报,科学出版社,2006,49(6):1843-1850.
    [8]何继善.一种地电场伪随机地电响应测量装置及方法.中国专利,200510031324.2,2005-10-19
    [9]何继善,柳建新.伪随机多频相位法及其应用简介[J].中国有色金属学报,科学出版社,2002,12(2):374-376.
    [10]何继善.随机多频相位法及其应用简介[J].中国有色金属学报,2002,12(2):374-376.
    [11]何继善.一种主动源频率域电法勘探方法,中国专利,00113439.6,2001-12-5
    [12]何继善.可控源音频大地电磁法.长沙中南大学出版社1999
    [13]何继善.伪随机三频电法研究[J].中国有色金属学报,1994,4(1):1-7.
    [14]黄临平,戴世坤.复杂条件下3D电磁场有限元计算方法[J].中国地质大学学报,2002,27(6):775-779.
    [15]李帝铨,王光杰,底青云,等.基于遗传算法的CSAMT最小构造反演[J].地球物理学报,2008,51(4):1234-1245.
    [16]刘国栋,陈乐寿主编.大地电磁测深研究[M].北京:地震出版社,1993.
    [17]柳建新,何继善,白宜诚.一种区分矿与非矿的有效方法—伪随机多频相位法原理及其应用[J].中国地质,2001,28(9):41-46.
    [18]罗延钟,周玉水,万乐.一种新的CSAMT资料近场校正方法[J].勘查地球物理勘查地球化学文集第20集,地质出版社,1996.
    [19]朴化荣.电磁测深法原理[M]. 北京地质出版社,1990
    [20]朴化荣,殷长春.频率测深正演问题滤波算法及人机联作反演[J].物化探计算技术,1987,9(2):137-148.
    [21]朴化荣,殷长春.频率测深水平磁场的正演计算及应用[J].物探化探计算技术,1988,11(3):204-213.
    [22]任怀宗,师先进.特殊函数及其应用[M].长沙:中南工业大学出版社,1986.
    [23]阮百尧,罗润林.一种新的复电阻率频谱参数的递推反演方法[J].物探化探计算技术,2003,25(4):298-301.
    [24]阮百尧.直流电阻率测深曲线解释中直接反演法[J].物探化探计算技术,1999,21:118-123.
    [25]阮百尧.电阻率激发极化法测深数据的一维最优化反演方法[J].桂林工学院学报,1999,19(4):321-325.
    [26]石昆法.可控源音频大地电磁法理论与应用. 北京科技出版社,1999
    [27]石显新,闫述,陈明生.瞬变电磁勘探中的低阻层屏蔽问题[J].煤炭学报,2005,30(2):160-163.
    [28]石应骏,刘国栋,吴广耀,王家映,等.大地电磁测深法[M].北京:地震出版社,1984.
    [29]苏发,汤井田,何继善,温佩琳.源近区频域电磁测深视电阻率的一种数值计算方法[J].中国有色金属学报.1996,6(1):6-10.
    [30]苏发,汤井田,何继善,温佩琳.电磁测深中视电阻率假异常现象分析[J].中国有色金属学报,1995.12,5(4):14-16.
    [31]苏发,何继善,汪文秉.水平载流回线近区组合波频率电磁测深视电阻率[J].中国地球物理学会年刊,石油工业出版社,1995.9,347.
    [32]苏发,何继善,汪文秉.磁场垂直分量正交部分在近区频率电磁测深中的作用[J].中国地球物理学会年刊,石油工业出版社,1995.9,346.
    [33]苏发,何继善,温佩琳.双频组合波频率域电磁测深中频比ω2/ω1对测深结果的影响(摘要)[J].中南矿业学院学报,1994.8,25(5):79-80.
    [34]苏发,何继善,温佩琳.近区频率域电磁测深研究中的一种数值计算方法[J].中南矿冶学院学报,1994.8,25(5):19-22.
    [35]苏发,何继善等.双频组合波理论及其在电磁测深领域中的应用[J].中国地 球物理学会年刊,地震出版社,1994.8,280.
    [36]苏发,汤井田,何继善.水平载流线圈中心点组合波频域率测深研究[J].中南矿冶学院学报,1993.12,24(2):196-200.
    [37]苏发,何继善.水平载流线圈中心点组合波频域电磁测深视电阻率定义[J].物探与化探,1995.10,19(5):379-384.
    [38]苏发,何继善.近区组合波频域电磁测深视电阻率的一种改进形式[J].物探与化探,1995.12,19(6):456-461.
    [39]苏朱刘,胡文宝.中心回线方式瞬变电磁测深虚拟全区祝电阻率和一维反演方法[J].石油物探,2002,41(2).
    [40]苏朱刘,罗延钟,胡文宝.大地电磁测深“正演修正法”一维反演[J].石油地球物理勘探,2002,37(2):138-144.
    [41]苏朱刘,吴信全,胡文宝,等.复视电阻率(CR)法在油气预测中的应用[J].石油地球物理勘探,2005,40(4):467-471.
    [42]汤井田,何继善.可控源音频大地电磁法及其应用.长沙中南大学出版社2005
    [43]汤井田,李飞,罗维斌.基于逆重复m序列的精细探测电法发送机设计[J].地球物理学进展,2007,22(3):994-1000.
    [44]汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的新方法[J].地球物理学报,1994,(4):543-552.
    [45]汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的新方法[J].地球物理学报科学出版社,1994.7,37(4):543-552.
    [46]汤井田,何继善.水平电偶极子源的阻抗等效电阻率[J].中国有色金属学报,1993.4,6-9.
    [47]汤井田,何继善.频率域电磁测深中的记录规则[J].物探与化探1994.6,18(3):192-199.
    [48]汤井田,何继善.水平电偶极子源的场分量等效电阻率[J].中南矿冶学院学报,1993.4,24(2):137-142.
    [49]汤井田,何继善.静效应校正的波数域滤波方法[J].物探与化探,北京地质出版社,1993.6,17(3):209-216
    [50]汤井田,何继善.垂直磁偶源频率测深的阻抗实部等效电阻率[J].中南矿冶学院学报,1993.12,24(2):191-195.
    [51]汤井田,何继善.频率域电磁测深中磁场水平分量新的计算方法[J].物探化 探计算技术,1993,15(1):64-68
    [52]万乐,罗延钟等.CSAMT一维正演的快速近似计算[J].中国地球物理学年会,北京:地震出版社,1993.
    [53]万尼安.电磁测深基础[M].北京煤炭工业出版社,1979
    [54]王家映.石油电磁勘探[M].北京石油工业出版社,1992
    [55]王家映.地球物理反演理论[M] 武汉中国地质大学出版社,1998.
    [56]王华军.时间域瞬变电磁法全区祝电阻率的平移算法[J].地球物理学报,2008,51(6):1936-1942.
    [57]王若,王妙月.可控源音频大地电磁数据的反演方法[J].地球物理学进展,2003,18(2):197-202.
    [58]王若,王妙月.一维CSAMT全资料反演[J].石油地球物理学报,2007,42(1):107-114.
    [59]王书明.表面局部三维大地电磁曲线畸变校正——MT畸变校正阻抗张量分解方法[J].西北地震学报,1998.20(4):1-11.
    [60]王友善,魏传根.电磁测深方法研究[J].地球物理学报,2006,49(1):256-263.
    [61]维利金,弗兰托夫著,感应电法勘探中的电磁场[M].谢学融译.北京:中国工业出版社,1965.
    [62]魏文博,金胜,叶高峰,等.藏北高原地壳及上地幔导电性结构一超宽频带大地电磁测深研究结果[J].地球物理学报,2006,49(4):1215-1225.
    [63]夏江海.奇异值分解在位场资料处理中的应用[J].物探化探计算技术,1989,(11):93-98.
    [64]徐世浙,阮百饶,周辉,等.大地电磁场三维地形影响的数值模拟[J].中国科学(D辑),1997,27(1):15-20.
    [65]严家斌,何继善等.海水对天然电磁场衰减特性的模拟研究[J].湖南省地球物理论丛,长沙:中南大学出版社,2001,103-106
    [66]杨长福,林长佑.用TEM反演法进行MT静位移的识别和校正[J].地球科学一中国地质大学学报,2001.26(6):609-614.
    [67]杨生.TEM中心回线法计算考虑关断时间的全区视电阻率[J].物探与化探,2003,32(6):647-651.
    [68]杨生,鲍光淑,李爱勇.MT法中静态效应及阻抗张量静态校正法[J].长沙: 中南工业大学学报,2002,33(1):8-13.
    [69]杨文采.用于位场数据处理的广义反演技术,地球物理学报,1988(29):283-291。
    [70]杨云见,王绪本,何展翔.考虑关断时间效应的瞬变电磁一维反演[J].物探与化探,2005,29(3):234-236.
    [71]殷长春.可控源音频大地电流法一维正演及精度评价[J].长春地质学报,1994,37(3):543-552.
    [72]殷长春.可控源音频大地电流法一维正演及精度评价[J].长春地质学院学报,1994,24(4):438-453.
    [73]殷长春,朴化荣.三维电磁模拟技术及其在频率测深法中应用[J].地球物理学报,1994,37(6):820-827.
    [74]殷长春.赤道向频率域电磁测深三维电磁模拟技术研究[J].石油地球物理报,1994,29(6):746-753.
    [75]殷长春,朴化荣.电磁测深法视电阻率定义问题的研究[J].物探与化探,1991,15(4):290-298.
    [76]赵邦六,何展翔,文百红.非地震直接油气检测技术及其勘探实践[J].中国石油勘探,2005,10(6):29-37.
    [77]郑圣谈,曾昭发,张代国,王者江,姚建.层状介质高频电磁场计算方法及其结果分析[J].地球物理学进展,2007,22(6):1772-1776.
    [78]Andreas H. rdt and Carsten Scholl. The effect of local distortions on time-domain electromagnetic measurements[J]. Geophysics,2004, 69(1):1-2.
    [79]Anderson W L. A hybrid fast Hankel transform algorithm for electromagnetic modeling[J]. Geophysics,1989,54:263-266.
    [80]Anderson W L. fast evaluation of radial and vertical magnetic fileds near a rectangular loop source on a layered earth [J]. Geophysics,1985, 31:339-357
    [81]Anderson W L. Computation of Green's tensor integrals for three-dimensional electromagnetic problems using fast Hankel transforms [J]. Geophysics,1984,49:1754-1759
    [82]Anderson W L. Fast Hankel transforms using related and lagged convolution association for computing machinery[J]. Transactions on Mathmatical Software,1982,8:344-368
    [83]Anderson W L. Numerical integration of related hankel transforms of orders 0 and 1 by adaptive digital filtering [J]. Geophysics,1979, 44(7):1287-1305.
    [84]Anderson W L. Computer program numerical integeration of related hankel transforms of orders 0 and 1 by adaptive digital filter [J]. Geophysics, 1979,44(7).
    [85]Bartel L C, Jacobson R D. Results of a control led-source audio-frequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii [J]. Geophysics,1987,52 (2):665-677.
    [86]Behforooz G. End conditions for cubic spline interpolation derived from integration[J]. Applied Mathematics and Computation,1989,29 (3): 231-244
    [87]Bostick. F. X.. Jr.,1977, A simple almost exact method of magnetotelluric analysis:Proc. workshop on electrical methods in geothermal exploration, January, Salt Lake City. p.1744183:U. S. G. S. contract 14-08-001-G-159.
    [88]Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics [J].1953,18(1):605-635.
    [89]Chave A D. Numerical integration of related Hankel-transforms by quadrature and continued fraction expansion[J]. Geophysics,1983, 48:1671-1686
    [90]Dakhnov V N. Electrical well logging interpretation of electric logs[M]. Moscow,1941.
    [91]Das U C. Apparent resistivity curies in controlled-source electr omagnetic sounding directly reflecting true resistivity in a layered earth. Geophysics,1995,60 (1):53-60.
    [92]Das U C, Hoop A T. Efficient computation of apparent resistivity curves for depth profiling of a layered earth, Geophysics,1995,60(6):1691-1697.
    [93]Dey A, Morrison H F. Electromagnetic coupling in frequency and time-domain induced polarization surveys over a multi-layered earth [J]. Geophysics,1973,38:380-405.
    [94]Goldstein M A. Magnetotelluric experiments employing an artificial dipole source Ph. D. thesis[D]. Ontario,Canada:University of Toronto, 1971.
    [95]Duris, C. S., Fortran routines for discrete cubic spline interpolation and smoothing[J]. ACM Trans. Math. Software,1980,6:92-103.
    [96]Fox R W. On the electromagnetic properties of metallic-ferous veins in the mines of Cornwall [J]. Phil, Trans:London:Roy Soc,1830:399-414.
    [97]Fritz Oberhettinger Larry Badii. Tables of Laplace Transform[M]. New York:Springer-Verlag Berlin Heidelberg,1973.
    [98]Gerald W. Hohmann. Electromagnetic coupling between grounded wires at the surface of a two-layer earth[J]. Geophysics,1973,38:854-863
    [99]Goldstein M A, Strangway D W. Audio-frequency magnetotellurics with a ground electric dipole source. Geophysics[J].1975,40(1):669-683.
    [100]Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J]. J. Geophys. Res,1989,94:1913-1925.
    [101]Haoping Huang, Douglas C. Fraser. Magnetic permeability and electrical resistivity mapping with a multifrequency airborne EM system[J]. Exploration Geophysics,1998,29:249-253.
    [102]He Jishan. Dual-frequency IP method and its Application[J]. China Mining,2008-11-13,380-387.
    [103]He Jishan. Frequency domain electrical methods for searching resources of non-ferrous metals in China [J]. International journal of the society of materials engineering for resources,1996,4(1).
    [104]He Jishan, Wang Shaowu, Tang Jingtian. Square wave coherent method for extracting IP effect[J]. Transactions of nonferrous metals society of China, Jun,1995,5 (2):1-6.
    [105]He Jishan. The Geoelectromagnetic Research on Resources of Non-Ferrous Metals in Metals in China[C]. Second international conference on materials engineering for resources. Sep,1994,4(3):109-118.
    [106]He Jishan, Ren Baolin. TEM Imaging Technique[J]. Transactions of nonferrous metals society of china, May,1993,3 (2):1-9.
    [107]He Jishan. Dual-frequency IP[J]. Transactions of nonferrous metals society of China, Nov,1993,3 (4):1-10.
    [108]He Jishan. Measuring Precision of induced polarization method[J]. Transactions of nonferrous metals society of China, Dec,1993,4(4): 1-6.
    [109]Howland-Rose A W, Linford G, Pitcher D H, Seigel H 0. Some recent magnetic induced-polarization developments-Part1:Theory[J]. Geophysics,1980,45:37-54.
    [110]Hohmann G W. Electromagnetic scattering by conductors near a line source of current[J]. Geophysics,1971,26:101-131.
    [111]Johansen and Sorensen K. Fast Hankel Transforms[J]. Geophysical Prosprecting,1972,27:876-901.
    [112]Kaufman A A, Keller G V. The Magnetotelluric Method[M]. Elsevier Science Publishing Company. Amsterdam-Oxford-New York,1981.
    [113]Kaufman A A, Keller G V. Frequency and Transient Soundings [M]. Elsevier Science Publishes B.V,1983.
    [114]Kunetz. G. Processing and interpretation of magnetotelluric soundings [J]. Geophysics,1972,37(6):1005-1021
    [115]Liu Jianxin, He Jianshan. ROBUST ESTIMATION METHOD OF SEA MAGNETOTELLURIC IMPEDANCE BASED ON CORRELATIVE COEFFICIENT P1 Mar. 2003
    [116]Martin M. Cubic spline interpolation of continuous functions Journal of Approximation Theory,1974,10 (2):103-111
    [117]Morrison. H. Phillips. R. J. Brien. D. Quantitative interpretation of transient electro magetic field sovera layered half-space[J]. Geophysical, prospecting,1969,17(1):82-101.
    [118]Ogunade S 0. Electromagnetic response of an embedded cylinder for line current excitation[J]. Geophysics,1981,46:45-52.
    [119]Oldenburg D W. One-dimensional inversion of natural source magnetotelluric observations [J]. Geophysics,1979,44:1218-1244.
    [120]Pelton W H, et al. Mineral discrimination and removal of induced coupling with multi-frequency IP [J]. Geophysics,1978,43 (3):588-609.
    [121]Pelton R. et al. Method and apparatus to main constant phase between reference and output signals. United States Patent,3881167[P]. Apr. 1975
    [122]Raab P, Friscchknecht F. Desktop Computer processing of Concident and Central loop time domain electromagnetic data. U. S. G. S. open-File Report,83-240.
    [123]Routh P S, Oldenburg D W. Inversion of Controlled-source audio-frequency magnet otelluric data for a horizontal-layered earth [J]. Geophysics,1999,64(4):1689-1697.
    [124]Sasaki Y, Yoneda Y, Matsuo K. Resistivity imaging of controlled-source audio-frequency magnetotelluric data [J]. Geophysics,1992,57(7):952-955
    [125]Seigel H 0. Theoretical and experimental investigations into the applications of the phenomenon of overvotage to geophysical prospect ing [D]. Ph.D. thesis. Univ. of Toronto.1949.
    [126]Slichter L B. The interpretation of the resistivity prospecting method for horizontal structures[J]. Physics,1933,4:307-322.
    [127]Spies. B. Eggers. D. The use and misuse of apparent resistivity in electro magnetic methods [J]. Geophysics,1986,51 (7):1462-1471
    [128]Stefansco S, Schlumberger C, Schlunberger M. Sur la distribution electrique potentielle autourd'ure prise de terre ponctuelle dans un terrain a couches horizentales homogenes et sotropes [J]. Phys. et Rad. ser.1930,7(1):132-141.
    [129]Stodt J A, hohmann G W, Ting S C. The telluric-magnetotelluric method in two and three-dimensional environments[J]. Geophysics,1981, 46:1137-1147.
    [130]Tagg G F. The earth resistivity method of geophysical prospecting:Some theoretical considerations[J]. Mining Mag.,1930,43:150-158.
    [131]Tikhonov. A. N. On Determining Electrical Characteristics of the Deep Layers of the Earth's Crust.《Magnetotelluric Methods》 Edited by Keeva,Vozoff P2-3
    [132]Vozoff K. Magnetotelluric Methods. USA:Geophysics Reprint Series, 1986,1-763.
    [133]Wait J R. The variable frequency method[A]. In:J. R. Wait, etc., Over-voltage research and geophysical applications[C]. London. Pergamon Press,1959,29-49.
    [134]Ward S H, Hohmann G W. Electromagnetic theory for geophysical applications[M], in Nabighian, M. N., Ed., El extromagnetic methods in applied geophysics., Soc. Expl. Geophys.,1988.
    [135]Ward S. H. Electrical, electromagnetic, and magnetotelluric methods Geophysics,1980, V45 N11 P1659-1666
    [136]Ward S H. Electromagnetic theory for geophysical applications[M]. Mining Geophysics, Vol. Ⅱ, Theory. Society of Exploration Geophysics, 1971,13-196
    [137]Wilt M, Stark M. A simple method for calculating the apparent resistivity from electromagnetic sounding data[J]. geophysics,1982, 47(7):1100-1105.
    [138]Zonge K L, Wynn J C. Recent advances and applications in complex resistivity measurements[J]. Geophysics,1975,40:851-864.
    [139]Zonge K L, Hughes L J. Controlled source audio-frequency magnetotelluric measurements. In:Vozoff K ed. Magnetotelluric Methods, Society of Exploration Geophysicists,1986,5:749-763.
    [140]Zonge K L, Hughes L J. Controlled source audio-frequency magnetotelluric measurements. In:Electromagnetic Methods in Applied Geophysics,1991,2(B):713-809.
    [141]Zhang Rongfeng, He Jishan. Improved nonlinear approach to electtomagnetic scattering [J]. Journal of Central South University of Technology, May,1996,27(1):99-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700