用户名: 密码: 验证码:
真三轴卸载下深部岩体破裂特性及诱发型岩爆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山深井开采面临着众多难题,如何改善深部岩体所处的复杂力学环境——高地应力、高地温、高岩溶水压力及爆破、机械开挖等引起的动力扰动(“三高一扰动”)就是其中之一。高应力意味着高岩体储能。在工程开挖卸荷过程中,高应力岩体内的高储能被诱发释放,从而导致围岩破裂并诱发岩爆等大规模工程灾害。本文从高地应力受力环境出发,利用自行研制的岩石真三轴电液伺服诱变(扰动)试验系统,深入研究真三轴卸荷状态下高应力岩石的力学特性及动载荷诱发岩爆的可能性,揭示深部岩爆灾害的扰动诱发机理。主要研究内容及研究成果如下:
     (1)深部工程岩体主要受到卸荷损伤和应力调整集中的作用,利用自行设计的岩石真三轴电液伺服诱变(扰动)试验系统对不同应力状态下花岗岩、红砂岩及水泥砂浆的立方试件进行了真三轴卸载压缩破坏试验。研究结果表明卸载后二维受力下岩石的抗压强度随中间主应力的增大而增大,但增大的幅度逐渐降低。当单轴压缩或中间主应力较小时,岩石破坏模式为剪切破坏;随着中间主应力的增大,岩石的破坏模式逐渐由剪切破坏转变为板裂破坏。
     从本文的研究结果得出岩石发生板裂破坏不仅与岩性有关,还与其应力状态有关。
     (2)基于莫尔-库伦强度准则分析了岩石破坏模式的转变。通过莫尔-库伦定律计算的不同应力水平下岩石的计算强度与花岗岩和红砂岩试件的测试强度的比较发现,测试强度值明显低于计算强度值,说明岩石破坏时强度不再符合莫尔-库伦强度准则,破坏模式由剪切破坏转变为板裂破坏。
     (3)利用声发射测试系统与红外热像仪对岩石板裂破坏时的声发射数及温度变化进行了监测。通过声发射计数分析得出剪切裂纹的产生伴随着整个加载过程,而板裂裂纹不同于剪切裂纹,是在岩石受力达到一定程度时才产生。
     单轴压缩条件下,岩石发生剪切破坏,压缩椎体表面温度变化显著;当中间主应力较小时,岩石下半部分先发生破坏,然后再发生整体破坏,岩石破坏形式为剪切破坏;当中间主应力较大时,整个试样表面温度均有明显的升高,说明岩石的破坏形式为板裂破坏。
     (4)根据地下工程开挖下岩体受力路径及板裂破坏发生条件,开展了扰动诱发岩爆试验。对真三轴卸载下试件施加扰动载荷,研究证明无论扰动载荷是垂直最大主应力方向还是沿着最大主应力方向施加,只要载荷幅值达到一定程度均可诱发岩爆破坏。根据扰动诱发岩爆试验,提出了扰动诱发岩爆结构演化模型。
     (5)运用离散元PFC3D程序对扰动诱发岩爆进行了数值模拟,从微观角度分析得到了与试验结果相一致的结论。当扰动载荷的幅值为300、400、500kN时,试件内部有微裂纹扩展,但趋于稳定,岩石未发生破坏;但扰动载荷幅值为600kN时,微裂纹扩展迅速,岩石发生岩爆破坏。
There are many difficulties for deep mining. For example, how to improve the complicated stress environment of deep rock mass which contains high in-situ stress, high ground temperature, high hydraulic pressure and dynamic disturbance caused by blasting and mechanical excavation. High in-situ stress means high strain energy stored in deep rock. The high strain energy stored in deep rock mass can be induced to release by excavation unloading engineering. The phenomena of rock burst and zonal disintegration induced by excavation unloading in high depth buried rock mass prove that the release of elastic strain energy can cause rock failure and induce severe disasters.
     In view of the aforementioned problems, the main purpose of this study is using self-designed true triaxial electro-hydraulic servo-controlled test system to study the failure characteristics of highly-stressed rock mass and the mechanism of strain rock burst under true triaxial unloading condition. The main contents and conclusions are as follows:
     (1) The true triaxial electro-hydraulic servo-controlled test system can apply load to high stress level independently in three directions (σ1> σ2>σ3≠0, where σ1is the maximum principal stress;σ2is the intermediate principal stress; σ3is the minimum principal stress). It can also impose dynamic load.
     The studies on the mechanical characteristics of granite, red sandstone and cement mortar cubic samples under true triaxial unloading condition were carried out. When intermediate principal stress is low, the failure mode was shear failure. While intermediate principal stress increased, the failure mode changed into slabbing. The occurrence of slabbing related with lithology and stress state of rock.
     (2) When intermediate principal stress is low, the peak strength of rock samples is smaller than the calculated strength based on Mohr-Coulomb criterion. This is the further evidence for slabbing failure.
     (3) The characteristics of slabbing failure were monitored by AE test system and infrared cameras. With the increase of σ2, the shear crack initialed and propagated during the whole compressive progress. But AE count rate of rock specimen with slabbing failure had a catastrophe point and slabbing crack began forming.
     Under compressive test the temperature of compressed vertebral surface significantly changed and the rock failure mode is shear failure. When σ2is low, the lower part of specimen firstly damaged and overall destruction occurred subsequently, the failure mode is shear failure. When σ2reached a higher level, the failure surface is planar and failure mode turned into slabbing.
     (4) According to the stress path after engineering excavation and the occurrence condition of slabbing failure, the experimental studies on strain rock burst induced by dynamic load were carried out. Regardless of dynamic load parallel or perpendicular to the direction of the maximum principal stress, rock burst could be induced as long as the load amplitude reaches a certain level.
     (5) Rock burst induced by perturbation was simulated by PFC3D particle flow code, the conclusions were consistent with the experimental result. When the disturbance load amplitude researched to300,400,500kN, propagation of micro-crack expanded stably but the rock samples did not damaged; while disturbance load amplitude equal to600kN, micro-racks rapid expanded rapid and rock samples failed.
引文
[1]周子龙.岩石动静组合加载实验与力学特性研究[D].长沙:中南大学,2007.
    [2]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [3]张有天,周建平.水电站大型地下工程建设的新进展[J].水力发电,2004,30(12):64-68.
    [4]谢和平.深部高应力下的资源开采现状、基础科学问题与展望[M].北京:中国环境科学出版社,2002.
    [5]ZHAO P. J., LOK T. S., YIN Zhi-qiang. Simplified design of rock cavern concrete lining to resist shock loading[J]. Journal of Central South University of Technology,2010,17(5):1087-1094.
    [6]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
    [7]Underground mining (hard rock) [EB/OL]. http://www.worldlingo. com/ma/enwiki/en/Underground_mining_(hard_rock).
    [8]World's new deepest mine'safe, cheap'-AngloGold[EB/OL].http://www. Mining weekly.com/print-version/worlds-new-deepestmine-safe-cheap-anglogold.2009-02-09.
    [9]TauTona Anglo Gold. South Africa [EB/OL]. http://www. mining-technology.com/projects/tautona_goldmine/.
    [10]李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
    [11]Li Charlie C. Disturbance of mining operations to a deep underground workshop[J]. Tunnelling and Underground Space Technology,2006,21(1):1-8.
    [12]Another Gold Rush to Start in India? http://mining, about. com/od/MiningCommodities/a/Another-Gold-Rush-To-Start-In-India.htm.
    [13]张合君,王洪勇,赵伟.红透山矿地压监测的实践[J].化工矿物与加工,2008,37(6):22-24.
    [14]杨志国,赵少儒,汪令辉.基于微震监测技术的深部采场采动规律研究[J]. 中国矿业,2010,19(2):107-110.
    [15]Brown E. T., BRADY B. H. G. Trends in relationships between measured in situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences,1978,15(6):211-215.
    [16]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [17]Grobbelaar C. Some properties of rock from deep-level mine of Central Witwatersrand[J]. Association of Mine Managers of South Africa-Papers and Discussions,1958:311-330.
    [18]Malan D. F., Basson F. R. Ultra-deep mining:the increased potential for squeezing conditions [J]. Journal of the South African Institute of Mining and Metallurgy,1998,98(11/12):353-363.
    [19]Adams G. R., Jager A. J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines[J]. Journal of the South African Institute of Mining and Metallurgy,1980,80(6):204-209.
    [20]Litwiniszyn J. The phenomenon of rock bursts and resulting shock waves[J]. Min. Sci. Tech,1984,1(2):243-251.
    [21]Munson D. E. Constitutive model of creep in rock salt applied to underground room closure[J]. International Journal of Rock Mechanics and Mining Sciences, 1997,34(2):233-247.
    [22]Gurtunca R. G. Mining below 3000m and challenges for the South African gold mining industry[C]. Proc. Mech. Of Jointed and Fractured Rock. Rotterdam: A. A. Balkema,1998:3-10.
    [23]Fairhurst C. Deformation, yield, rupture and stability of excavations at great depth, Rock at Great Depth[M]. Rotterdam:A. A. Balkema,1989.
    [24]古德生,李夕兵.有色金属深井采矿研究现状与科学前沿[J].矿业研究与开发,2003,(1):1-5.
    [25]冯夏庭.深部大型地下工程开采与利用中的几个关键岩石力学问题[C].香山第175次科学会议.北京:中国环境科学出版社,2002:202-211.
    [26]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [27]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008,27(6):1278-1284.
    [28]何满潮,钱七虎.深部岩体力学研究进展[C].北京:科学出版社,2006.
    [29]宫凤强.动静组合加载下岩石力学特性和动态强度准则的试验研究[D].长沙:中南大学,2011.
    [30]Li Xibing, Zhou Zilong, Lok Tat-Seng, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):739-748.
    [31]黄达.大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D].成都:成都理工大学,2008.
    [32]Kiyoo Mogi. Experimental Rock Mechanics[M]. London:Taylor & Francis Group,2007.
    [33]HUDSON J. A., CROUCH S. L., FAIRHURS T. C. Soft, stiff and servo-controlled testing machines:A review with reference to rock failure [J]. Engineering Geology,1972,6(3):155-189.
    [34]牛学超,张庆喜,岳中文.岩石三轴试验机的现状及发展趋势[J].岩土力学,2013,34(2):600-607.
    [35]张德明.采矿手册[M].北京:冶金工业出版社,2012.
    [36]李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928.
    [37]何满潮,谢和平,彭苏萍,等.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007,(3):1-14.
    [38]Paterson M. S. Experimental deformation and faulting in Wombeyan marble[J]. Bulletin of the Geological Society of America,1958,69(4):465-467.
    [39]Von Karman T. Festigkeitsversuche under allseitigern Durck[J]. Zerr d Ver Deutscher Ing,1911,55:1749-1757.
    [40]Mogi K. Deformation and fracture of rocks under confining pressure:elasticity and plasticity of some rocks[J]. Bull Earthquake Res Inst Tokyo Univ,1965,43: 349-379.
    [41]Heard H. C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J]. Rock Deformation,1960:193-226.
    [42]Singh J. Strength of rocks at depth[C]. Rock at Great Depth. Rotterdam:A.A. Balkema,1989:37-44.
    [43]Kwasniewski M. Behavior of sandstone at high pressure[C]. Mining systems adjusted to high rock pressure conditions. Rotterdam:A.A. Balkema,1989: 37-44.
    [44]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [45]Rudnicki J. W. Geomechanics[J]. International journal of solids and structures, 2000,37:319-358.
    [46]Goetze C. The mechanism of creep in olivine[J]. Phyilosophical Transactions of the Royal Society,1978,288:99-119.
    [47]Kohlstedt D., Evans B., Mackwell S. Strength of the lithosphere:constrains imposed by laboratory experiments [J]. Journal of Geophysical Research,1995, 100:17587-17602.
    [48]Muirwood A. M. Tunnels for roads and motorwavs[J]. Quarterly Journal of Engineering Geology and Hydroggeology,1972,5:119-120.
    [49]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [50]Malan F. D. Time-dependent behavior of deep level tabular excavations in hard rock[J]. Rock Mechanics and Rock Engineering,1999,32:123-155.
    [51]Malan D. F. Simulation of the time-dependent, behavior of excavations in hard rock[J]. Rock Mechanics and Rock Engineering,2002,5(1):225-254.
    [52]Raniamurthy T. Stability of rock masses[J]. Indian Geotechnical Journal,1986, 16:1-73.
    [53]Hoek E., Brown E. Empirical strength criterion for rock masses [J]. Journal of the Geotechnical Engineering Dirision, ASCE,1980,106(9):1013-1035.
    [54]Hoek E. Strength of rock and rock masses[J]. ISRM News Journal,1986,16: 4-16.
    [55]Martin CD, Maybee WG. The strength of hard-rock pillars [J]. Int J Rock Mech Min Sci,2000,37:1239-1246.
    [56]Diederichs MS. Stress induced damage accumulation and implications for hard rock engineering[C]. roceedings of the 5th North American Rock Mechanism Symposium and the 17th Tunnelling Association of the Canada Conference. Toronto:Univ.Toronto Press,2002:3-12.
    [57]Diederichs MS. The 2003 Canadian Geotechnical Colloquium:Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling[J]. Can Geotech J,2007,44:1082-1116.
    [58]Diederichs M. S., Kaiser P. K., Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5): 785-812.
    [59]Cai M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-Insight from numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):763-772.
    [60]Li Diyuan, Li Charlie, Li Xibing. Influence of Sample Height-to-Width Ratios on Failure Mode for Rectangular Prism Samples of Hard Rock Loaded In Uniaxial Compression[J]. Rock Mechanics and Rock Engineering,2011,44(3): 253.
    [61]Gong Q. M., Yin L. J., Wu S. Y., et al. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping Ⅱ hydropower station[J]. Engineering Geology,2012,124:98-108.
    [62]李地元.高应力硬岩脆性板裂破坏和应变型岩爆机理研究[D].长沙:中南大学,2010.
    [63]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876.
    [64]DRAGON A., MROZ Z. A continuum model for plastic-brittle behavior of rock and concrete[J]. Lnt J Eng Sci,1976,17(3):121-137.
    [65]Aliakbar Golshani, Yoshiaki Okui, Et Al. A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite[J]. Mechanics of Materials,2006,(38):287-331.
    [66]KRAJCINOVIC D. The Continuous Damage Theory of Brittle Materials[J]. Part I, II, J of Appl Mech,1981,48(8):809-822.
    [67]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [68]陶履彬,夏才初.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报:自然科学版,1998,26(3):330-334.
    [69]高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [70]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [71]李夭斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [72]吴刚.红砂岩卸荷破坏特征的试验研究[C].岩土力学与工程的理论与实验大连.大连:大连理工大学出版社,1955:228-236.
    [73]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341.
    [74]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537-1543.
    [75]苗金丽,何满潮,李德建,等.花岗岩应变岩爆声发射特征及微观断裂机制[J].岩石力学与工程学报,2009,28(8):1593-1603.
    [76]殷志强.高应力储能岩体动力扰动破裂特征研究[D].长沙:中南大学,2011.
    [77]宋宏伟,王闯,等.用地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002,31(4):370-373.
    [78]ALMGREN L., SAIANG D., TOYRA J., et al. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden by seismic measurements [J]. Journal of Applied Geophysics,2007,61:1-15.
    [79]MILLARD A., MASSMANN J., REJEB A., et al. Study of the initiation and propagation of excavation damaged zones around openings in argillaceous rock[J]. Environmental Geology,2009,57(6):1325-1335.
    [80]BLUMLING P., FREDERIC B., PATRICK L., et al. The excavation damaged zone in clay formations timedependent behaviour and influence on performance assessment[J]. Physics and Chemistry of the Earth,2007,32:588-599.
    [81]WU F. Q., LIU J. Y., LIU T., et al. A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case[J]. Engineering Geology,2009,104(3-4):254-262.
    [82]Read R. S.20 years of excavation response studies at AECL's Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
    [83]Li XB, Zhou ZL, Lok TS, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. Int J Rock Mech Min Sci,2008,45(5): 739-748.
    [84]罗忆,卢文波,周创兵,等.高地应力条件下地下厂房开挖动态卸荷引起的变形突变机制研究[J].岩土力学,2011,32(5):1553-1560.
    [85]Cook N. G. W., Hoek E., Pretorius J. P. G., et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the South African Institute of Mining and Metallurgy,1966,66(10).
    [86]苏国韶,冯夏庭,江权,等.高地应力下地下工程稳定性分析与优化的局 部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    [87]Ming Tao, Xi-bing Li, Cheng-qing Wu. Characteristics of the unloading process of rocks under high initial stress[J]. Computers and Geotechnics,2012,45: 83-92.
    [88]李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C].香山第175次科学会议.北京:中国环境科学出版社,2002:101-108.
    [89]李夕兵,赵伏军,夏毅敏,等.一种可调式多滚刀切削破岩试验装置[P].中国,ZL200810143552.2,2009-06-03.
    [90]赵伏军.动静载荷耦合作用下岩石破碎理论分析及试验研究[D].长沙:中南大学,2004.
    [91]Fu-jun Zhao, Xi-bing Li, Tao Feng. Experimental study of a new multifunctional device for rock fragmentation[J]. Journal of Coal Science & Engineering,2004,10(1):29-32.
    [92]赵伏军,李夕兵,冯涛,等.动静载荷耦合作用下岩石破碎理论分析及试验研究[J].岩石力学与工程学报,2005,24(8):1315-1320.
    [93]Li Xibing, Zhao Fujun, Feng Tao, et al. A Multifunctional Testing Device for Rock Fragmentation by Combining Cut with Impact[J]. Tunnelling and Undergroung Space Technology,2004,19(4-5):526.
    [94]马春德,李夕兵,陈枫,等.单轴动静组合加载对岩石力学特性影响的试验研究[J].矿业研究与开发,2004,24(4):1-3.
    [95]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824.
    [96]Li X. B., Ma C. D. Experimental study of dynamic response and failure behavior of rock under coupled static-dynamic [C]. Proceedings of the ISRM International Symposium 3rd ARMS. In:Aoki Oed:Rotterdam:Mill Press,2004: 891-895.
    [97]左宇军.动静组合加载下的岩石破坏特性研究[D].长沙:中南大学,2004.
    [98]Zuo Yu-jun, Li Xi-bing, Zhou Zi-long, et al. Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load[J]. J. Cent. South Univ. Technol,2005,12(6):742-749.
    [99]李夕兵,左宇军,马春德.中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2006,25(5):865-874.
    [100]李夕兵,周子龙,邓仪芳,等.动静组合加载岩石力学实验方法与装置[P].中国,ZL200510032031.6,2006-02-08.
    [101]李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395.
    [102]李夕兵,宫凤强,ZHAO,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260.
    [103]宫凤强,李夕兵,刘希灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010,29(10):2076-2085.
    [104]YE Zhou-yuan, HONG Liang, LIU Xi-ling, et al. Constitutive model of rock based on microstructures simulation[J]. Journal of Central South University of Techology,2008,15(2):230-236.
    [105]叶洲元,李夕兵,周子龙,等.三轴压缩岩石动静组合强度及变形特征的研究[J].岩土力学,2009,30(7):1981-1986.
    [106]叶洲元,李夕兵,万国香,等.受三维静载压缩岩石对冲击能的吸收效应[J].爆炸与冲击[J].爆炸与冲击,2009,29(4):419-424.
    [107]李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545-1553.
    [108]ADAMS G. R., JAGER A. J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mine[J]. Journal of the South African Institute of Mining and Metallurgy,1980,6(80):204-209.
    [109]何满潮,陈新,梁国平,等.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报,2007,26(5):934-943.
    [110]赵本钧.冲击地压及其防治[M].北京:煤炭工业出版社,1995.
    [111]林景云.抚顺胜利矿的冲击地压[M].北京:煤炭工业出版社,1959.
    [112]Obert L., Duvall W. L. Duvall W L. Rock Mechanics and the Design of Structure in Rock[M]. Hoboken:John Wiley and Sons,1967.
    [113]Brady B. H. G., Brown E. T. Rock Mechanics for Underground Mining[M]. London:Champman & Hall,1993.
    [114]Cook N. G. W., Hoek E., Ortlepp W. D., et al. Rock mechanics applied to rockbursts[J]. J.S. Afr. Inst. Min. Metall,1966,(66):435-528.
    [115]Salamon M. D. G. Energy considerations in rock mechanics:fundamental results[J]. J.S. Afr. Inst. Min. Metall.,1984,8(84):233-246.
    [116]Blake F. Rockburst Mechanism[J]. Quarterly of Colorado School of Mines, 1972,(67):1-64.
    [117]唐春安,徐小荷.岩石破裂过程失稳的尖点灾变模型[J].岩石力学与工程学报,1990,2(9):100-107.
    [118]左宇军,李夕兵,赵国彦.洞室层裂屈曲岩爆的突变模型[J].中南大学学报:自然科学版,2005,36(2):311-316.
    [119]周瑞忠.岩爆发生的规律和断裂力学机理分析[J].岩土工程学报,1995,6(17):111-117.
    [120]彭祝,王元汉,李廷芥.Griffith理论与岩爆的判别准则[J].岩石力学与工程学报,1996,S1(15):491-495.
    [121]Mamsurov V. A. Prediction of Rockbursts by Analysis of Induced Seismicity data[J]. Int. J. Rock Mech. Sci.,2001,(38):893-901.
    [122]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,2(16):140-147.
    [123]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,3(6):197-204.
    [124]潘一山,章梦涛.冲击地压失稳理论的解析分析[J].岩石力学与工程学报,1996,S1(15):504-510.
    [125]陶振宇.高地应力区的岩爆及其判别[J].人民长江,1987,5(18):25-32.
    [126]宫凤强,李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报,2007,26(5):1012-1018.
    [127]谷明成,何发亮,等.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [128]HOEK E., BROUN E. T. Underground excavation in rock[M]. London:The Institute of Mining and Metallurgy,1980.
    [129]BARTON N., LIEN R., LUNDE J. Engineering classification of rock asses for the design of tunnel support[J]. Rock Mechanics and Rock ngineering,1974, 4(6):189-236.
    [130]Manchao He, Hongman Xia, Xuena Jia, et al. Studies on classification, criteria and control of rockbursts[J].2012,4(2):97-114.
    [131]马瑾,马胜利,刘力强,等.交叉断层的交替活动与块体运动的实验研究[J].地震地质,2000,22(1):65-73.
    [132]马胜利,邓志辉,马文涛,等.雁列式断层变形过程中物理场演化的实验研究(一)[J].地震地质,1995,4(17):328-335.
    [133]刘力强,马瑾.典型构造背景应变场特征及其演化趋势[J].地震地质,1995,17(4):349-356.
    [134]唐春安,乔河,徐小荷,等.矿柱破坏过程及其声发射规律的数值模拟[J].煤炭学报,1999,24(3):266-269.
    [135]刘希灵,李夕兵,宫凤强,等.露天开采台阶面下伏空区安全隔离层厚度及声发射监测[J].岩石力学与工程学报,2012,31(S1):3357-3362.
    [136]王其胜,万国香,李夕兵.动静组合加载下岩石破坏的声发射实验[J].爆炸与冲击,2010,30(3):247-253.
    [137]董陇军,李夕兵,唐礼忠,等.无需预先测速的微震震源定位的数学形式及震源参数确定[J].岩石力学与工程学报,2011,30(10):2057-2067.
    [138]Wu L. X., Cui C. Y., Geng N. G., et al. Remote sensing rockmechanics(RSRM) and associated experimental studies[J]. Int. J. Rock Mech. Min. Sci.,2000,6(37): 879-888.
    [139]刘善军,吴立新,吴焕萍,等.多暗色矿物类岩石单轴加载过程中红外辐射定量研究[J].岩石力学与工程学报,2002,21(11):1585-1589.
    [140]吴立新,刘善军,吴育华,等.遥感-岩石力学(Ⅱ)——断层双剪粘滑的热红外辐射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,2(32):192-198.
    [141]Wu L. X., Liu S. J., Wu Y. H., et al. Changes in IR with rock deformation[J]. Int. J. Rock Mech. & Min. Sci,2002,6(39):825-831.
    [142]He Manchao. Physical modeling of an underground roadway excavation in geologically 45°inclined rock using infrared thermography[J]. Engineering Geology,2011,121(3-4):165-176.
    [143]HE Man-chao, GONG Wei-li, LI De-jian, et al. Physical modeling of failure process of the excavation in horizontal strata based on IR thermography[J]. Mining Science and Technology (China),2009,19(6):689-698.
    [144]任建喜.三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,2001,16(4):387-395.
    [145]仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10(1):93-97.
    [146]钱七虎,何满潮,等.深部岩体力学基础[M].北京:科技出版社,2006.
    [147]肖明,张雨霆,陈俊涛,等.地下洞室开挖爆破围岩松动圈的数值分析计算[J].岩土力学,2010,31(8):2613-2618.
    [148]徐林生.公路隧道围岩变形监测及应用[J].公路隧道,2000,(2):1-6.
    [149]肖建清,冯夏庭,林大能.爆破循环对围岩松动圈的影响[J].岩石力学与工程学报,2010,29(11):2248-2255.
    [150]Ibsen LB, Praastrup U. The Danish rigid boundary true triaxial apparatus for soil testing[J]. Geotech Test,2002,(25):1-12.
    [151]Haimson B. True triaxial stresses and the brittle fracture of rock[J]. Pure Appl Geophys,2006,(163):1101-1130.
    [152]Chang C., Haimson B. C. True triaxial strength and deformability of the KTB deep hole amphibolite[J]. Journal of Geophysical Research,2000,8(105): 18-999.
    [153]Haimson B. C., Chang C. True triaxial strength of KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in-situ stress[J]. Journal of Geophysical Research,2002, B10(107):2-257.
    [154]OKADA T., TANI K., OOTSU H., et al. Development of in-situ triaxial test for rock masses [J]. International Journal of Japanese Committee for Rock Mechanics,2006,1(2):7-12.
    [155]OKADA T., TANI K., KANATANI M., et al. Development of in-situ triaxial test for inhomogeneous rock mass[J]. Tsuchi-to-Kiso,2006,4(54):22-24.
    [156]M. C. He, J. L. Miao, J. L. Feng. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences,2010,47: 286-298.
    [157]Lei X. L., Masuda K., Nishizawa O., et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rocks[J]. Journal of Structural Geology, (26):247-258.
    [158]Fairhurst C., Cook NGW. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface[C]. Proceedings of the First Congress on the International Society of Rock Mechanics. Lisbon:687-692.
    [159]Ortlepp WD. The behaviour of tunnels at great depth under large static and dynamic pressures[J]. Tunn Undergr Space Technol,2001,(16):41-48.
    [160]Long M. P. Infrared thermographic scanning of fatigue in metals[J]. Nucl. Eng. Des,1995,(158):363-376.
    [161]李世平,贺永年,吴振业,等.岩石力学简明教程[M].北京:煤炭业出版社,1966.
    [162]Singh S. P. The Influence of Rock Properties on the Occurrence and Control of Rockbursts[J]. Mining Science and Technology,1987,1(5):11-18.
    [163]Singh S. P. Classification of Mine Workings According to Their Rockburst Proneness[J]. Mining Science and Technology,1989,3(8):253-256.
    [164]冯涛,王文星,潘长良.岩石应力松弛试验及两类岩爆研究[J].湘潭矿业学院学报,2000,15(1):27-31.
    [165]张艳博,徐东强.岩爆在不同岩石中的模拟实验[J].河北理工学院学报,2002,24(4):8-11.
    [166]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [167]徐林生.卸荷状态下岩爆岩石力学试验[J].重庆交通学院学报,2003,22(1):1-4.
    [168]Pettitt W. S., King M. S. Acoustic Emission and Velocities Associated with the Formation of Sets of Parallel Fractures in Sandstones[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(s1):1-6.
    [169]许东俊,谭国焕.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172.
    [170]Ortlepp W. D. Grouted rock-studs as rock burst support[J]. Journal of the South Africa Institute of Mining and Metallurgy,1994,92(2):47-63.
    [171]潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49-56.
    [172]张晓春,杨挺青,缪协兴.冲击矿压模拟试验研究[J].岩土工程学报,1999,21(1):69-73.
    [173]祝方才.不同应力路径下相似材料模型破坏的试验研究[J].中南工业大学学报,2002,33(S1):8-11.
    [174]李连贵,徐文胜,等.岩爆模拟材料研制及模拟试验分析[J].华中科技大学学报:自然科学版,2001,29(6):80-82.
    [175]CHO S. H., OGATA Y., KANEKO K. A method for estimating the strength properties of a granite rock subjected to dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(4):561-568.
    [176]柴贺军,孟云伟,贾学明.柔性石笼挡土墙压力的PFC 2D数值模拟[J].2007,24(5):48-52.
    [177]刘顺桂,刘海宁.断续节理直剪试验与PFC 2D数值模分析[J].岩石力学与工程学报,2008,27(9):1828-1837.
    [178]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报,2006,25(9):1927-1931.
    [179]周健,王家全,曾远,等.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    [180]孟云伟,肖世洪,柴贺军,等.隧道开挖中破碎带支护的颗粒离散元模拟研究[J].地下空间与工程学报,2007,3(4):673-677.
    [181]孟云伟,柴贺军.颗粒流离散元在滑坡运动过程模拟中的应用[J].岩土力学,2006,27(S2):348-352.
    [182]CUNDALL P. A. A computer model for simulating progressive large scale ale movements in blocky system[C]. Proceedings of Symposium of International Rock Mechanics. Rotterdam:Balkama A,1971:8-12.
    [183]CUNDALL P. A. The measurement and analysis of acceleration in rock slopes [D]. Imperial College of Science and Technology,1971.
    [184]王泳嘉,邢纪波.离散元法及其在岩石力学中的应用[M].沈阳:东北工业学院出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700