用户名: 密码: 验证码:
人工源频率倾子测深法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前天然场源倾子张量测量信噪比低,数据不可靠以及只能发现横向不均匀地质体,不便纵向电性测深的缺点,本文在“十一五”国家科技支撑计划项目(2007CB8416608)的支持下开展了人工源频率倾子测深法(Artificial Source Frequency Tipper Sounding Method,简称,ASFTSM)的研究,试图解决高精度倾子张量测深的科学问题,为精确地球物理探测提供一种途径。
     本文从人工源的电磁测深理论出发,推导了人工源均匀半空间倾子张量的表达式,构建了频率倾子参数与大地介质电性参数的函数,从理论上论证了人工源倾子张量测深的可行性,并且采用正交复合源和频率倾子转化视电阻率的技术,有效解决场源扇区对测点布置的限制和测量结果的影响,拓宽了单个源的工作区域,实现频率倾子远区全方位测量。
     为了论证频率倾子测深的可行性,论文推导单源和正交复合人工源均匀水平层状介质的倾子张量递推公式,采用自适应数值滤波技术计算了单个电偶源、单个水平磁偶源、正交电偶源、正交水平磁偶源的典型层状模型的频率倾子响应,结果表明频率倾子能够有效反映并区分层状介质的电性特征,从而论证了人工源频率倾子张量的可行性,通过比对单源和正交复合源测深曲线,证明多源极化能够有效解决场源对测量结果的影响。
     为了研究人工源倾子张量对复杂地质体的响应规律,论文采用ASFTSM2.5维有限单元法数值计算方法,模拟计算了ASFTSM典型二维地质倾子张量各参数响应规律,研究结果表明频率倾子可以有效反映地下复杂地质体的电阻率电性纵横向变化;同时,倾子振幅、倾子椭圆率以及实感应矢量等倾子张量辅助参数,能够提取异常体的维数、边界、倾向、空间位置等地质体几何信息,为精确定位地质体提供一种途径;论文通过数值计算比对了人工源频率倾子与天然场卡尼亚电阻率对近地表二维低阻体的响应,结果表明人工源频率倾子测深法基本消除了基于卡尼亚电阻率测深的近地表的局部不均匀地质体引起的静态效应。
     论文通过理论和数值计算研究ASFTSM的纵横向探测能力,结果表明ASFTSM不仅具有探测横向不均匀地质体的能力而且也具有纵向电性分辨力,特别是对低阻异常灵敏度高;并且,从场源、测量方式、测区范围、观测方案、分辨率问题、地形影响、适用条件等方面,研究总结了ASFTSM的工作方法技术,提出了补强天然场人工源方案、倾子张量测量、远区全方位观测等技术方案。通过组装的ASFTSM发射和接收系统,在长沙月亮岛和山东招远金属找矿野外试验,论证ASFTSM在金属矿的勘探的有效性和应用前景。
     通过本文的研究,奠定了ASFTSM法的理论基础、工作方法技术和数据处理解释的原则,提供了一种地球物理勘探新方法,为地球物理精确勘探提供了一种途径。
The natural source tipper tensor survey exists disadvantages, on one hand, the limited signal-to-noise ratio makes the field data unreliable; on the other hand, the vertical electrical sounding is more difficult than the lateral prospecting.Therefore, this paper presents the Artificial Source Frequency Tipper Sounding Method (ASFTSM), with the support of11th Five-Year project (2007CB8416608) from Department of Science and Technology, to solve the problem of high-precision tipper tensor sounding and to provide a way for precise geophysical exploration.
     Based on the sounding theory of artificial source, the expressions of tipper tensor of artificial source in homogeneous half space is deduced, the function of frequency tipper parameter and electrical parameter of the earth is built, the feasibility of artificial source tipper tensor sounding is theoretically proved, the restriction of arrangement of measuring points and the affect of measurement result which caused by field source sector is solved, the work area of single source is broadened, full measurement of frequency tipper in the far zone is achieved.
     In order to demonstrate the feasibility of frequency tipper sounding, and to derive the recurrence formula of tipper tensor of the single source and compound orthogonal artificial source in homogeneous layered media, adaptive numerical filtering technique is applied to calculate the frequency tipper response of single electric dipole source, single horizontal magnetic dipole source, orthogonal electric dipole source and horizontal orthogonal source in typical layered models, the results show that frequency tipper can effectively reflect and distinguish the electrical characteristics of layered media. The feasibility of frequency tipper tensor of artificial source is demonstrated. By comparing the sounding curves of single source and orthogonal source, the affect of field source to measurement results can be solved by multi-source polarization is proved.
     In order to study the response of artificial source tipper tensor to complex geological target, the ASFTSM2.5-dimensional finite element numerical method is used to simulate the response pattern of tipper tensor parameters to ASFTSM typical two-dimensional geological models. The study shows that frequency tipper can effectively reflect the vertical and horizontal change of electrical properties of complex geological body. Meanwhile, with the aid of tipper amplitude, tipper elasticity and the real induction vector and tensor tipper, geometric information such as dimension, border, tendency and spatial location of the target can be extracted to precisely position the geological body. Through numerical calculation, the responses of artificial frequency tipper and natural field Cagniard resistivity to near-surface2-dimensional low resistivity body are compared; the result shows that the static shift caused by near-surface uneven geological body based on Cagniard resistivity sounding is basically eliminated by artificial source frequency tipper sounding method.
     The vertical and horizontal detective ability of ASFTSM is studied through theoretical and numerical calculation, the result shows that ASFTSM not only has the ability of detecting lateral heterogeneous geological body but also has longitudinal electrical resolution, it is especially sensitive to low resistivity geological body. Also, the field source, measurement, survey scope, observing program, resolution, topographic effect and applicable condition of ASFTSM are studied and summarized, technical programs such as reinforcing the natural field through adding artificial source, tipper tensor measurement, full observation in the far zone are proposed. Field tests using the assembled ASFTSM transmit and receive system at Moon Island of Changsha and Zhaoyuan Shandong show the validity and prospects of ASFTSM in metal ore exploration.
     Through a series of research in the paper, the theoretical foundation, techniques, data processing and interpretation of ASFTSM are established. ASFTSM is a new method of geophysical exploration, providing a way for accurate geophysical prospecting.
引文
[1]S.H.Ward.AFMAG------airborne and ground[J].Geophysics,1959,24(4):761-789.
    [2]陈乐寿.大地电磁测深——探测地球深部电性和物质状态的一种有效手段[J].自然杂志,2009,31(1):39-46.
    [3]Michael S.Zhdanov.Electromagnetic geophysics:Notes from the past and the road ahead[J].Geophysics,2010,75(5):75A49-75A66.
    [4]魏文博.我国大地电磁测深新进展及展望[J].地球物理学进展,2006,17(2):245-254.
    [5]汤吉,詹艳,赵国泽等.青藏高原东北缘玛沁——兰州——靖边剖面地壳上地幔电性结构研究[J].物理学报,2005,48(5):1205-1216.
    [6]李金铭.地电场与电法勘探[M].北京:地质出版社,2005.
    [7]何展翔,贺振华,王绪本等.油气非地震勘探技术的发展趋势[J].地球物理学进展,2002,17(3):473-479.
    [8]王大勇,李桐林,高远等.CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中的应用[J].吉林大学学报,2009,39(6):1134-1140.
    [9]底青云,王若.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [10]陈明生,闫述.CSAMT勘探中场区、记录规则、阴影及场源复印效应的解析研究[J].地球物理学报,2005,48(4):951-958.
    [11]杨生,鲍光淑,李爱勇.MT法中静态效应及阻抗张量静态校正法[J].中南工业大学学报,2002,33(1):8-13.
    [12]黄兆辉,底青云,侯胜利.CSAMT的静态效应校正及应用[J].地球物理学进展,2006,21(4):1290-1295.
    [13]陈明生,闫述.论频率测深应用中的几个问题[M].北京:地质出版社,1995.
    [14]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005,P119.
    [15]安志国,林长佑,底青云.几种静态效应校正方法的对比研究[A].中国地球物理2006年年会论文集[C].四川:四川出版社,四川科学技术出版社,2006.
    [16]姚治龙,王庆乙,胡玉平等.用TEM测深校正MT静态偏移的技术问题[J].地震地质,2001,23(2):257-263.
    [17]S.H.Ward,J.O'Donnell,R.Rivera,et al.AFMAG------applications and limitations [J].Geophysics,1966,31(3):576-605.
    [18]S.H.Ward,D.P.O'Brien,J.R.Parry,et al.AFMAG------interpretation[J]. Geophysi -cs,1968,33(4):621-644.
    [19]陈文华,吴明奇.音频大地电磁仪中磁传感器的设计和研究[J].河北地质学院学报,1982,Z1:14-26.
    [20]沈幼文,陈文华,李锡银.YDC-1型音频大地电磁仪的设计和研制[J].河北地质学院学报,1982,3:1-16.
    [21]于鹏,吴健生,王家林等.利用长周期MT数据研究沪浙地区深部断裂结[J].同济大学学报,2008,26(4):549-554.
    [22]于鹏,吴健生,王家林等.上海奉城——浙江湖州长周期MT剖面揭示的深部电性结构[J].地球物理学报,2008,51(2):503-510.
    [23]肖鹏飞,白登海,Ivan.M.Varentsov等.长周期大地电磁测深研究——青藏高原东部LMT响应函数及应用[J].地震地质,2010,32(1):38-50.
    [24]于鹏,王家林,吴健生.利用大地电磁测深视倾子资料来研究断裂[A].CPS/SEG2004国际地球物理会议论文集,2004,P479-482.
    [25]陈小斌,赵国泽,詹艳等.磁倾子矢量的图示分析及其应用研究[J].地学前缘,2004,11(4):626-636.
    [26]杨长福,林长佑.用大地电磁法研究构造走向及维性特征[J].西北地震学报,2002,24(1):65-71.
    [27]余年,王绪本,阚瑗珂等.倾子和视倾子的研究及在断裂解释中的应用[J].工程地球物理学报,2007,4(4):275-281.
    [28]陈清礼,胡文宝,李金铭等.埋藏球体的倾子响应特征分析[J].石油天然气学报,2007,29(3):75-78.
    [29]林长佑,武玉霞,罗东山等.频率测深中单分量视电阻率—相位联合反演[J].煤田地质与勘探,1993,21(3):46-52.
    [30]陈军营,林长佑,王书明等.电偶源频率电磁测深视电阻率多参量联合反演效果检验[J].西北地震学报,2001,23(3):279-285.
    [31]K.Vozoff.The effect of overburden on vertical component anomalies in AFMAG and VLF explorations compter model study[J].Geophysics,36(1):53-57.
    [32]Roy J.Greenfield.The electromagnetic response of a conducting disk for use in AFMAG interpretation[J]. Geophysics,1971,36(4):723-738.
    [33]W.M.MacInnes,B.Collet,P.A.Probst,et al.Study of the audio-frequency magnetic field penetration in cadmium using the radio-frequency size effect[J] Journal of Physics,1977,7(4):655-666.
    [34]V.F.Labson,A.Becker,H.F.Morrison,et al.Geophysical exploration wi-th audiofrequency natural magnetic fields[J].Geophysics,1985,50(4):656-664.
    [35]J.F.Hermance,G.A.Neumann.Magnetic variations in the reconnaissance of sedimentary basins:Field procedure and generalized inversion of short-period data from the Rio Grande rift[J].Geophysics,1990,55(12):1567-1576.
    [36]Petr Kuzmin,Bob Lo,Ed Morrison.Final report on modeling, interpretation methods and field trials of an existing prototype AFMAG system[R].Miscellaneous Data Release 167,Ontario Geological Survey,2005.
    [37]Bob Lo,Petr Kuzmin,Ed Morrison.Field Tests of Geotech's Airborne AFMAG EM System[A]. AESC2006,Melbourne,2006.
    [38]Bob Lo,Michael Zang.Numerical modeling of Z-TEM(airborne AFMAG) responses to guide exploration strategies [J].SEG Expanded Abstracts, 2008,27(1):1098-1102.
    [39]Bob Lo,Jean Legault,Petr Kuzmin,et al.Advances in airborne EM:Introducting ZTEM[A].11th SAGA Biennial Technical Meeting and Exhibition, waziland,2009,P 101-104.
    [40]Elliot Holtham,Douglas W. Oldenburg.Three-dimensional inversion of ZTEM data[J].Geophysical Journal International,2010,182,168-182.
    [41]Porphyry target in Arizona[EB/OL]. [2010-12-5]. http://explorationgeophy sics.info/?p= 1444.
    [42]Mustang in hunting for nickel,copper and platinum[EB/OL]. [2010-11-28]. http://explorationgeophysics.info/?p=1431.
    [43]Airborne EM survey in Chile for copper-molybdenum project[EB/OL]. [2011-1-7]. http://explorationgeophysics.info/?p=1546.
    [44]Geophysical surveys preceded the discovery in Alaska[EB/OL]. [2011-1-19].http://explorationgeophysics.info/?p=1590.
    [45]Uranium exploration update on Athabasca basin with ZTEM[EB/OL]. [2011-1-13]. http://explorationgeophysics.info/?p=1569.
    [46]John Joseph.The feasibility of the airborne fluxgate magnetometer as an exploration tool-results from three dimensional numerical modeling[A].Regolith,HaHndorf,South Australia,2006.
    [47]Fiona Simpson,Karsten Bahr.Practical Magnetotellurics[M]. Cambridge University Press,2005.
    [48]Vicheslav V.Spichak.Electromagnetic sounding of the earth's interior[M].Elsevier,2007.
    [49]Mark N.Berdichevsky, Vladimir I.Dmitriev.Models and Methods of Magnetotellurics[M].Springer,2008.
    [50]S.N.Prasad.Simulated annealing 2-D nonlinear inversion of Geomagnetic Deep Sounding data near Ujjain-Guna,India[J].Pure and Applied Gephysics,1999,154:343-363.
    [51]Daniel Pringle,Malcolm Ingham,Don McKnight,et al.Magnetovariational soundings across the South Island of New Zealand:difference induction arrows and the Southern Alps conductor[J]. Physics of the Earth and Planetary Interiors,2000,119:285-298.
    [52]M.N.Berdichevsky,V.I.Dmitriev,N.S.Golubtsova,et al.Magnetovariat-ional Soundings:New Possiblities[J].Physics of the Solid Earth,2003,39(9):701-727.
    [53]Marco Gambetta,Egidio Armadillo,Cosmo Carmisciano,et al.Magnetic Base Station Deceptions,a magneto-variational analysis along the Ligurian Sea coast,Italy[J].Annals of Geophysics,2007,50(3):397-406.
    [54]P.Yu.Pushkarev,T.Ernst,J.Jankowski,et al.Deep resistivity structu-re of the Trans-European Suture Zone in Central Poland[J]. Geophys.J.Int.,2007,169:926-940.
    [55]A.E.Medin,R.L.Parker,Steven Constable.Making sound inferences from geomagnetic sounding[J].Physics of the Earth and Planetary Interiors,2007,160:51-59.
    [56]E.Yu.Sokolova,I.M.Varentsov,BEAR Working Group.Deep array electrom-agnetic sounding on the Baltic Shield External excitation model and implications for upper mantle conductivity studies[J].Tectonophys-ics,2007,445:3-25.
    [57]H.Brasse,G.Kapinos,Yuguo Li,et al.Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions[J]. Physics of the Earth and Planetary Interiors,2009,173:7-16.
    [58]U.Schmucker,K.Spitzer,E.Steveling.An electromagnetic sounding exp-eriment in Germany using the vertical gradient of geomagnetic variations observed in a deep borehole[J].Geophys.J.Int.,2009,178:1273-1288.
    [59]H.Shimizu,T.Koyama,K.Baba,et al.Three-dimensional geomagnetic response functions for global and semi-globle scale induction problems[J].Geophys.J.Int.,2009,178:123-144.
    [60]M.N.Berdichevsky,V.A.Kuznetsov,N.A.Pal'shin.Analysis of Magneto-Variational Response Functions[J]. Physics of the Solid Earth,2009,45(3):179-198.
    [61]B.D.Habibian,H.Brasse,B-Oskooi,et al.The conductivity structure across the Trans-European Suture Zone from magnetotelluric and magnetovariational data modeling[J]. Physics of the Earth and Planetary Interiors,2010,183:377-386.
    [62]闫述.基于三维有限元数值模拟的电和电磁探测研究[D].西安:西安交通大学,2003.
    [63]S.H.Ward地球物理用电磁理论[M].北京:地质出版社,1978.
    [64]席振铢,徐培渊,龙霞等.正交水平磁偶源的电磁场分布规律[J].地球物理学报,2011,54(6):1642-1648.
    [65]M.N.Nabighian勘查地球物理电磁法(第一卷理论)[M].北京:地质出版社,1982.
    [66]A.A.Kaufman,G.V.keller.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [67]朴华荣.电磁测深法原理[M].北京:地质出版社,1988.
    [68]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [69]A.Dey,S.H.Ward.Inductive sounding of a layered earth with a horizaon-tal magnetic dipole[J].Geophysics,1970,35(4):660-703.
    [70]A.Pfaffhuber.Development and test of a Controlled source MT method in the frequency range 1 to 50 kHz[D].Berlin:Technical University Berlin,2001.
    [71]陈乐寿,刘国栋.大地电磁测深研究[M].北京:地震出版社,1984.
    [72]Louis Cagniard.Basic theory of the magneto-telluric method of geophysical prospecting[J].Geophysics,1953,18(3):605-635.
    [73]陈乐寿,刘任,王天生.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [74]T. Cantwell.Detection and analysis of low frequency magnetotelluric signals[D].U.S. A.:M.I.T.,1960.
    [75]Swift,Charles Moore,Jr.A magnetotelluric investigation of electric-al conductivity anomaly in the south-western United States[D]. U.S.A.:M.I.T.,1967.
    [76]H.F.Morrison,E.Wonbell,S.H.Ward. Analysis of earth impedance using magnetotelluric field[J] Journal of Geophysical Research,1968,73:2769-2778.
    [77]W.E.Sims,F.H.Bostick,H.W.Smith.The estimation of magnetotelluric impedance tensor elements from measured data[J].Geophysics,1971,36(5):938-942.
    [78]K.Vozoff.The magnetotelluric method in the exploration of sedimen-tary basins[J].Geophysics,1972,37(1):98-141.
    [79]W.E.Sims,F.H.Bostick.Methods of magnetotelluric analy sis [R].Univ. Texas,Electr.Geophys.Res.Lab.,1969,58.
    [80]D.R.Word,H.W.Smith,F.X.Bostick.A investigation of the magnetotell-uric tensor impedance method[R]. Univ. Texas,Electr.Geophys.Res. Lab.,1970,82.
    [81]徐世浙.地球物理中有限单元法[M].北京:科学出版社,1994.
    [82]席振铢,龙霞,董晨等.EH-4系统中工频干扰的处理与改进[J].地球物理学进展,2010,25(3):1105-1109.
    [83]龙霞.EH4系统电磁测深数据处理与改进[D].长沙:中南大学,2010.
    [84]刘洋.强工频干扰波的提取与消除方法[J].石油物探,2003,42(2):154-159.
    [85]高少武,周兴元,蔡加铭.时间域单频干扰波的压制[J].石油地球物理勘探,2001,36(1):51-55.
    [86]张建平,李庆武,张耀举.瞬变电磁仪中消除50 Hz干扰的自适应滤波方法[J].测控技术,1999,18(6):67-68.
    [87]杜丽冰.改善ECG中50 Hz干扰的抑制性能[J].环境技术:1999(1):8-10.
    [88]RJ.Banks.The effects of non-stationary noise on electromagnetic response estimates.Geophysical Journal International,1998,135(2):553-563.
    [89]冯万杰.可控源音频磁场测深法2.5D正演计算[D].长沙:中南大学,2012.
    [90]A.Sommerfeld.Uber die Ausbreitung der Wellen in der drahtlosen Tele-graphie[J].Annalen der Physik,1926,81(4):1135-1153.
    [91]M.R.Foster.Mutual impedance of grounded wires lying on the surface of the earth[J].Physics review,1932,41(4):408-419.
    [92]J.Riordan,E.D.Sunde.Mutual impedance of grounded wires for horiz-ontally stratified two-layer earth[J].Bell System Tech.J.,1933,12:162.
    [93]G.W.Hohmann.Electromagnetic coupling between grounded wires at the surface of a two-layer earth[J].Geophysics,1973,38:854-863.
    [94]A.Dey,H.F.Morrison.Electromagnetic coupling in frequency and time-domain induced polarization surveys over a multilayered earth[J].Geophysics,1973,38:380-405.
    [95]J.C.Wynn,K.L.Zonge.EM coupling,its intrinsic value,its removal and the cultural coupling problem[J].Geophysics,1975,40:831-850.
    [96]G.N.Watson.A treatise on the theory of Bessel functions[M].London:Cambridge University Press,1962.
    [97]A.D.Chave.Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J].Geophysics,1983,48(12):1671-1686.
    [98]G.Kunetz.Principles of direct current resistivity prospecting[M]. Berlin:Gebruder-Borntraeger,1966.
    [99]D.P.Ghosh.The application of linear filter theory to the direct int-erpretation of geoelctrical resistivity sounding measurments[J]. Geophys.Prosp.,1971,19(2):192-217.
    [100]O.Koefoed.A note on the linear filter method of interpreting resi-stivity sounding data[J]. Geophysical Prospectin,1972,20(2):403-405.
    [101]J.R.Wait.Mutual electromagnetic coupling of loops over a homogen-eous ground[J].Geophysics,1955,30(3):630-736.
    [102]J.R.Wait.Induction by an oscillating magnetic dipole over a two-lay-er ground[J].Appl.Sci.Res.,1957,7(1):73-80.
    [103]G.V.Keller,F.C.Frischknecht.Electrical methods in geophysical pro-specting[M].Oxford:Pergamon,1966.
    [104]F.C.Frischknecht.Fields about an oscillating magnetic dipole over a two-layer earth,an application to ground and airborne electromag-netic surveys[J].Quart.Colorado School of Mines,1967,62:326.
    [105]L.L.Vanyan.Electromagnetic depth sounding[M].New York:Consultauts Bureau,1967.
    [106]W.L.Anderson.Numerical integration of related HTs of orders 0 and 1 adaptive digital filtering[J].Geophysics,1979,44(7):1287-1305.
    [107]W.L.Anderson.Fast Hankel Transforms unsing related and lagged con-volutions [J].ACM Transactions on Mathematical Software,1982,8(4):344-368.
    [108]H.K.Johansen,K.Sorensen.Fast Hankel Transforms[J].Geophysical Pr-ospecting,1979,27:876-901.
    [109]N.B.Christensen.Optimized fast Hankel Transform filters [J].Geophy. Prosp.,1990,38(5):545-568.
    [110]D.Guptasarma,B.Singh.New digital linear filters for Hankel Jo and J1 transforms[J].Geophysical Prospecting,1997,45:745-762.
    [111]P.Cornille.Computation of Hankel transforms [J].SIAM Review,1972, 14(2):278-285.
    [112]A.D.Chave.Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J].Geophysics,1983,48(12):1671-1686
    [113]W.L.Anderson.A hybrid fast Hankel transform algorithm for electr-magnetic modeling[J].Geophysics,1989,54(2):263-266.
    [114]Sri Niwas,M.Israil.Computation of apparent resistivities using an exponential approximation of kernel functions[J].Geophysics,1986,51(8):1594-1602.
    [115]P.K.Gupta,S.Niwas,N.Chaudhary.Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function[J].J.Earth Syst.Sci.,2006,115(3):267-276.
    [116]唐保山.瞬变电磁法中心回线装置一维正反演研究[D].北京:中国地质大学,2008.
    [117]杨云见.中心回线瞬变电磁资料处理方法研究[D]成都:成都理工大学,2006.
    [118]龚强,胡祥云,孟永良.基于快速汉克尔变换的CSAMT一维正演[J].煤田地质与勘探,2008,36(1):71-73.
    [119]张伟,王绪本,覃庆炎.汉克尔变换的数值计算与精度的对比[J].物探与化探,2010,34(6):753-755.
    [120]M.M.Goldman,C.H.Stoyert.Finite-difference calculations of the tra- nsient field of an axially symmetric earth for vertical magnetic dipole excitation[J].Geophysics,1983,48(7):953-963.
    [121]周熙襄,钟本善,江玉乐.点源二维电阻率法有限差分正演计算[J].物化探计算技术,1983,2:1-9.
    [122]谭捍东,余钦范,John Booker等.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705-711.
    [123]徐凯军,李桐林.垂直有限线源三维地电场有限差分正演研究[J].吉林大学学报(地球科学版),2006,36(1):137-147.
    [124]Z.Xiong,A.C.Tripp.3-D electromagnetic modeling for near-surface t-argets using integral equations[J].Geophysics,1997,62(4):1097-1106.
    [125]D.B.Avdeev,A.V.Kuvshinov,O.V.Pankratov,et al.Three-dimensional i-nduction logging problems,Part Ⅰ:An integral equation solution and model comparisons[J].Geophysics,2002,67(2):413-426.
    [126]Z.Xiong.Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations[J].Geophysics,1992,57(12):1556-1561.
    [127]Z.Xiong,A.C.Tripp.Electromagnetic scattering of large structures in layered earth using integral equations[J].Radio Science,1995,30(4):921-929.
    [128]张辉.复电阻率三维电磁场正反演研究[D].吉林:吉林大学,2006.
    [129]田宪谟,黄兰珍.电法勘探用边界单元法[M].北京:地质出版社.1990.
    [130]徐世浙.地球物理中的边界单元法[M].北京:科学出版社,1995.
    [131]黄兰珍,田宪谟,寸树苍.点源场电阻率法二维地形改正的边界元法[J].物探化探计算技术,1986,8(3):201-208.
    [132]阮百尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法[J].地球科学—中国地质大学学报,2007,32(1):130-134.
    [133]鲍光淑,孙紫英.用边界积分发对地下目标体基本定位[J].中南大学学 报,2000,31(2):102-105.
    [134]底青云,Martyn Unsworth,王妙月.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟[J].地球物理学报,2004,47(4):723-730.
    [135]底青云,Martyn Unsworth,王妙月.有限元法2.5维CSAMT数值模拟[J].地球物理学进展,2004,19(2):317—324.
    [136]J.H.Coggon.Electromagnetic and electrical modeling by the finite-element method[J].Geophysics,1971,36(1):132-155.
    [137]P.E.Wannamaker,J.A.Stodt,L.Rijo.Two-dimensional topographic resp-onse in magnetotellurics modeled using finite element[J].Geophysics,1986,51(11): 2131-2144.
    [138]M.J.Unsworth.Electromagnetic induction by a finite electric dipole source over a 2-D earth[J].Gephysics,1993,58(1):198-214.
    [139]周熙襄,钟本善,严忠琼等.有限单元法在直流电法勘探正问题中的应用[J].物探化探计算技术,1980,3:57-65.
    [140]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [141]徐世浙.用边界单元法模拟二维地形对大地电磁场的影响[J].地球物理学报,1992,25(3):380-388.
    [142]闫述,石显新,陈明生.瞬变电磁法的探测深度问题[J].地球物理学报,2009,52(6):1583-1591.
    [143]H.M.Evjen.Depth factor and resolving power of electrical measurem-ents[J].Geophysics,1938,3(2):78-95.
    [144]A.Roy,A.Apparao.Depth of investigation in direct current methods[J]. Geophysics,1971,36(5):943-959.
    [145]B.B.Bhattacharya,M.K.Sen.Depth of investigation of collinear electrode arrays over homogeneous anisotropic half-space in direct current methods[J].Geophyscis,1981,46(5):768-780.
    [146]R.D.Barker.Depth of investigation of collinear symmetrical four-electrode arrays[J].Geophysics,1989,54(8):1031-1037.
    [147]W.O.Douglas,Y.Li.Estimating depth of investigation in DC resistive-ty and IP surveys[J].Geophysics,1999,64(2):403-416.
    [148]B.S.Johannes,K.Bahr.Optimization of signal-to-noise radio in DC so-undings[J].Geoohysics,2000,65(5):1495-1500.
    [149]R.GVan Nostrand.Limitations on resistivity methods as inferred fr-om the buried sphere problem[J].Geophysics,1953,18(2):423-433.
    [150]A.Apparao,V.S.Sarma.The modified pseudo-depth section as a tool in resistivity and IP prospecting-a case history [J].Pure and Applied Geophysics,1983,121(1):91-108.
    [151]R.K.Verma,K.Mallick.Detectability of intermediate conductive and resistive layers by time-domain electromagnetic sounding[J].Geophys-ics,1979,44(11):1862-1878.
    [152]R.Kumar,S.V.S.Sarma,P.V.S.Narayan.Detectability of an intermedia- te layer by magnetotelluric sounding[J].Geophysics,1981,46(3):333-335.
    [153]朱仁学,周云轩,孟令顺等.MT方法对一维地质体探测能力的研究[J].长春科技大学报,2001,31(3):302-305.
    [154]B.R.Spies.Depth of investigation in electromagnetic sounding metho-ds[J].Geophysics,1989,54(7):872-888.
    [155]H.P.Huang.Depth of investigation for small broadband electromagnet-tic sensors[J].Geophysics,70(6):G135-G142.
    [156]朱凯光,林君,凌振宝等.高频垂直磁偶极子电磁场勘探深度的研究[J].吉林大学学报(地球科学版)2002,32(4):390-393.
    [157]安志国,底青云.CSAMT法对低阻薄层结构分辨能力的探讨[J].地震地磁观测与研究,2006,27(2):32-38.
    [158]吴英隆.直流电测深对高阻和低阻薄层的探测能力[J].桂林冶金地质学院学报,1994,14(2):174-182.
    [159]M.Leppin.Electromagnetic modeling of 3-D sources over 2-D inhomog-eneties in the time domain[J].Geophysics,1992,57(8):994-1003.
    [160]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.
    [161]王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元法[J].地球物理学报,2003,46(6):855-862.
    [162]熊彬,阮百尧.基于电场、磁场分离的瞬变电磁2.5维正演算法[J].中国科技论文在线,2009,7:1-9.
    [163]孟永良,罗延钟.电偶源CSAMT法二维正演的有限单元算法[A].勘查地球物理勘查地球化学文集(第20集电法专辑),北京:地质出版社,1996.
    [164]Yuguo Li, Kerry Key.2D marine controlled-source electromagnetic modeling: Part1—An adaptive finite-element algorithm[J].Geophysics,2007,72(2):51-62.
    [165]Yuguo Li, Steven Constable.2D marine controlled-source electromagn-etic modeling:Part 2—The effect of bathymetry[J].Geophysics,2007,72(2):63-71.
    [166]底青云,王妙月,石昆法,等.V6多功能系统及其在CSAMT勘查应用中的效[J].地球物理学进展,2002,17(4):102-109.
    [167]吴正刚,雷旭友,余年.基于V8系统大地电磁数据格式转换及实现[J].工程地球物理学报,2009,6(5):603-606.
    [168]徐敏山.V8电磁法系统的找矿应用[J].物探化探计算技术,2006,28(S):53-59.
    [169]郭文波,王凯,王善勋等.GDP-32Ⅱ多功能电法仪在资源和工程勘察中的应用效果[J].矿产与地质,2004,18(106):287-590.
    [170]王银.CSAMT法在洪河特大桥勘探中的应用[J].铁道建筑技术,2008(3):58-61.
    [171]张作伦,曾庆栋,于昌明等.利用EH4、GDP-32Ⅱ预测内蒙新民煤田煤系地层空间特征[J].地球物理学进展,2009,24(1):303-308.
    [172]EMI Electro-Magnetic Instruments, Inc, Operation Manual For Stratag-em systems running IMAGEM Ver.2.19,2007.
    [173]程德福,王君,李秀平等.混场源电磁法仪器研制进展[J].地球物理学进展,2004,19(4):778-781.
    [174]王言章,卢浩,程德福等.基于多频信号的混场源电磁发射系统设计[J].电波科学学报,2009,24(5):874-878.
    [175]刘天佑.应用地球物理数据处理采集与处理[M].武汉:中国地质大学出版社,2008.
    [176]杨斌,彭省临,席振铢等.招平断裂大尹格庄—后仓段深部矿体定位预测研究[R].长沙:中南大学,2010.
    [177]沈昆,胡受奚,孙景贵等.山东招远大尹格庄金矿成矿流体特征[J].岩石学报,2000,16(4):542-549.
    [178]邓军,徐守礼,吕古贤等.胶东西北部断裂构造与成矿作用研究[J].现代地质,1996,10(4):502-511.
    [179]张贤达.现代信号处理[M].北京:清华大学出版社,1999.
    [180]A.Saucier,M.Marchant,M.Chouteau. A fast and accurate frequency estimation method for canceling harmonic noise in geophysical records[J]. Geophysics, 2006,71(1):7-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700