用户名: 密码: 验证码:
中华鲟繁殖的关键环境因子及适宜性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文通过文献检索和资料收集,较为系统地总结了前人对中华鲟繁殖活动的生态水文、水力学需求研究成果。在前人研究的基础上,选取屏山水文站为典型中华鲟历史产卵场(金堆子、偏岩子和三块石)的代表性水文站,宜昌水文站为中华鲟葛洲坝产卵场代表性水文站,论文采用屏山水文站(1956-1980)和宜昌水文站(1983-2012)实测水文数据,基于中华鲟历史产卵场和葛洲坝产卵场的繁殖活动调查与监测数据,根据统计学方法,对比分析了中华鲟历史产卵场和葛洲坝产卵场产卵时的水位、流量、水温和泥沙含量条件,并讨论了中华鲟在繁殖年度内性腺发育可能需要的有效积温。
     论文根据实际地形数据,建立了葛洲坝中华鲟产卵场三维水动力数学模型,以2004年11月份产卵场实测流场率定和验证了产卵场三维水动力数学模型参数。根据葛洲坝下中华鲟产卵场1988-2010年51次中华鲟栖息位置的监测数据,采用三维水动力数学模型复原了历次监测活动时中华鲟产卵场流场,提取了中华鲟栖息位置的水动力特征,根据统计学方法,提出了中华鲟栖息的流速、水深、佛汝德数适宜曲线及适宜面积,提出了中华鲟适宜的生态流量。
     论文根据实际地形数据建立了三峡水库立面二维水温模型,并经实测数据率定和验证了模型主要参数。采用产卵场三维水动力数学模型和三峡库区水温模型,分析了三峡工程运行对中华鲟繁殖的水动力和水温条件影响。结合三峡水库立面二维水温模型,探讨了三峡工程运行后中华鲟繁殖活动推迟的原因。讨论了不同水文因子在中华鲟繁殖活动中的影响作用。
     本论文的主要研究成果为:
     1、中华鲟繁殖活动的水文过程需求并不明确
     在葛洲坝产卵场,中华鲟产卵活动发生时,较适宜的水位范围为40.05-46.17m,较适宜的流量范围为7000-16000m3/s,较适宜的泥沙含量为0.095-0.638kg/m3,较适宜的17.9-20.9℃。然后根据对中华鲟历史产卵场和现存产卵场水文数据分析,中华鲟产卵日虽处于历年10月份后退水过程中。但是,通过产卵日与前一日水文数据的分析比较,发现水位、流量、水温和泥沙含量下降的趋势并不明显。有的产卵日水位、流量、水温和泥沙含量处于上升过程,有的产卵日处于下降过程。
     2、不同水文因子在中华鲟繁殖活动中具有不同的作用。
     根据对中华鲟历史数据的分析,各水文指标中,水温决定了中华鲟产卵的时间季节,水位、流量决定了中华产卵的具体时间。然而,在三峡水库蓄水后,受水库“滞温效应”的影响,水温因子变得难以满足,明显变成了影响中华鲟产卵时间的关键性因子,多数情况下,水位、流量条件较水温更容易满足。
     3、中华鲟成鱼从长江口进入干流后,其性腺发育有一定的水温积温需求。
     根据对葛洲坝下中华鲟产卵场多次产卵活动繁殖年度内水温积温的分析,以13℃为性腺发育起始水温,三峡水库建成前,活动保温为5475±250℃·d,有效积温为2043±54℃·d;在三峡水库建库后,活动积温为6039±194℃·d,有效积温为2273±87℃·d。三峡水库建库后,受水库“滞温效应”影响,水温积温明显增加。
     4、中华鲟繁殖期有特定的生态流量需求。
     根据对监测中华鲟位置水动力特征的复原分析,中华鲟偏好栖息于流速较大、水深较深的位置。综合分析中华鲟偏好栖息环境及产卵规模与产卵流量的关系,推断出中华繁殖期适宜流量约为7000-16000m3/s,较佳的生态流量为9000-11000m3/s。
     5、中华鲟产卵具体时间可能与中华鲟性腺发育所需的有效积温有一定关系。
     通过研究发现,在2003-2009年期间中华鲟产卵日大部分处于达到有效积温2273℃·d前后5d内。根据当年的有效积温发展情况,可大致推断出当年的产卵时间。该发现可为中华鲟繁殖期生物监测及改善中华鲟繁殖条件的生态流调度提供支撑。
     本论文的主要主要创新点为:
     1、本研究综合分析了各主要环境因子对中华鲟繁殖活动的影响。
     研究各主要环境因子对中华鲟繁殖活动的影响,对于保护中华鲟、改善中华鲟繁殖的环境具有重要意义。本研究综合分析了在中华鲟原产卵场水文条件、葛洲坝产卵场三峡水库蓄水前后水文条件,揭示了不同地点、不同时期,各水文因子的中华鲟繁殖活动中所起的作用。
     2、本研究通过数学模型的方法推测了葛洲坝中华鲟繁殖活动推迟的原因。
     研究通过采用数学模型方法,分析了中华鲟繁殖活动推迟的原因。通过折算后中华鲟产卵日期序列统计特性的分析及中华鲟自然繁殖需求分析,认为尽管水温是中华鲟产卵繁殖的关键性因子,但它只是决定中华鲟产卵季节的上限和下限。金沙江下游及长江上游“退秋水”,是中华鲟产卵的一个主要诱因,其从长江上游因三峡水库滞缓而导致的输移到宜昌的时间后移,是造成三峡蓄水后中华鲟自然繁殖日期后移的一个主因。
     3、本研究通过数据分析,提出中华鲟繁殖活动所需的活动积温及有效积温及产卵日推断方法。
     研究通过数据分析,初步提出了中华鲟性腺发育所需的活动积温和有效积温,并由此推断出产卵日发生的大概日期。在三峡水库建库后,中华鲟繁殖年度有效积温为2273±87℃·d,中华鲟产卵日大部分处于达到有效积温2273℃·d前后5d内。由此可根据当年的有效积温发展情况,大致推断出当年的产卵时间。
This paper through the literature search and data collection, and systematically summarizes the Chinese sturgeon propagation activities of the ecological hydrology, hydraulics research results on demand. On the basis of previous studies, selection of Pingshan hydrological station is a typical Chinese sturgeon spawning ground (JinDuiZi, PianYanZi and SanKuanShi) representative hydrologic station, Yichang hydrological station for Chinese sturgeon spawning ground of Gezhouba Dam representative hydrological stations, the Pingshan hydrological station (1956-1980) and the Yichang hydrological station (1983-2012) measurement hydrological data, reproductive activity survey and monitoring data of Chinese sturgeon spawning and spawning ground of Gezhouba Dam history based on, according to the statistics, comparison and analysis of the Chinese sturgeon spawning and spawning ground of Gezhouba Dam historical spawning water level, flow, temperature and sediment conditions, and discusses the Chinese sturgeon in the breeding year gonadal development and effective accumulated temperature may need.
     According to the actual terrain data, the establishment of the Gezhouba Dam Chinese sturgeon spawning field3-D hydrodynamic mathematical model in2004November, spawning measured flow field calibration and validation of the spawning grounds of three-dimensional hydrodynamic mathematical model parameters. According to the Gezhouba Dam Chinese sturgeon spawning ground monitoring data of51times1988-2010year Chinese sturgeon habitat location, using a three-dimensional hydrodynamic model to recover the previous monitoring activities of Chinese sturgeon spawning field, extraction of hydrodynamic characteristics of Chinese sturgeon habitat position, according to statistics, the Chinese sturgeon habitat velocity, depth, Buddha Ru de appropriate number curve and suitable area, the ecological flow of Chinese sturgeon suitable.
     The Three Gorges Reservoir vertical two-dimensional temperature model according to the real terrain data and measured data, the calibration and validation of the main parameters of the model. The spawning three-dimensional hydrodynamic mathematical model and the Three Gorges reservoir water temperature model, analyzes the impact of the Three Gorges project operation of the Chinese sturgeon propagation of hydrodynamic and temperature conditions. Based on the Three Gorges Reservoir vertical two-dimensional temperature model, the reason of the Three Gorges project operation after the Chinese sturgeon propagation delay. Discusses the role of different hydrological factor influence in the Chinese sturgeon propagation activities in the.
     The main research results in this paper for:
     1. Hydrological process needs inChinese sturgeon breeding activity is not clear.In the spawning ground of Gezhouba Dam. Chinese sturgeon spawning event occurs, water level range is suitable for40.05-46.17m. flow range is suitable for7000-16000m3/s, sediment content is suitable for0.095-0.638kg/m3,the suitable17.9-20.9℃. Then according to the spawning and existing spawning of Chinese sturgeon hydrological data analysis of history. Chinese sturgeon spawning days are in the calendar year October back water process. However, through the analysis and comparison of spawning day and the day before the hydrological data, found the water level, flow, temperature and sediment content downward trend is not obvious. Some egg, flow, water temperature and water level of sediment content in the rising process, some spawning in the fall.
     2, different hydrologic factors have different functions in Chinese sturgeon reproduction.Based on the analysis of the historical data, the hydrological indicators, the decision of the Chinese sturgeon spawning time season, water level, flow determines the specific time of spawning. However, in the Three Gorges reservoir impounding, affected by the reservoir "stagnation temperature effect", the water temperature factor becomes difficult to meet, obviously becomes the key factor influencing Chinese sturgeon spawning time, in most cases, water level, flow condition is easier to satisfy the water temperature.
     3. Chinese sturgeon fish from the river mouth into the mainstream, have accumulated certain the gonadal development demand of water temperature.Based on the analysis of Gezhouba Dam under the Chinese sturgeon spawning ground multiple spawning activity propagation of annual water temperature at13℃accumulated temperature, initial temperature for gonadal development, the construction of the Three Gorges reservoir, movable insulation is5475±250℃·d, the effective accumulated temperature of2043±54℃·d; in the Three Gorges reservoir, the movable temperature to6039±194℃·d, the effective accumulated temperature of2273±87℃·d. After the Three Gorges reservoir, affected by the reservoir "stagnation temperature effect", water temperature temperature increase.
     4, Chinese sturgeon breeding ecological flow requirement for specific.According to the analysis of the monitoring of Chinese sturgeon position of hydrodynamic characteristics of Chinese sturgeon habitat restoration, preference to high velocity, water depth deep position. Comprehensive analysis of the relationship between Chinese sturgeon habitat and spawning preference scale and spawning flow, deduce the breeding period suitable flow is about 7000-16000m3/s, the ecological flow better for9000-11000m3/s.
     5, Chinese sturgeon spawning time may have some relationship with the effective accumulated temperature of Chinese sturgeon gonad development required.Through the study found that, in the2003-2009period of Chinese sturgeon spawning, most effectively accumulated temperature2273℃·d and5d. According to the development of effective accumulated temperature of year, can roughly infer the spawning time. The ecological flow scheduling can be found for the Chinese sturgeon propagation period of biological monitoring and improve Chinese sturgeon propagation conditions provide support.
     The main innovative points of this paper are:
     1, this study analyzed the effects of main environmental factors on Chinese sturgeon breeding activity.Study on the influence of environmental factors on Chinese sturgeon breeding activity, have important significance for the protection of Chinese sturgeon, Acipenser sinensis breeding environment improvement. This study analyzes the impoundment of the Three Gorges Reservoir before and after spawning field hydrological conditions in Chinese sturgeon spawning ground of hydrological conditions. Gezhouba Dam native, reveals the different locations, different time, different hydrological factors in the Chinese sturgeon propagation activities.
     2, this study through the method of mathematical model that Gezhouba Dam Chinese sturgeon breeding activities postponed.Research by using the method of mathematical model, analyzed the reason of Chinese sturgeon propagation delay. Through the analysis of the statistical characteristics of date sequence after conversion of Chinese sturgeon spawning of Chinese sturgeon natural reproduction and demand, although the water temperature is the key factor of the sturgeon breeding, but it only determines the upper and lower limits of Chinese sturgeon spawning season. The lower reaches of the Jinsha River and the upper reaches of the Yangtze River "from autumn", is a major cause of Chinese sturgeon spawning, transport it from the upper reaches of the Yangtze Three Gorges reservoir caused by stagnant time to Yichang after the shift, a main reason is caused by the date of Chinese sturgeon natural reproduction after the impoundment of Three Gorges Project shift.
     3, this study through the analysis of the data, the required Chinese sturgeon breeding activity of active accumulated temperature and effective accumulated temperature and spawning date inference method.Study through the analysis of the data, puts forward the Chinese sturgeon gonad development required the active accumulated temperature and effective accumulated temperature, and then to infer the probable date of production of eggs occurred. In the Three Gorges reservoir, the Chinese sturgeon propagation of annual effective accumulated temperature of2273±87℃·d, Chinese sturgeon spawning days in the most effective accumulated temperature of2273℃·d and5d. Thus according to the effective accumulated temperature of development then, deduce the spawning time.
引文
[1].四川省长江水产资源调查组,湖北省长江水产研究所.长江鲟鱼类的研究[R].四川省长江水产资源调查组,湖北省长江水产研究所,1976.
    [2].四川省长江水产资源调查组.长江鲟鱼类生物学及人工繁殖研究[M].成都:四川省科学技术出版社,1988
    [3].柯福恩,危起伟.中华鲟产卵洄游群体结构和资源量估算的研究[J].淡水渔业,1992,(4):7-11
    [4].危起伟.长江中华鲟繁殖行为生态学与资源评估[D].武汉:中国科学院水生生物研究所,2003.
    [5].Qiao Y, Tang X, Brosse S, Chang J.Chinese Sturgeon (Acipenser sinenser) in the Yangtze River:a hydroacoustic assessment of fish location and abundance on the last spawning ground [J] Journal of Applied Ichthyology,2006,22(Suppl.l):140-144.
    [6].柯福恩,胡德高,张国良,罗俊德.葛洲坝下中华鲟产卵群体性腺退化的观察[J].淡水渔业,1985,(4):38-41,18.
    [7].周春生,许蕴玗,邓中粦,余志堂.长江葛洲坝枢纽坝下江段中华鲟成鱼性腺的观察[J].水生生物学报,1985,9(2):164-170.
    [8].刘鉴毅,危起伟,陈细华,杨德国,杜浩,朱永久,郑卫东.葛洲坝下中华鲟繁殖生物学特性及其人工繁殖效果[J].应用生态学报,2007,18(6):1397-1402.
    [9].易伯鲁.鱼类生态学[M].华中农学院,1982.
    [10].殷名称.鱼类生态学[M].中国农业出版社,1993.
    [11].刘健康.高级水生生物学[M].北京,科学出版社,1998
    [12].李德明.鱼类生态学[M].南开大学,2001.
    [13].易伯鲁,余志堂,梁秩燊.葛洲坝水利枢纽与长江四大家鱼[M].武汉:湖北科学技术出版社,1988.
    [14].杨德国,危起伟,陈细华,刘鉴毅,朱永久,王凯.葛洲坝下游中华鲟产卵场的水文状况及其与繁殖活动的关系[J].生态学报,2007,27(3):862-869.
    [15].尹家胜,沈俊宝,徐伟,王维坤.水温变化对绥芬河滩头雅罗鱼产卵的影响[J].动物学报,2001,47(6):704-708.
    [16].尹家胜,邱岭泉,徐伟,崔喜顺,周长海.水温变化对黑龙江野鲤繁殖的影响[J].上海水产大学学报,2002,11(3):253-258.
    [17].付小莉.葛洲坝下游中华鲟产卵场河段的生态流场计算和分析[D].武汉:武汉大学,2006.
    [18].蔡玉鹏,夏自强,于国荣,余文公.中华鲟产卵区水流特征分析及二维数值模拟[J].人民长江,2006,(11):79-81,114.
    [19].杨宇.中华鲟葛洲坝栖息地水力特性研究[D].南京:河海大学,2007a.
    [20].王远坤,夏自强,蔡玉鹏.葛洲坝下游中华鲟产卵场流场模拟与分析[J].水电能源科学,2007,25(5):54-57,72.
    [21].王远坤,夏自强,王桂华,杨宇.中华鲟产卵场平面平均涡量计算与分析[J].生态学报,2009,29(1):538-544.
    [22].王远坤,夏自强,桑国庆,郭文献,杨宇.变流量条件下中华鲟产卵场涡强特征研究[J].水力发电学报,2010,29(3):132-136.
    [23].张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.葛洲坝下中华鲟自然繁殖流速场的初步观测[J].中国水产科学,2007a,14(2):183-191.
    [24].张辉,危起伟,杨德国,杜浩,张慧杰.基于流速梯度的河流生境多样性分析-以长江湖北宜昌中华鲟自然保护区核心区江段为例[J].生态学杂志,2008b,27(4):667-674.
    [25].金如龙,孙克萍,贺红士,周宇飞.生境适宜度指数模型研究进展[J].生物学杂志,2008,27(5):841-846.
    [26].班璇,李大美,李丹.葛洲坝下游中华鲟产卵栖息地适宜度标准研究[J].武汉大学学报(工学版),2009,42(2):172-177.
    [27].英晓明,李凌.河道内流量增加方法IFIM研究及其应用[J].生态学报,2006,26(5):1567-1573.
    [28].易雨君,王兆印,陆永军.长江中华鲟栖息地适合度模型研究[J].水科学进展,2007,18(4):538-543.
    [29].蔡玉鹏,万力,杨宇,张晓敏,李益进.基于栖息地模拟法的中华鲟自然繁殖适合生态流量分析[J].水生态学杂志,2010,3(3):1-5.
    [30].余文畴.长江河道演变与治理[M].北京:中国水利水电出版社,2005.
    [31].赵纯厚,朱振宏,周端庄.世界江河与大坝[M].北京:中国水利水电出版社,2000.
    [32].易继舫.长江中华鲟幼鲟资源调查[J].葛洲坝水电,1994,(1):53-58.
    [33].陈曾龙.我国鲟类生物学概述[J].淡水渔业,1999,29(7):20-22.
    [34].余志堂,周春生,邓中林,许蕴玗,向阳.葛洲坝枢纽下游中华鲟自然繁殖的调查[J].水库渔业,1983,(2):2-4.
    [35].陶江平,乔晔,杨志,常剑波,董方勇,万力.葛洲坝产卵场中华鲟繁殖群体数量与繁殖规模估算及其变动趋势分析[J].水生态学杂志,2009,2(2):37-43.
    [36].常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究[D].武汉:中国 科学院水生生物研究所,1999b.
    [37].班璇,李大美.葛洲坝枢纽工程对中华鲟产卵场的生态水文学影响研究[A].水电2006国际研讨会论文集[C],2006.
    [38].杜浩,张辉,陈细华,刘志刚,危起伟.葛洲坝下中华鲟产卵场初次水下视频观察[J].科技导报(北京),2008,26(17):49-54.
    [39].陈永柏.三峡水库运行影响中华鲟繁殖的生态水文学机制及其保护对策研究[D].武汉:中国科学院水生生物研究所,2007.
    [40].张辉.中华鲟自然繁殖的非生物环境[D].武汉:华中农业大学,2009.
    [41].http://baike.baidu.com/view/67941.htm
    [42].关忠志,刘吉明,李东占,杨辉.香鱼性腺发育与积温关系的初步研究[J].水产学杂志,2008,21(2):33-36.
    [43].王华,郭延蜀,左林,米军,等.安氏高原鳅胚胎和仔鱼发育的观察[J].水产科学,2009,28(12):721-725.
    [44].周玮,孙景伟,李文姬,王鉴.海湾扇贝产卵的有效积温[J].海洋与湖沼,1999,30(5):564-567.
    [45].吕豪,李霞,董义超,张国范.海湾扇贝种贝人工促熟条件下积温和性腺发育周期的关系[J].海洋科学,2008,32(4):57-60.
    [46].张晓东,梁守仁.冷积温对大银鱼性腺成熟度影响的研究[J].淡水渔业,1997,27(6):17-18.
    [47].周玮.海湾扇贝性腺发育的生物学零度[J].水产科学,1991,15(1):82-84.
    [48].谭细畅.长江中华鲟繁殖群体数量和东湖放养鱼类资源量的水声学评估[D].武汉:中国科学院水生生物研究所,2002.
    [49].季振刚.水动力学和水质-河流、湖泊及河口数值模拟[M].北京:海洋出版社,2012.
    [50].王程,徐刚,向友国.长江葛洲坝水利枢纽下游河势调整工程[J].湖北水力发电,2006,(3):36-39.
    [51].http://baike.baidu.com/view/2109094.htm?fromld=23811
    [52].http://baike.baidu.com/view/51765.htm?fromld=52889
    [53].http://baike.baidu.com/view/369319.htm
    [54].李怀恩.分层型水库的垂向水温分布公式[J].水利学报,1993,(2):43-49,56.
    [55].陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水利学报,1998,(9):14-20.
    [56].陈小红.湖泊水库垂向二维水温分布预测[J].武汉水利电力学院学报,1992, 25(4):376-383.
    [57].邓云,李嘉,李然,李克锋.水库调度对溪洛渡电站下游水温的影响[J].四川大学学报(工程科学版),2006,38(5):65-69.
    [58].李冰冻,李克峰,等.水库温度分层流动的三维数值模拟[J].四川大学学报(工程科学版),2007,39(1):23-27.
    [59].任华堂,陈永灿,刘昭伟.三峡水库水温预测研究[J].水动力学研究与进展,2008,23(2):141-148.
    [60].Thomas M. Cole, Scott A. Wells. CE-QUAL-W2 User Manual. U.S. Army Corps of Engineers,2006.
    [61].危起伟,陈细华,杨德国,刘鉴毅,朱永久,郑卫东.葛洲坝截流24年来中华鲟产卵群体结构的变化[J].中国水产科学,2005,12(4):452-457.
    [62].班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响[J].武汉大学学报(工学版),2007b,(3):10-13.
    [63].余文公,夏自强,于国荣,蔡玉鹏.三峡水库水温变化及其对中华鲟繁殖的影响[J].河海大学学报(自然科学版),2007a,35(1):92-95.
    [64].王俊娜,李翀,廖文根.三峡-葛洲坝梯级水库调度对坝下河流的生态水文影响[J].水力发电学报,2011,30(2):84-90,95.
    [65].李翀,廖文根,彭静,叶柏生.宜昌站1900-2004年生态水文特征变化[J].长江流域资源与环境,2007,16(1):76-80.
    [66].张萍,秦天玲,冯睛,严向东,郑晓东,王舒.基于小波分析的宜昌水文站径流演变规律研究[J].人民长江,2011,42(17):24-27.
    [67].李帆,夏自强,王跃奎.葛洲坝水利枢纽工程对宜昌河段水文水力特性的影响[J].河海大学学报(自然科学版),2010,38(1):36-40.
    [68].蔺秋生,范北林,黄莉.宜昌水文站年径流量演变多时问尺度分析[J].长江科学院院报,2009,26(4):1-3,12.
    [69].伍勇,候晓岚.长江干流宜昌站全沙特性分析[J].人民长江,2006,37(4):33-35.
    [70].冯明,纪昌明,王丽萍,吴义成,万素琴.气候变化及其对湖北长江水文水资源的影响[J].武汉大学学报(工学版),2006,39(1):1-5,25.
    [71].王艳君,姜彤,施雅风.长江上游流域1961-2000年气候及径流变化趋势[J].冰川冻土,2005,27(5):709-714.
    [72].张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,(4):56-59.
    [73].黄悦,姚仕明,卢金友.三峡水库运用对坝下游干流河道水文情势的影响研究 [J].2011,28(7):76-81.
    [74].郭文献,网鸿翔,徐建新,夏自强.三峡水库对下游重要鱼类产卵期生态水文情势影响研究[J].水力发电学报,2011,30(3):22-26,38.
    [75].熊明,许全喜,袁晶,童辉.三峡水库初期运用对长江中下游水文河道情势影响分析[J].水力发电学报,2010,29(1):120-125.
    [76].王俊,程海云.三峡水库蓄水期长江中下游水文情势变化及对策[J].中国水利,2010,(19):15-17,14.
    [77]邹振,陆国宾,李琼芳,夏自强,邴建平.长江干流大型水利工程对下游水温变化影响研究[J].水力发电学报,2011,30(5):139-144.
    [78].曹广品,惠二青,胡兴娥.三峡水库蓄水以来近坝区水温垂向结构分析[J].水利学报,2012,43(10):1254-1259.
    [79].脱友才.三峡库区与下游水温预测及其对下游[D].成都:四川大学,2008.
    [80].王远坤.水库调度的新阶段-生态调度[J].水文,2008,28(1):7-9,76.
    [81].Bemis W E,Kynard B. Sturgeon riversan introduction to acipenseriform biogeography and life history[J].Environmental Biology ofFishes,1997,48(1-4):167.
    [82].Billard R,Leeointre G, Biology and conservation of sturgeon andpanddlefish[J].Reviews in Fish Biology and Fisheries.2001,10(4):355-392.
    [83].Boston.[Ⅱ] Bemis W E,Kynard B.Sturgeon riversan introduction to acipenseriform biogeography and life history.Environmental Biology ofFishes,1997,48(1-4):167.
    [84].Buckley J.Kynard B.Habimt use and behador of pre-spawning and spawning shormose sturgeon,Acipenser brevirostrum.in the Connecticut River.In North American Sturgeon:biology and aquaculture potential,(eds Frederick P.Binkowski and S.I.Doroshov),1985:111-117.
    [85].班璇,李大美.葛洲坝下游中华鲟产卵场的多参数生态水文学模型[J].中国农村水利水电,2007a,(6):8-12,15.
    [86].班璇.中华鲟产卵栖息地的生态需求量[J].水利学报,2011,42(1):47-53.
    [87].Caswel N M, Peterson D L, Manny B A, et al.Spawning by lake sturgeon(Acipenser fulvescens)in the Detroit River.J.App1.Ichthyol.,2004,20(1):1-6.
    [88].Crowder D W, Diplas P. Evaluating spatially explicit metrics of stream energy gradient using hydrodynamic model simulations. Canadian Journal of Fisheries and Aquatic Sciences,2000a,57(7):1497-1507.
    [89].Crowder D W, Diplas P. Using two-dimensional hydrodynamic models at scales of ecological importance. Journal of Hydrology,2000b,230(3):172-191.
    [90].Crowder D W, Diplas P. Vorticity and circulation:spatial metrics for evaluating flow complexity in stream habitats. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(4): 633-645(13).
    [91].蔡其华.充分考虑河流生态系统保护因素完善水库调度方式[J].中国水利,2006,(2):14-17.
    [92].蔡宇青.中华鲟产卵场水文因子特征分析及其所受工程影响研究[D].南京:河海大学,2008.
    [93].柴毅,谢从新,危起伟,李罗新.不同水深和光照强度对中华鲟受精卵孵化率的影响[J].水利渔业,2008,(3):32-33.
    [94].常剑波,曹文宣.中华鲟物种保护的历史与前景[J].水生生物学报,1999a,23(6):712-720.
    [95].常太平.长江扬中江段采沙对水生生物的影响[J].长江工程职业技术学院学报,2005,22(3):5-6,8.
    [96].陈敏建.生态标准河流和调度管理研究[J].水科学进展,2006,17(5):631-636.
    [97].陈敏建.生态需水配置与生态调度[J].中国水利,2007,(11):21-24.
    [98].陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学,2005,24(4):28-30,46.
    [99].陈曾龙.长江鲟鱼类资源的保护和利用[J].湖北农学院学报,1998,18(4):334-336.
    [100].程金成,高健,刘健.中华鲟资源现状及其保护对策探讨[J].渔业现代化,2005,(3):3-4.
    [101]. Deng Xin, Deng Zhonglin.PROGRESS IN THE CONSERVATION BIOLOGY OF CHINESE STURGEON[J].Zoological Research,1997,18(1):113-120.
    [102].董哲仁.水库多目标生态调度[J].水利水电技术,2007,38(1):28-32.
    [103].胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵情况初步调查及探讨[J].淡水渔业[J],1983,(3):15-18
    [104].胡德高,柯福恩,张国良等.葛洲坝下中华鲟产卵的第二次调查[J].淡水渔业[J],1985,(3):22-24.
    [105].胡德高,柯福恩.葛洲坝下中华鲟产卵场的调查研究[J].淡水渔业,1992,(5):6-10.
    [106].何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2007.
    [107].胡传新.中华鲟资源繁殖保护新进展及其效益分析[J].水利渔业,1997,(4):24-26.
    [108].胡传新.葛洲坝水利枢纽救鱼措施效果评析[J].中国渔业经济,1998,(4):24-26.
    [109].胡和平.基于生态流量过程线的水库生态调度方法研究[J].水科学进展,2008,19(3):325-332.
    [110].黄真理.三峡工程中的生物多样性保护[J].生物多样性,2001,9(4):472-481.
    [111].黄真理.三峡工程与生物多样性保护[J].重庆三峡学院学报,2004,20(3):29-33.
    [112].贾敬德,王志玲.两种鲟鱼的生态简介[J].淡水渔业,1981,(6):12-13.
    [113].贾敬德.长江水资源开发的冷思考[J].淡水渔业,2005,35(5):62-64.
    [114].姜礼燔.环境污染对中华鲟Acipenser sinensis Gray影响的研究[J].现代渔业信息,1996,11(7):1-7.
    [115].柯福恩,胡德高,张国良.葛洲坝水利枢纽对中华鲟的影响-数量变动调查报告[J].淡水渔业,1984,(3):16-19.
    [116].柯福恩.论中华鲟的保护与开发[J].淡水渔业,1999,29(9):4-7.
    [117].廖文根,骆辉煌,李种.金沙江下游梯级水电站开发水温累积影响及其对策措施研究[R].北京:中国水利水电科学研究院,2009.
    [118].刘乐和,吴国犀,王志玲.葛洲坝水利枢纽兴建后长江干流铜鱼和园口铜鱼的繁殖生态[J].水生生物学报,1990,14(3):205-215.
    [119].吕新华.大型水利工程的生态调度[J].科技进步与对策,2006,(7):129-131.
    [120].倪旎.鲟鱼的“最后两秒钟”[J].生态经济,2006,(8):12-15.
    [121].钮新强.三峡工程生态调度的若干探讨[J].中国水利,2006,(14):8-10,24.
    [122].Omid Mohseni, Heinz G. Stefan, and Troy R. Erickson. A nonlinear regressio n model for weekay stream temperatures [J]. WATER RESOURCES RESEARCH,1998,34 (10):2685-2692.
    [123].潘荣和.关于解决葛洲坝水利枢纽工程影响长江水产资源的几个问题[J].中国环境科学,1985,1(2):78-80.
    [124].彭刚.长江江苏段渔业资源现状及保护对策[J].渔业经济研究,2006,(5):18-21.
    [125].齐珺.长江水系武汉段水动力过程三维数值模拟[J].水动力学研究与进展A辑,2008,23(2):212-219.
    [126].邵萍.浅谈中华鲟的现状与未来[J].水产科技,1997,(6):3-4.
    [127].滕燕.面向生态环境的水库调度方式研究[J].水力发电,2008,34(6):24-27.
    [128].王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [129].危起伟,杨德国,Kynard B.,等.长江中华鲟超声波遥测追踪技术[J].水产学报,1998,22(3):211-217.
    [130].危起伟,班璇,李大美.葛洲坝下游中华鲟产卵场的水文学模型[J].湖北水力发 电,2007,(2):4-6.
    [131].魏国,何俊仕,武立强.生态环境需水计算方法研究[J].安徽农业科学,2006,34(17):4386-4388,4390.
    [132].王桂华.水利工程对长江中下游江段鱼类生境的影响研究[D].南京:河海大学,2008.
    [133].吴望一.流体力学[M].北京:北京大学出版社,1982.
    [134].谢正光.论救护中华鲟[J].淡水渔业,1982,(4):37-39
    [135].邢湘臣,我国珍稀的中华鲟和白鲟[J].生物学通报。2003,38(9):10-11.
    [136].薛联芳.我国水电资源开发与生物多样性保护[J].科技导报,1999,(2):53-56.
    [137].颜远义.中华鲟生物学特性及养殖方法[J].水产科技,2003,(5):14-16.
    [138].杨宇,严忠民,常剑波.中华鲟产卵场断面平均涡量计算及分析[J].水科学进展,2007b,18(5):701-705,
    [139].杨宇.三维水动力学数值模拟获得中华鲟偏好流速曲线[J].水利学报,2007c,(增刊):531-534,541.
    [140]. YANG Yu YAN Zhongmin CHANG. HYDRODYNAMIC CHARACTERISTICS OF CHINESE STURGEON SPAWNING GROUND IN YANGTZE RIVER[J] Journal of Hydronamics,2008,20(2):225-230.
    [141].杨滋泉,李淑芳.中华鲟资源的保护与增殖[J].葛洲坝水电,1990,(1):35-37.
    [142].易雨君,王兆印,姚仕明.栖息地适合度模型在中华鲟产卵场适合度中的应用[J].清华大学学报(自然科学版),2008,48(3):340-343.
    [143].余文公.三峡水库主汛期后生态调度措施研究[J],人民长江,2007b,38(11):202-204.
    [144].余志堂,许蕴玗,周春生,邓中林,赵燕.关于葛洲坝水利枢纽对长江鱼类资源的影响和保护鲟鱼资源的意见[J].水库渔业,1981,(2):18-24.
    [145].余志堂.大型水利枢纽对长江鱼类资源影响的初步评价(一)[J].水利渔业,1988a,(2):38-41.
    [146].余志堂.大型水利枢纽对长江鱼类资源影响的初步评价(二)[J].水利渔业,1988b,(3):24-27.
    [147].余志堂,许蕴玗,邓中粪等.葛洲坝水利枢纽下游中华鲟繁殖生态的研究[C].鱼类论文集(第五辑),1986:1-14
    [148].虞功亮.葛洲坝下游江段中华鲟产卵场食卵鱼类资源量估算[J].水生生物学报,2002,26(6):591-599.
    [149].禹雪中.水利工程生态与环境调度初步研究[J].水利水电技术,2005,(11): 20-22.
    [150].袁新,陈佐一.分析与计算流体力学[R].北京:清华大学热能工程系,1999.
    [151].张世光.中华鲟在西江的分布及产卵场调查[J].动物学杂志,1987,22(5):50-52.
    [152].中国科学院水生生物研究所.关于长江葛洲坝水利枢纽救鱼对象和措施的意见[J].中国水利,1985,(3):25-29.
    [153].张辉,危起伟,杨德国,杜浩,张慧杰.葛洲坝下游中华鲟(Acipenser sinensis)产卵场地形分析[J].生态学报,2007b,27(10):3945-3955.
    [154].张辉,危起伟,杜浩,沈丽.中华鲟自然繁殖行为发生与气象状况的关系[J].科技导报(北京),2008a,26(17):42-48.
    [155].张慧杰,杨德国,危起伟,杜浩,张辉.葛洲坝至古老背江段鱼类的水声学调查[J].长江流域资源与环境,2007,16(1):86-91.
    [156].周建军.优化调度改善三峡水库生态环境[J].科技导报,2008,26(7):64-71.
    [157].周兴华,向枭.中华鲟的研究进展[J].水利渔业,2001,21(3):1-3.
    [158].周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [159].朱瑶.大坝对鱼类栖息地的影响及评价方法述评[J].中国水利水电科学研究学报,2005,3(2):100-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700