用户名: 密码: 验证码:
河流相与三角洲相储层微观特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于苏里格气田东二区的苏77区块和位于子洲气田北部的榆10区块均属近年来开辟的勘探新区,上古生界山西组和下石盒子组是这两个区域天然气的主力储集层,但其产能却存在着较大差异。本文从多学科理论体系入手,采用多种分析测试手段,对比研究了苏77、榆10区块上古生界山西组山23段和下石盒子组盒8下段沉积微相、储层岩石学、孔喉微观结构、成岩作用、储层物性和非均质性特征,最终探讨了储层物性主控因素,并进行了储层综合评价。
     鄂尔多斯盆地东北部上古生界山西组和下石盒子组物源应来自盆地北缘的阴山古陆东段,母岩主要为太古界中—高级变质岩系,并伴有大量酸性侵入岩。苏77区块和榆10区块具有一致的物质来源。
     山23沉积期,气候温暖湿润,距离源区较近的苏77区块发育陆相曲流河沉积,水动力较强,相对偏南的榆10区块则进入曲流河三角洲前缘相沉积,并受到海侵作用的影响,水下分流河道砂体接受了海水的改造,成分及结构成熟度均变好。盒8下沉积期,气候炎热干旱,苏77区块发育辫状河沉积,水动力十分强,榆10区块北部大面积为辫状河三角洲平原沉积,南部小范围发育辫状河三角洲前缘亚相。
     受海侵作用的影响,榆10区块山23段砂岩成分和结构成熟度高,以石英砂岩为主,并保留有大量残余粒间孔,填隙物含量较高,以硅质和高岭石为主,孔隙度低而渗透率高。苏77区块山23储层石英砂岩、岩屑石英砂岩和岩屑砂岩含量近等,以各种溶孔-晶间孔-粒间孔等复合型孔隙为主,填隙物含量略低,常见高岭石和硅质,孔隙度高而渗透率略低。两个区域盒8下段储层砂岩岩性相似,常见岩屑砂岩,孔隙多以溶孔-晶间孔组合为主,填隙物含量高,多为伊利石和各种碳酸盐胶结物,其中苏77区块孔隙度高而渗透率低,榆10区块孔、渗均较低。恒速压汞结果显示,研究区样品多属中-大孔微细喉型,喉道半径的大小及多种分布形态对渗透率贡献值影响较大。
     苏77、榆10区块山23、盒8下段储层砂岩多处于中成岩B期,不同岩性砂岩所遭受的成岩作用的强度不一致。石英砂岩表现出弱压实、中等—强胶结、弱溶蚀的特征,岩屑砂岩则表现为强压实、中等—强胶结、强溶蚀的特征,岩屑石英砂岩的成岩作用强度介于二者之间。综合考虑成岩矿物和孔隙结构的差异,划分出7种主要成岩相类型,对储层的综合评价提供一定的依据。
     物源区母岩的性质决定了储层砂岩的类型及其成分成熟度,物源影响着沉积体系的空间展布格局。沉积作用控制了储层的粒度、碎屑组分、砂体接触方式,并进一步影响到早期成岩作用的强弱,是控制储层物性的最主要因素。后期的成岩作用则进一步扩展了物性差异性。因此,物源、沉积和成岩作用是导致两个研究区不同层位储层差异性的主要因素。综合考虑储层的岩性、物性、孔隙结构、毛管压力曲线特征、成岩作用强度、成岩相类型及特征等方面因素,分别对苏77、榆10区块山23和盒8下段储层进行了综合分类评价,评价结果认为榆10区块山23段储层发育最好,苏77区块山23段和盒8下段仅次之,榆10区块盒8下段储层发育最差。
Su77area and Yu10area, located in the east Ⅱ block of Sulige Gas Field and the northern part of Zizhou Gas Field separately, are both the new exploration aeras. The primary oil-bearing beds of the two areas are Permian Shanxi Formation and Xiashihezi Formation, but the productivities of the two areas varies markedly. In order to find out the reason leading to their differences, many systemic research includimg sedimentary facies, reservoir petrology, characteristics of micro-pore throat, diagenesis, reservoir quality and heterogeneity have been carried out comparatively, drawing support from multi-disciplinary and testing measures. Based on all the studies, the controlling factors of reservoir quality are analyzed and comprehensive reservoir evaluation is studied.
     The sediments' source rocks of Upper Paleozoic Shanxi and Xiashihezi Formations in northeastern Ordos Basin are mainly derived from the YinShan ancient lands in the north, the detrital source rocks are dominated by Archean mesometamorphic to hypometamorphic rocks, accompanied by abundant acidic intrusive rocks. Through the comprehensive analysis, it is showed that the provenance directions and source rocks of Su77and Yu10area are the same.
     During the period of Shan23, the climate was warm and humid, Su77area, relative close to the provenance, was dominated by meandering river depositional system. At the same time, Yu10area, relative to the south, was dominated by meandering river deltaic front depositional system. Affected by the transgression, the underwater distributary deposits accepted the alteration of seawater, making the compositional and textural maturity higher. During the period of lower He8, the climate was hot and dry, braided river system with strong hydrodynamics was developed in Su77area. Meanwhile, braided river deltaic plain was developed in northern and deltaic front was developed in southern Yu10area.
     Affected by the transgression, the main rock type of Shan23reservoir in YulO area is quartz sandstone, plenty of primary intergranular pores are reserved in the reservoir. The content of matrix is high and the type of cements observed is mainly silica and kaolinite, causing the reservoir low in porosity and high in permeability. The characters of Shan23reservoir in Su77area are quite different, the content of quartz sandstone, lithic quartzose sandstone and lithic sandstone are nearly the same. Various types of multi-pores including dissolved pores, intercrystal pores, intergranular pores and their combinations can all be found in the reservoir. The content of matrix is lower, and kaolinite and silica are the most usual cements. The reservoir is high in porosity and a little lower in permeability. The lower He8reservoirs in the two areas showed similar characters, the main rock type was lithic quartzose sandstone with dissolved pores and intercrystal pores. The content of matrix is high, mainly illite and various kinds of carbonate cements. However the lower Hes reservoir in Su77area is high in porosity and low in permeability while the reservoir in Yu10area is both low in porosity and permeability. The result of constant-speed mercury penetration shows the main pore-throat type is mesopore-megalospore and fine throat. Contribution value of permeability is affected by the size and manifold distribution of throat radius.
     It is proved that the reservoirs of Shan23and lower Hes submembers in Su77and Yu10areas are mostly in the middle diagenesis phase B. The diagenesis strength of different lithologies differs from each other. The diagenesis characters of quartz sandstone proves to be weak compaction, mid-strong cementation and weak dissolution, but lithic sandstone is strong compaction, mid-strong cementation and strong dissolution, and the diagenesis character of lithic quartzose sandstone is between the other two sandstones. Considering the discrepancies of diagenetic minerals and pore structures, seven diagenesis facies can be divided, providing references for comprehensive evaluation of reservoirs.
     The type and compositional maturity of sand stone reservoirs are determined by the characters of source rocks, which also affect the spacial distribution partterns of the depositional system. Depositional facies, controlling the grain size, detrital sand composition and contacting types of sandbodies, influencing the strength of early diagenesis, is the chief factor affecting reservoir quality. Furthermore, the later diagenesis enlarged the differences. So deposition and diagenesis were the two main factors causing the differences of the reservoirs in the two study areas. Taking all the factors including lithology, quality, pore structure, capillary pressure curve, strength of diagenesis and diagenesis facies into consideration, the reservoirs of Shan23and lower He8submembers in Su77and Yu10area are comprehensively evaluated. The results show that the Shan23reservoir in Yu10area is the best one, Shan23and lower He8reservoir in Su77area follow next, and lower Hes reservoir in Yu10area is the worst one.
引文
1 雷卞军,张明松,龙方毅,等.子洲气田山2气藏精细描述及有利区筛选(内部报告),2010
    [1]Aguilera R. Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winlandr35values on Pickett plots [J]. AAPG Bulletin,2002,86(4):606-624
    [2]Allegre C. J., Minster J. F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters,1984,38(1):1-25
    [3]Al-Ramadan K., Morad S., Proust J. N., et al. Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework:evidence from the Upper Jurassic, Boulonnais, NW France [J]. Journal of Sedimentary Research,2005,75(5):943-959.
    [4]Anjos S. M. C., De Ros L. F., Souza R. S., et al. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil [J]. AAPG Bulletin,2000, 84(11):1719-1742.
    [5]Atika K., Georgia P. P., David J.W. Controls on diagenesis of Lower Cretaceous reservoir sandstones in the western Sable Subbasin, offshore Nova Scotia [J]. Sedimentary Geology,2010,224:65-83.
    [6]Beard D. C., Weyl P. K. Influence of texture on porosity and permeability of unsolidated sand [J]. AAPG Bulletin,1973,57(2):349-369.
    [7]Bennett P., Siegel D. I. Increased solubility of quart in water due to complexing by organic compounds [J]. Nature,1987,326:684-686
    [8]Blatt H., Middleton G. V., Murray R. C. Origin of Sedimentary Rocks [M]. New Jersey:Prentice-Hall, Inc, Englewood Cliffs,1980:1-71
    [9]Bloch S., Lander R. H., Bonell L. Anomalously high porosity and permeability in deeply buried sandstones reservoirs:Origin and predictability [J]. AAPG Bulletin,2002,86(2):301-328
    [10]Cagatay M. N., Saner S., Al-Saiyed I., et al. Diagenesis of the Safaniya sandstone member (mid-Cretaceous) in Saudi Arabia[J]. Sedimentary Geology,1996,105(3-4):221-239
    [11]Cavazza W., Braga R., Reinhardt E. G, et al. Influence of host-rock texture on the morphology of carbonate concretions in a meteoric diagenetic environment[J]. Journal of Sedimentary Research,2009, 79(6):377-388
    [12]Couch E. L. Calculation of paleosalinites from boron and claymineral data[J]. AAPG Bulletin,1971, 55:1829-1839
    [13]Cullers R. L., Basu A., Suttner L. Geochemical signature of provenance in sand size material in soils and stream sediments near the Tobacco Root bat holith, Montana, USA[J]. Chem. Geol.,1988,70: 335-348
    [14]Curits C. D. Link between aluminium mobility and destruction of secondary porosity [J]. AAPG Bulletin,1993,67:380-384
    [15]Curtis C. D., Burns R. G, Smith J. V. Sedimentary geochemistry:environments and processes dominated by involvement of an aqueous phase and discussion [J]. Mathematical and Physical Sciences,1977,286 (1336):353-372
    [16]Dickinson W. R., Suczek C. Plate tectonics and sandstone compositions [J]. American Association of Petroleum Geologists,1979,63:2164-2182
    [17]Dickinson W. R. Interpreting provenance relations from detrital modes of sandstones, in Zuffa, GG [J]. Provenance of Arenites:Boston,1985:333-361.
    [18]Donaldson A. C. Pennsylvanian sedimentation of central Appalachians [J]. The Geological Society of America, Special Paper 148,1974:47-48
    [19]Ehrenberg S. N. Preservation of anomalously high porosity in deeply buried sandstones by chlorite rims:Examples from the Norwegian Continental Shelf [J]. AAPG Bulletin,1993,77:1260-1286
    [20]El-Ghali M. A. K., Mansurbeg H., Morad S., et al. Distribution of diagenetic alterations in fluvial and paralic deposits within sequence stratigraphic framework:evidence from the Petrohan Terrigenous Group and the Svidol Formation, Lower Triassic, NW Bulgaria [J]. Sedimentary Geology,2006, 190(1-4):299-321
    [21]El-Ghali M. A. K., Morad S., Mansurbeg H. Distribution of diagenetic alterations within depositional facies and sequence stratigraphic framework of fluvial sandstones:Evidence from the Petrohan Terrigenous Group, Lower Triassic, NW Bulgaria [J]. Marine and Petroleum Geology,2009,26(7): 1212-1227.
    [22]Fairbrige R. W. Syndiagenesis-Anadiagenesis-Epidiagenesis in Lithogenesis[A]. In:Larsen G., Chikingar G V. eds. Diagenesis in sediments and sedimentary rocks[C],1983,2:17-114
    [23]FU G, QIN X., MIAO Q., et al. Division of diagenesis reservoir facies and its control-Case study of Chang-3 reservoir in Yangchang formation of Fuxian exploration area in northern Shaanxi[J]. Mining Science and technology,2009,19(4):0537-0543
    [24]Garcia A. J. V., Morad S., De Ros L. F., et al. Paleogeographical, paleoclimatic and burial history controls on the diagenetic evolution of Lower Cretaceous Serraria sandstones in the Sergipe-Alagoas Basin, NE Brazil[A]. In:Morad S, ed. Carbonate cementation in sandstones:International Association of Sedimentologists[C]. Special Publication,1998,26:107-140
    [25]Garzanti E., Angiolini L., Sciunnach D. The Mid-Carboniferous to lowermost Permian succession of Spiti (Po Group and Ganmachidam Formation; Tethys Himalaya, northern India):Gondwana glaciation and rifting of Neo-Tethys[J]. Geodinamica Acta,1996,9:78-100
    [26]Grigsby J. D. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg Formation, south Texas [J]. Journal of Sedimentary Research,2001,71 (1):27-36
    [27]Hammera E., Mork M. B. E., Naess A. Facies controls on the distribution of diagenesis and compaction in fluvial-deltaic deposits [J]. Marine and Petroleum Geology,2010,27(8):1737-1751
    [28]Hanghton D. W., Morton A. C., Todd S. P. Developments in Sedimentary Provenance Studies [M].London:Oxford University Press,1991:1-71
    [29]Ketzer J. M., Morad S., Amorosi A. Predictive diagenetic clay-mineral distribution in siliciclastic rocks within a sequence stratigraphic framework[A]. In:Richard H W, Morad S, eds. Clay Mineral Cements in Sandstones[C]. International Association of Sedimentologists, (Special Publication),2003,34: 42-59
    [30]Ketzer J. M., Morad S., Evans R., et al. Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework:Evidence from the Mullaghmore Formation (Carboniferous), NWIreland [J]. Journal of Sedimentary Research,2002, 72(6):760-774.
    [31]Khandaker M. Z., David L. B. Constructing sandstone provenance and classification ternary diagram using an electronic spreadsheet [J]. Journal of Sedimentary Research,2011,81(9):702-707.
    [32]Khidira A., Catuneanu O. Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep[J]. Marine and Petroleum Geology,2010,27(9):2037-2050.
    [33]Lundegard P. D. Mixing zone origin of 13C-depleted calcite cement:Oseberg Formation sandstones (Middle Jurassic), Veslefrikk field, Norway [J]. Geochimica et Cosmochimica Acta,1994,58(12): 2661-2675
    [34]Lundegard P. D. Sandstone porosity loss-a "big picture" view of the importance of compaction:Journal of Sedimentary Petrology [J].1992,62:250-260
    [35]Luo J., Hlal O., Morad S., et al. Diagenetic and reservoir-quality evolution of fluvial and lacustrine-deltaic sandstones:Evidence from Jurassic and Triassic sandstones of the Ordos Basin, northwestern China[J]. Journal of Petroleum Geology,2009,32(1):79-102
    [36]Mclennan S. M., Hemming S., McDanial D. K., et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of American Special Paper,1993,284:21-40
    [37]Mclennan S. M. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[A]. In:Lipin B. and McKay G A. Geochemistry and Mineralogy of Rare earth elements[C]. The Mineralogical Society of America, Washington, D.C.,1989,21:169-200
    [38]Miall A. D. The geology of fluvial deposits-sedimentary facies, basin analysis, and petroleum geology [M]. New York:Springer,1996:1-565
    [39]Morad S., Al-Ramadan K., Ketzer J. M., et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs:A review of the role of depositional facies and sequence stratigraphy [J]. AAPG Bulletin,2010,94(8):1267-1309
    [40]Morad S., Ketzer J. M., De Ros L. F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks:implications for mass transfer in sedimentary basins [J]. Sedimentology,2000,47: 95-120
    [41]Morad S. Carbonate cementation in sandstone:Distribution patterns and geochemical evolution [M]. Blackwell Publishing,1998:1-26
    [42]Moraes M. A. S., De Ros L. F. Infiltrated clays in fluvial Jurassic sandstones of Reconcavo Basin, northeastern Brazil [J]. Journal of Sedimentary Petrology,1990,60:809-819
    [43]Moraes M. A. S, Surdam R. C. Diagenetic heterogeneity and reservoir quality:Fluvial, deltaic, and turbiditic sandstone reservoirs, Potiguar and Rec6ncavo rift basins, Brazil [J]. AAPG Bulletin,1993,77: 1142-1158
    [44]Mork M. B. E. Detrital mineral controls on diagenetic textures in sandstones from the Are Formation[A]. In:28th Nordic Geological Winter Meeting[C]. Aalborg University, Department of Civil Engineering, Aalborg,2008:33
    [45]Morton A. C., Hall Sworth C. R. Processes controlling the composition of heavy mineral assemblages in sandstones [J]. Sedimentary Geology,1999,124 (1-4):3-29
    [46]Mowers T. T., Budd D. A. Quantification of porosity and permeability reduction due to calcite cementation using computer assisted petrographicimage analysis techniques[J]. AAPG Bulletin,1996, 80(3):309-322
    [47]Nedkvitne T., Bjorlykke K. Secondary porosity in the Brent Group (Middle Jurassic), Hildra field, North Sea:Implication for predicting lateral continuity of sandstones[J]. Journal of Sedimentary Petrology,1992,62:23-34
    [48]Nedkvitne T., Karlsen D. A. Relationship between reservoir diagenetic evolution and petroleum implacement in the Ula Field, North Sea [J]. Marine and Petroleum Geology,1993.10:255-270
    [49]Nelson P H. Permeability-porosity relationships in sedimentary rocks [J]. The Log Analyst,1994,35: 38-62.
    [50]Nguyen V. H., Sheppard A. P., Knackstedt M. A., et al. The effect of displacement rate on imbibition relative permeability and residual saturation[J]. Journal of Petroleum Science and Engineering,2006, 52(1-4):54-67
    [51]Pittman E. D. Clay coats:occurrence and relevance to preservation of porosity in sandstones [JJ.SEPM Special Publication,1992,47:241-255
    [52]Postma G. An analysis of the variation in delta architecture [J]. Terra Nova,1990,2 (2):124-130
    [53]Rollinson H. R. Using geochemical date:evaluation, presentation, interpretation [M]. Longman Scientific. Technical,1993:300-352
    [54]Rollinson H. R.著.杨学明等译.岩石地球化学[M].合肥:中国科学技术大学出版社,2000:105-180
    [55]Romain G., Matthias B., Pascale H., et al. On the influence of diagenesis on the original petrographic composition of Miocene-Pliocene fluvial sandstone in the Himalayan foreland basin of western-central Nepal[J]. Journal of Asian Earth Sciences,2012,44(30):107-116
    [56]Salman B., Robert H. L., Linda B. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J].AAPG Bulletin,2002,86:301-328
    [57]Schmidt V., MacDonald D. A. Secondary reservoir porosity in the course of sandstone diagenesis[J]. AAPG Continuing Course Note Series,1982,12,1-65
    [58]Sehembre J. M., Kovscek A. R. A technique for measuring two-phase relative permeability in porous media via X-ray CT measurements[J]. Journal of Petroleum Seience and Engineering,2003,39: 159-174
    [59]Smesse E., Whiticar M. J. Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1989,71(1/4):119-136
    [60]Stefansson A. Dissolution of primary minerals of basalt in natural waters:I. Calculation of mineral solubilities from 0℃ to 350℃[J]. Chem Geol,2001,172(3/4):225-250
    [61]Stoessell R. K., Pittman E. D. Secondary porosity revisited:The chemistry of feldspar dissolution by carboxylic acids and anions[J]. AAPG Bulletin,1990,74(12):1795-1805
    [62]Stonecipher S. A., May J. A. Facies controls on early diagenesis:Wilcox Group, Texas Gulf Coast[A]. In:Meshri I D, Ortoleva P J, eds. Prediction of reservoir quality through chemical modeling[C]. AAPG Memoir,1990,49:25-44.
    [63]Stonecipher S. A. Applied sandstone diagenesis-practical petrographic solutions for a variety of common exploration, development, and production problems[J]. SEPM Short Course,2000,50:143.
    [64]Sun W., Qu Z. H., Tang G. Q. Characterization of water injection in low permeability rock using sandstone micromobles[J] Journal of Petroleum Technology,2004,56(5):71-72
    [65 Sun W., Tang G. Q. Visual study of water injection in low permeable sandstone[J].Journal of Canadian Petroleum Technology,2006,45(11):21-26.
    [66]Surdam R. C., Bose S. W., Crossey L J. The chemistry of secondary porosity (in Clastic diagenesis) [J].AAPG Memoir,1984,37:126-149
    [67]Surdam R. C., Jiao Z. S., MacGowan D. B. Redox reaction involving hydrocarbons and mineral oxidants:A mechanismfor significant porosity enhancement in sandstones[J]. AAPG Bulletin,1993, 77(9):1509-1518
    [68]Surdam R. C., Crossey L. J., Hagen E. S., Heasler H. P. Organic-inorganic interactions and sandstone diageneis.[J].AAPG Bulletin,1989,73:1-23
    [69]Surdam R. C., Crossey L. J. Integrated diagenetic modeling:a process-oriented approach for clastic system[J].Annual Review for earth and Planetary Sciences,1987,15:141-170
    [70]Taylor K. G., Gawthorpe R. L., Curtis C. D., et al. Carbonate cementation in a sequence-strtigraphic frame-work:Upper Cretaceous sandstone, Book Cliffs, Utah-Colorado [J]. Sedimentary Research, 2000,70(2):360-372
    [71]Taylor S. R., McLennan S. M. The continental crust:Its composition and evolution [M]. Oxford: Blackwell,1985:1-132
    [72]Teige G M. G., Hermanrud C., Thomas W. H., et al. Capillary resistance and trapping of hydrocarbons: A laboratory experiment [J].Petroleum Geoscience,2005,11:125-129
    [73]Walderhaug O. Modeling quartz cementation and pprosity in Middle Jurassic Brent Group sandstones of the Kvitebjom Field North Sea [J].AAPG Bulletin,2000,84(9):1325-1339
    [74]Walker C. T. Evaluation of boron as a paleosalinity indicator and its application to offshore prospects[J]. AAPG Bulletin,1968,52:751-766
    [75]Walker T. R., Waugh B., Crone A. J. Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico [J]. Geological Society of America Bulletin,1978, 89(1):19-32
    [76]Weber K. J., Maatschappij B. V. How heterogeneity affects oil recovery [J]. Reservoir Characterization, 1986,487-544
    [77]Wilson M. D., Stanton P. T. Diagentic mechanisms of porosity and permeability reduction and enhancement[A].In:Wilson M. D., eds. Reservoir Quality Assessment and Prediction in Clastic Rocks SEPM Short Course[C].1994,30:59-118
    [78]Wolela A. M., Gierlowski-Kordesch E.H. Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic-Jurassic), Newark Supergroup, USA[J]. Sedimentary Geology,2007,197(1-2): 99-126
    [79]Worden R. H., Burley S. D. Sandstone diagenesis:the evolution of sand to stone[A]. In:Burley S. D., Worden R. H., eds. Sandstone Diagenesis:Recent and Ancient[C]. International Association of Sedimentologists, Reprint Series,2003,4:3-44
    [80]Yakov V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics,2003,42(4):334-343
    [81]Zinkernagel U. Cathodoluminescence of Quartzand and its Application to Sandstone Petrology[M]. Schweizerbart,1978:1-69
    [82]白生海.煤系地层成煤环境及层序地层研究[D].成都:成都理工大学,2008:48-58
    [83]蔡观强,郭峰,刘显太,等.沾化凹陷新近系沉积岩地球化学特征及其物源指示意义[J].地质科技情报,2007,26(6):17-24.
    [84]曹守连,陈发景.塔里木盆地东北部沉积充填序列的物源分析[J].新疆石油地质,1994,15(2):126-131
    [85]长庆石油地质志编写组.中国石油地质志(卷12)—长庆油田[M].北京:石油工业出版社,1992:1-46
    [86]陈安清,陈洪德,向芳,等.鄂尔多斯东北部山西组—上石盒子组砂岩特征及物源分析[J].成都理工大学学报,2007,34(3):305-311
    [87]陈安清,陈洪德,徐胜林,等.鄂尔多斯盆地北部晚古生代物源体系及聚砂规律[J].中国石油大学学报(自然科学版),2011,35(6):1-7
    [88]陈杰,周改英,赵喜亮,等.储层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,12(4):11-15
    [89]陈丽华,姜在兴.储层实验测试技术[M].山东东营:石油大学出版社,1994:28-57
    [90]陈丽华.扫描电镜在石油地质上的应用[M].北京:石油工业出版社,1990:12-64
    [91]陈孟晋,汪泽成,郭彦如,等.鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力[J].石油勘探与开发,2006,33(1):1-5
    [92]陈庆春,吴智平,李伟.济阳坳陷稀土元素特征及其在物源对比中的应用[J].地质论评,2003,49(6):622-628
    [93]陈全红,李文厚,胡孝林,等.鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J].地质学报,2012,86(7):1150-1161
    [94]陈全红,李文厚,刘昊伟,等.鄂尔多斯盆地上石炭统—中二叠统砂岩物源分析[J].古地理学报,2009,11,(6):629-640
    [95]陈全红,李文厚,王亚红,等.鄂尔多斯盆地西南部晚古生代早-中期物源分析[J].现代地质,2006,20(4):628-634
    [96]陈全红.鄂尔多斯盆地上古生界沉积体系及油气富集规律研究[D].西安:西北大学,2007:30-98
    [97]陈世悦.论秦岭碰撞造山作用对华北石炭二叠纪海侵过程的控制[J].岩相古地理,1998,18(2):48-54
    [98]程建,邓明,李智杰,等.毛管压力曲线在测井评价中的应用[J].石油仪器,2010,24(5):72-74
    [99]邸世祥.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1991:78-85
    [100]窦伟坦,侯明才,董桂玉.鄂尔多斯盆地北部山西组-下石盒子组物源分析[J].天然气工业,2009,29(3):25-28.
    [101]樊爱萍,赵娟,杨仁超,等.苏里格气田东二区山1段、盒8段储层孔隙结构特征[J].天然气地球科学,2011,22(3):482-487
    [102]冯乔,马硕鹏,樊爱萍,等.鄂尔多斯盆地上古生界储层流体包裹体特征及其地质意义[J].石油与天然气地质,2006,27(1):27-32
    [103]付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J].古地理学报,2005,7(1):34-44
    [104]付锁堂,石小虎,南珺祥.鄂尔多斯盆地东北部上古生界太原组及下石盒子组碎屑岩储集层特征[J].古地理学报,2010,12(5):609-617.
    [105]付锁堂,田景春,陈洪德,等.鄂尔多斯盆地晚古生代三角洲沉积体系平面展布特征[J].成都理工大学学报(自然科学版),2003,30(3):236-241
    [106]高辉,解伟,杨建鹏,等.基于恒速压汞技术的特低—超低渗砂岩储层微观孔喉特征[J].石油实验地质,2011,33(2):207-214.
    [107]高辉,孙卫,宋广寿,等.鄂尔多斯盆地合水地区长8储层特低渗透成因分析与评价[J].地质科技情报,2008,27(5):71-76.
    [108]高辉,孙卫.鄂尔多斯盆地合水地区长8储层成岩作用与有利成岩相带[J].吉林大学学报(地球科学版),2010,40(3):542-548
    [109]高星,陈洪德,朱平,等.苏里格气田西部盒8段储层成岩作用及其演化[J].天然气工业,2008,29(3):17-20
    [110]葛鹏莉.鄂尔多斯盆地富县地区延长组储层评价[D].成都:成都理工大学,2010:28-39
    [111]耿元生,王新社,沈其韩,等.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质,2006,33(1):138-145.
    [112]郭绪杰,焦贵浩.华北古生界石油地质[M].北京:地质出版社,2002:135-138
    [113]郭英海,刘焕杰,权彪,等.鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报,1998,16(3):44-51
    [114]国土资源部油气资源战略研究中心.全国油气资源动态评价(2010)[M].北京:中国大地出版社,2011:1-69
    [115]韩会平,侯云东,武春英.鄂尔多斯盆地靖边气田山西组山23段沉积相与砂体展布[J].油气地质与采收率,2007,14(6):50-55
    [116]韩永林,王海红,陈志华,等.耿湾—史家湾地区长6段微量元素地球化学特征及古盐度分析[J].岩性油气藏,2007,19(4):20-26
    [117]韩宗元,方青海,宋波,等.鄂尔多斯盆地子洲-清涧地区上古生界山23段储层特征[J].西北大学学报(自然科学版),2008,38(3):467-474
    [118]郝明强,李树铁,杨正明,等.可动流体相对体积对低渗透油藏开发效果的影响[J].新疆石油地质,2006,27(3):335-337
    [119]何更生.油层物理[M].北京:石油工业出版社,1994:225-245
    [120]何雨丹,毛志强,肖立志等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,(02):373-378
    [121]何自新,费安琦,王同和.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003:15-79
    [122]何自新,南珺祥.鄂尔多斯盆地上古生界储层图册[M].北京:石油工业出版社,2004:50-88
    [123]和钟铧,刘招君,张峰.重矿物在盆地分析中的应用研究进展[J].地质科技情报,2001,20(4):29-31.
    [124]胡江柰,张哨楠,李德敏.鄂尔多斯盆地北部下石盒子组-山西组成岩作用与储层的关系[J].成都理工学院学报,2001,28(4):169-173
    [125]胡文瑞.低渗透油气田概论—迅速崛起的鄂尔多斯盆地[M].北京:石油工业出版社,2009:1-28
    [126]胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报(自然科学版),2001,25(1):107-112
    [127]胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1):14-25
    [128]黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506
    [129]黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):8-13
    [130]黄思静,谢连文,张萌,等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281
    [131]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:47-92
    [132]姜在兴.沉积学[M].北京:石油工业出版社,2003:46-87
    [133]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18
    [134]蒋明丽.粒度分析及其地质应用[J].石油天然气学报,2009,31(1):161-163
    [135]李成风,肖继风.用微量元素研究胜利油田东营盆地沙河街组的古盐度[J].沉积学报,1988,6(4):100-108
    [136]李汉瑜.关于石英的阴极发光特征及其在砂岩中的应用[J].沉积学报,1983,1(2):166-171.
    [137]李建忠,郑民,张国生,等.中国常规与非常规天然气资源潜力及发展前景[J].石油学报,2012,33(增刊1):89-98.
    [138]李文厚,邵磊,魏红红,等.西北地区湖相浊流沉积[J].西北大学学报(自然科学版),2001,31(1):57-62
    [139]李汶国,张晓鹏,钟玉梅,等.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-223
    [140]李艳,范宜仁,邓少贵,等.核磁共振岩心实验研究储层孔隙结构[J].勘探地球物理进展,2008,31(2):129-132
    [141]李玉君,任芳祥.核磁共振技术在辽河油田奈1块九佛堂组储层评价中的应用[J].内蒙古石油化工,2010
    [142]李志亮,杜小如.沉积物粒度参数求解方法的对比[J].长江科学院院报,2008,25(4):16-19
    [143]连承波,钟建华,杨玉芳,等.松辽盆地龙西地区泉四段低孔低渗砂岩储层物性及微观孔隙结构特征研究[J].地质科学,2010,45(4):1170-1179
    [144]林文姬,汤达祯,徐凤银,等.苏里格气田盒8段成岩相类型及其测井标志[J].石油天然气学报(江汉石油学院学报),2010,32(2):271-273.
    [145]林文姬,汤达祯,徐凤银,等.苏里格气田盒8段成岩作用强度定量化研究[J].山东科技大学学报(自然科学版),2010,29(6):30-38
    [146]林雄,徐小蓉,侯中健,等.鄂尔多斯盆地北部山西期—下石盒子期盆地演化与天然气富集规律[J].成都理工大学学报(自然科学版),2005,32(2):138-141.
    [147]蔺宏斌,侯明才,陈洪德,等.鄂尔多斯盆地苏里格气田北部下二叠统山1段和盒8段物源分析及其地质意义[J].地质通报,2009,28(4):483-492
    [148]刘化清,廖建波,房乃珍,等.鄂尔多斯盆地环县地区长6沉积体系展布特征[J].沉积学报,2005,23(4):584-588
    [149]刘建清,赖兴运,于炳松,等.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-72
    [150]刘俊海,杨香华,于水,等.东海盆地丽水凹陷古新统沉积岩的稀土元素地球化学特征[J].现代地质,2003,17(4):421-427.
    [151]刘林玉,王震亮.白豹地区延长组长3储层的成岩作用与成岩相[J].西北大学学报(自然科学版),2008,28(1):99-102
    [152]刘林玉,张龙,王震亮.鄂尔多斯盆地镇北地区长3储层微观非均质性的实验分析[J].沉积学报,2007,25(2):224-229
    [153]刘孟慧.造岩矿物学[M].山东东营:石油大学出版社,1991:69-87
    [154]刘锐娥,黄月明,卫孝锋,等.鄂尔多斯盆地北部晚古生代物源区分析及其地质意义[J].矿物岩石,2003,23(3):82-86
    [155]刘锐娥,龙利平,肖红平,张春林,蔺洁.2010.鄂尔多斯盆地中东部下二叠统山西组2段优质储层主控因素探讨.西安石油大学学报(自然科学版),25(2):26-29.
    [156]刘锐娥,孙粉锦,卫孝锋等.鄂尔多斯盆地中东部山2段储集层岩性微观特征差异性的地质意义[J].石油勘探与开发,2005,32(5):56-58
    [157]刘堂宴,马在田,傅容珊.核磁共振谱的岩石孔喉结构分析[J].地球物理学进展,2003,18(4):737-742
    [158]刘堂宴,王绍民,傅容珊,等.核磁共振谱的岩石孔喉结构分析[J].石油地球物理勘探,2003,38(3):328-336.
    [159]刘小洪,冯明友,罗静兰,等.鄂尔多斯盆地乌审召地区盒8、山1段储层流体包裹体特征及其意义[J].石油与天然气地质,2010,31(3):360-374
    [160]刘小洪,罗静兰,郭彦如.鄂尔多斯盆地陕北地区上三叠统延长组长6油层组的成岩相与储层分布[J].地质通报,2008,27(5):626-632
    [161]刘小洪.鄂尔多斯盆地上古生界砂岩储层的成岩作用研究与孔隙成岩演化分析[D].西安:西北大学,2008:15-69
    [162]刘新社,周立发,侯云东,等.用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏[J].石油学报,2007,28(6):37-42
    [163]柳益群,李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):86-96
    [164]卢连战,史正涛.沉积物粒度参数内涵及计算方法的解析[J].环境科学与管理,2010,35(6):54-60
    [165]罗静兰,魏新善,姚泾利,等.物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制[J].地质通报,2010,29(6):811-820.
    [166]罗顺社,朱珊珊.苏里格地区下石盒子组8段物源分析[J].石油天然气学报,2012,34(9):193-194.
    [167]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:石油工业出版社,1986:21-23
    [168]苗盛,张发强,李铁军,等.核磁共振成像技术在油气运移路径观察与分析中的应用[J].石油学报,2004,25(3):44-47.
    [169]庞军刚,李文厚,郭艳琴,等.陕北子洲地区二叠纪山西组沉积环境[J].煤田地质与勘探,2006,34(5):5-8.
    [170]庞军刚,李文厚,杨友运,等.鄂尔多斯盆地子洲地区上古生界沉积体系特征[J].天然气工业, 2007,27(12):58-61
    [171]彭格林,张则有,伍大茂.泥炭与煤形成环境对比研究现状[J].地球科学进展,1999,14(3):247-255
    [172]裘亦楠.中国陆相碎屑岩储层沉积学的进展[J].沉积学报,1992,10(3):16-24
    [173]屈红军,马强,高胜利,等.物源与沉积相对鄂尔多斯盆地东南部上古生界砂体展布的控制[J].沉积学报,2011,29(5):825-834.
    [174]冉新权,李安琪.苏里格气田开发论[M].北京:石油工业出版社,2008:16-37
    [175]申艳,谢继容,唐大海.四川盆地中西部上三叠统须家河组成岩相划分及展布[J].天然气勘探与开发,2006,29(3):21-25.
    [176]石小虎,杨奕华,南郡祥.鄂尔多斯盆地上古生界砂岩中的自生高岭石成因类型及其对储层的影响[J].低渗透油气田,2006,11(1-2):29-32
    [177]石玉江,肖亮,毛志强,等.低渗透砂岩储层成岩相测井识别方法及其地质意义—以鄂尔多斯盆地姬塬地区长8段储层为例[J].石油学报,2011,32(5):820-828.
    [178]时卓,张海涛,王永莉.苏里格气田储层成岩相类型及测井识别[J].国外测井技术,2011,(4):13-17.
    [179]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):66-76
    [180]宋海渤,黄旭日.油气储层建模方法综述[J].天然气勘探与开发,2008,31,(3):53-57
    [181]宋子齐,王静,路向伟,等.特低渗透油气藏成岩储集相的定量评价方法[J].油气地质与采收率,2006,13(2):21-23
    [182]苏楠,田景春,隆昊,等.苏里格气田东区上古生界盒8段、山1段物源区分析研究[J].中国西部科技,2011,10(5):4-7
    [183]孙思敏.低渗透储层成岩作用定量表征与成岩储集相—以吉林新立油田泉头组三、四段为例[J].沉积与特提斯地质,2007,27(2):100-105
    [184]孙卫,杨希濮,高辉.溶孔-粒间孔组合对超低渗透储层物性的影响:以西峰油田庆阳区长8油层为例[J].西北大学学报:自然科学版,2009,39(3):507-509.
    [185]谭先锋,田景春,李祖兵,等.碱性沉积环境下碎屑岩的成岩演化—以山东东营凹陷陡坡带沙河街组四段为例[J].地质通报,2010,29(4):535-543
    [186]汤军.对储层建模的研究[J].石油天然气学报(江汉石油学院学报),2006,28(3):50-52
    [187]万永平,李园园,梁晓.基于流体包裹体的储层微裂缝研究—以陕北斜坡上古生界为例[J].地 质与勘探,2010,46(4):711-715
    [188]汪泽成,赵文智,门相勇,等.基底断裂“隐性活动”对鄂尔多斯盆地上古生界天然气成藏的作用[J].石油勘探与开发,2005,32(1):9-13
    [189]汪正江,陈洪德,张锦泉.鄂尔多斯盆地晚古生代沉积体系演化与煤成气藏[J].沉积与特提斯地质,2002,22(2):18-23
    [190]汪正江,陈洪德,张锦泉.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110
    [191]汪正江,张锦泉,陈洪德.鄂尔多斯盆地晚古生代陆源碎屑沉积源区分析[J].成都理工学院学报,2001,28(1):7-12.
    [192]王超勇,陈孟晋,汪泽成,等.鄂尔多斯盆地南部二叠系山西组及下石盒子组盒8段沉积相[J].古地理学报,2007,9(4):369-377
    [193]王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2003:86-114
    [194]王春连,侯中健,刘丽红.鄂尔多斯盆地西北部上古生界流体包裹体特征及其与油气演化的关系[J].四川地质学报,2010,30(1):45-50
    [195]王峰,田景春,陈蓉,等.鄂尔多斯盆地北部上古生界盒8储层特征及控制因素分析[J].沉积学报,2009,27(2):238-245
    [196]王峰,田景春,陈蓉,等.鄂尔多斯盆地北部下石盒子组盒8物源分析及沉积特征[J].物探化探计算技术,2010,32(1):41-47
    [197]王国茹.鄂尔多斯盆地北部上古生界物源及层序岩相古地理研究[D].成都:成都理工大学,2011:18-70.
    [198]王怀厂,魏新善,白海峰.鄂尔多斯盆地榆林地区山西组2段高效储集层形成的地质条件[J].天然气地球科学,2005,16(3):319-323.
    [199]王建伟,鲍志东,陈孟晋,等.砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响—以鄂尔多斯盆地西北部二叠系为例[J].地质科学,2005,40(3):429-438
    [200]王瑞飞,陈明强,孙卫,等.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008
    [201]王瑞飞,沈平平,赵良金.深层储集层成岩作用及孔隙度演化定量模型—以东濮凹陷文东油田沙三段储集层为例[J].石油勘探与开发,2011,38(5):552-559
    [202]王瑞飞,宋子齐.浊积扇体系沉积微相对物性及成岩控制的定量研究—以鄂尔多斯盆地ZH40区块为例[J].地层学杂志,2009,33(1):76-81
    [203]王若谷.鄂尔多斯盆地三叠系延长组长6-长7油层组沉积体系研究[D].西安:西北大学,2010, 30-35
    [204]王双明,佟英梅,李锋莉,等.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社,1996:1-2
    [205]王为民,郭和坤,孙佃庆,等.用核磁共振成像技术研究聚合物驱油过程[J].石油学报,1997,18(4):54-60.
    [206]王兴志,方少仙,侯方浩,等.四川盆地灯影组储层原生孔隙内胶结物研究[J].西南石油学院学报,1998,20(3):1-6
    [207]王学武,杨正明,李海波,等.核磁共振研究低渗透储层孔隙结构方法[J].西南石油大学学报:自然科学版,2010,32(2):69-72
    [208]王英华,张绍平,潘荣胜.阴极发光技术在地质学中的应用[M].北京:地质出版社,1990:1-20
    [209]王允诚,董继芬.砂岩孔隙-喉道分布的特征参数[J].成都地质学院学报,1984,1:64-69
    [210]王忠东,肖立志,刘宴堂.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(D辑),2003,33(4):323-332.
    [211]文华国,郑荣才,唐飞,等.鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J].矿物岩石,2008,28(1):114-120
    [212]吴胜和,马晓芬.煤系地层低渗透岩屑砂岩储层成因机理与储层特征[J].低渗透油气田,1996,1(1):13-17
    [213]吴世敏,陈汉宗.沉积物物源分析的现状[J].海洋科学,1999,2:35-37
    [214]吴小斌,侯加根,孙卫.特低渗砂岩储层微观结构及孔隙演化定量分析[J].中南大学学报(自然科学版),2011,42(11):3438-3446
    [215]席胜利,李文厚,刘新社,等.鄂尔多斯盆地神木地区下二叠统太原组浅水三角洲沉积特征[J].古地理学报,2009,11(2):187-194
    [216]席胜利,王怀厂,秦伯平.鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业,2002,22(2):21-24
    [217]向芳,陈洪德,李志宏,等.鄂尔多斯盆地东北部山西组三角洲相沉积演化特征[J].成都理工大学学报(自然科学版),2008,35(6):693-699
    [218]肖红平,刘锐娥,李文厚,等.鄂尔多斯盆地上古生界碎屑岩相对高渗储集层成因及分布[J].古地理学报,2012,14(4):543-552
    [219]肖军,王华,袁立川,等.深埋藏砂岩储层中异常孔隙的保存机制探讨[J].地质科技情报,2007, 26(5):49-56
    [220]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998:1-328
    [221]徐守余,李红南.储集层孔喉网络场演化规律和剩余油分布[J].石油学报,2003,24(4):48-53
    [222]徐亚军,杜远生.沉积物物源分析研究进展[J].地质科技情报,2007,26(3):26-32
    [223]许中杰,程日辉,王嘹亮,等.南海北部陆缘早侏罗世海平面变化的古盐度记录[J].沉积学报,2009,27(6):1147-1154
    [224]闫义,林舸,王岳军,等.盆地陆源碎屑沉积物对源区构造背景的指示意义[J].地球科学进展,2002,17(1):85-90
    [225]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002:92-128
    [226]杨满平,王兴志,李凌,等.佳县—子洲地区山西组沉积相研究[J].西南石油学院学报,2000,22(4):15-17
    [227]杨仁超,王秀平,樊爱萍,等.苏里格气田东二区砂岩成岩作用与致密储层成因[J].沉积学报,2012,30(1):111-119
    [228]杨守业,李先从.REE示踪沉积物物源研究进展[J].地球科学进展,1999,14(2):164-167
    [229]杨作升.黄河口毗邻海域细粒沉积物特征及沉积物入海后的运移[J].山东海洋学院学报,1985,15(2):121-127
    [230]叶黎明,齐天俊,彭海燕.鄂尔多斯盆地东部山西组海相沉积环境分析[J].沉积学报,2008,26(2):202-210
    [231]应凤祥,杨式升,张敏,等.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79.
    [232]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):21-23
    [233]于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2008:1-239
    [234]袁静,杜玉民,李云南.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103-106
    [235]运华云,赵文杰,周灿灿等.利用T2分布进行岩石孔隙结构研究[J].测井技术,2002,26(1):18-21
    [236]曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工学院学报,1999,26(1):1-7
    [237]张大伟,陈发景,程刚.松辽盆地大情字井地区高台子油层储集层孔隙结构的微观特征[J].石油与天然气地质,2006,27(5):668-674
    [238]张丽芬,曾夏生.北京周口店岩体地球化学特征及物源分析[J].岩石矿物学杂志,2006,25(6):480-485
    [239]张茂盛.微量元素在地质沉积环境中的应用[J].光谱仪器与分析,2001,4:19-2
    [240]张琴,钟大康,朱筱敏,等.东营凹陷下第三系碎屑岩储层孔隙演化与次生孔隙成因[J].石油与天然气地质,2003,24(3):281-285
    [241]张文忠,郭彦如,汤达祯,等.苏里格气田上古生界储层流体包裹体特征及成藏期次划分[J].石油学报,2009,30(5):687-691
    [242]张翔,田景春,陈洪德,等.鄂尔多斯盆地西部上二叠统石千峰组沉积环境地球化学表征[J].地球科学与环境学报,2008,30(2):139-143
    [243]张响响,邹才能,陶士振,等.四川盆地广安地区上三叠统须家河组四段低孔渗砂岩成岩相类型划分及半定量评价[J].沉积学报,2010,28(1):50-57
    [244]赵澄林.沉积学原理[M].北京:石油工业出版社,2001:37-71
    [245]赵红格,刘池阳.物源分析方法及研究进展[J].沉积学报,2003,21(3):409-415
    [246]赵娟.苏里格气田东二区山1段和盒8段沉积相特征与储层评价[D].青岛:山东科技大学,2011:14-80
    [247]赵勇,李义军,杨仁超,等.苏里格气田东区山1、盒8段储层沉积微相与地质建模[J].矿物岩石,2010,30(4):86-94
    [248]赵重远.含油气盆地地质学进展[M].西安:西北大学出版社,1993:30-97
    [249]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989:3-11
    [250]郑荣才,柳梅青.鄂尔多斯盆地长6油层组古盐度研究[J].石油与天然气地质,1999,20(1):20-251
    [251]周灿灿,刘堂晏,马在田,等.应用球管模型评价岩石孔隙结构[J].石油学报,2006,27(1):92-96.
    [252]朱如凯,郭宏莉,何东博,等.中国西北地区石炭系泥岩稀土元素地球化学特征及其地质意义[J].现代地质,2002,16(2):130-136
    [253]朱筱敏,王英国,钟大康,等.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J].地质学报,2007,81(2):197-204
    [254]朱永贤,孙卫,于锋.应用常规压汞和恒速压汞实验方法研究储层微观孔隙结构—以三塘湖油田牛圈湖区头屯河组为例[J].天然气地球科学,2008,19(4):553-556
    [255]邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008, 35(5):526-539

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700