用户名: 密码: 验证码:
长江口及邻近海域百年来沉积讯息与环境变化关系的解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过探讨长江口及其邻近海域沉积物中生源要素和微量元素的生物地球化学特征及环境指示意义,构建了指示水体环境变化的化学指标体系,解析了长江口及邻近海域百年来沉积讯息与环境变化的关系。具体工作包括1)诠释了长江口及邻近海域水体悬浮颗粒物中无机态和有机态的磷和氮来源、时空变化等行为特征,获取了长江口及邻近海域颗粒态P和N的通量;2)揭示了长江口及邻近海域表层沉积物中生源要素(TOC、TN、BSi、TP)、潜在危害性元素(PHE:V、Cr、Co、Ni、Cu、Zn、Mo、Cd、Pb、Bi)及P和PHE的分级浸取形态的来源、主控因素、通量等地球化学行为特征,构建指示水域环境变化的指标体系;3)探讨了浙江近岸和东海冷涡区的两根柱状沉积物中生源要素、13C、磷的结合形态、微量金属元素及其形态与水体环境变化间的对应关系,重建了长江口海域近百年来自然的和人为的环境变化历程。获得的主要的结果和结论如下:
     1.获取了关于长江口及邻近海域水体颗粒P和N的来源、时空变化、通量等行为特征的系统认识,发现颗粒磷(TPP)主要来自陆源输入,颗粒氮(TPN)则来自海洋生物。无机磷(PIP)和有机氮(PON)是颗粒态P和N的主要组成部分,PIP主要来源于长江输入,POP受海洋生物和陆源输入双重影响,其中浮游植物对POP贡献高于79%,89%以上的颗粒N由浮游植物输入,68-73%的PIP最终埋藏于沉积物中,而大部分POP和TPN被溶解进入再循环。
     长江口及其邻近海域悬浮颗粒物(SPM)中PIP和PON分别占颗粒P和N总量的57.2±11.4%和78.2±16.8%,是颗粒P(TPP)和N(TPN)的主要组成部分。颗粒P和N的时空分布表明PIP主要来源于长江和江苏沿岸流泥沙输入,POP受陆源输入和海洋生物输入双重影响,PIN和PON主要来源于海洋生物输入。受水体生产力和长江输沙量的季节变化影响,颗粒态P和N含量在春季高于秋季,但有机组分的比例春季低于秋季。颗粒态P和N的通量计算显示,长江口水域SPM主要来源于长江输入,其输入比例在春夏季达88%,57%的SPM最终沉降于海底;PIP来源于长江输入,浮游植物输入在春夏季和秋冬季的分别占POP总输入的87%和79%;95%(春夏)/89%(秋冬)的颗粒N来自浮游植物输入。PIP的输入和输出通量基本处于平衡,其沉降通量占总输入通量的68-73%。POP和TPN的负丢失项占其总输入量的92%主95%,大部分颗粒有机质可能被溶解或矿化离开颗粒物。
     2.获得了对长江口及其邻近海域沉积物中生源要素及磷的结合形态的来源、控制因素和环境指示意义的系统认识,发现长江、江苏沿岸流和海洋生物输入是沉积物生源要素的三大来源。柱状沉积物中Fe-P、Al-P、Det-P.BSi、δ13C含量变化可用于反演近百年来长江径流量的高/低波动;沉积柱上层粒径归一化的TOC等含量升高,记录了在20世纪80/90年代后近岸水体富营养化加剧、生产力升高的环境变化;冷涡区沉积柱中TOC、TN、δ13C、BSi、Ex-P、Fe-P和1ea-OP的变化指示了百年来东亚冬季风强度的周期性振荡。
     生源要素的含量与分布显示,长江口海域沉积物中TOC和Lea-OP来源于河流输入和海洋生物输入,δ13C显示近岸沉积物中约34-70%的有机质来自陆源输入,远岸沉积物中约66-79%的有机质为自海洋自生;TN受海洋初级生产力控制,BSi来源于硅藻输入;Fe-P、Al-P和Det-P源于长江和江苏沿岸流沉积物输入;CFA-P受江苏沿岸流和钙质生物输入影响。TOC、TN、TP和非磷灰石磷富集于细粒沉积物中,Det-P基本在粗粒沉积物中富集。
     浙江近岸的沉积柱中,Fe-P、Al-P与Det-P含量呈现相反的变化,其变化对应着沉积物粒度变化以及长江径流量的高/低波动,对应机制与径流量-沉积物粒度-磷形态的含量三者间的相互作用关系有关。沉积物中BSi的显著低值记录了1980年代末期长江径流量降低、溶解硅输入通量达最低值时东海近岸水体中硅藻生产力降低的环境变化。沉积柱上层,粒径归一化的TOC、TN、TP、Ex-P、Fe-P和lea-OP含量显著增加,反映了1990年代后东海近岸水体富营养化加剧、初级生产力升高的生态环境变化。冷涡区沉积柱中,TOC、TN、δ13C、BSi、Ex-P、Fe-P和lea-OP含量的变化对应近一个世纪东亚冬季风强度的20年周期性振荡,与冬季风强盛时期江苏沿岸流增强,物质输入增加使得远岸水体生产力升高有关。3.揭示了长江口海域沉积物中PHE及其形态的主控因素及环境指示意义,V、Cr、Co、Ni、Cu、Zn、Mo、Cd和Bi主要在残渣态中存在,来源于陆源输入,长江输入占其总输入量的82-90%,长江口和浙江近岸沉积物中存在Cu、Zn、Cd、Bi的富集,北部中陆架区存在Pb的富集。近岸沉积柱中PHE、岩生元素及残渣态含量变化反映了1850年以来长江径流量的高/低波动,沉积柱上层Zn、Pb、Bi、Cu的富集因子及活性形态含量升高与1980年代后人为污染输入增加有关,冷涡区沉积物中微量元素含量变化对应东亚冬季风强度的周期性振荡。综合表明,沉积物生源要素与微量元素反映的长江口海域生态环境变化历程具有一致性。
     长江口海域沉积物中V、Cr、Co、Ni、Cu、Zn、Mo、Cd和Bi主要在残渣态中存在,含量与分布显示其主要来源于长江和江苏沿岸流物质输入;Cu、Zn、Cd、Bi和Pb的活性形态比例较高,平均值在22-51%间,结合元素富集因子值(EF),得出近岸沉积物可能存在Cu、Zn、Cd和Bi的污染,北部中陆架区存在Pb的富集,污染源可能包括长江、陆源污染排放以及Pb的大气输入。通量显示长江是PHE的主要来源,占元素总输入的82-90%。38-77%的微量元素最终埋藏于沉积物中,大部分沉积在内陆架区。
     近岸沉积柱中PHE、岩生元素(Li、Sc、Rb、Cs、Th)及元素残渣态的垂直分布一致,含量变化记录了1850年以来长江径流量的干/湿变化,反映机制涉及河流直接输入、沉积物粒度效应和有机质结合三种过程。沉积柱上层,Zn、Pb、Bi和Cu的EF分别增加13%、19%、20%和4%,活性形态含量升高,表明1980年代后这些元素受到人为输入影响。可氧化态的Co、Ni、Cu、Zn、Pb和Bi在柱上层16cm内含量升高,与1990年代后水体初级生产力增加有关。冷涡区沉积柱中,PHE和岩生元素总量的变化对应着冬季风强度的20年周期性波动,强盛的冬季风增加了江苏沿岸流和大气的物质输入,促进外海水体生产力升高,使得沉积物中微量元素含量增加。
This study investigated the geochemical characterics and environmental significances of biogenic elements and trace elements in sediments of the Changjiang Estuary and its adjacent waters, then established the geochemical proxies of environmental changes and further revealed the correlations between sedimentary records and environmental changes in the Changjiang Estuary and its adjacent waters. The following tasks have been completed:1) The geochemical behavior including sources and variations of particulate inorganic and organic P and N in the Changjiang Estuary and adjacent waters was investigated, and the budgets of particulate P and N were calculated;2) The sources, governing factors and budgets of biogenic elements (TOC, TN, BSi, TP), potential harmful elements (PHE:V, Cr, Co, Ni, Cu, Zn, Mo, Cd, Pb, Bi) and chemical forms of P and PHEs in surface sediments of the Changjiang Estuary and adjacent waters were investigated, and the environmental indicative significances of these elements were revealed.3) The correlations of sedimentary biogenic elements,13C, P forms, trace elements and their forms in two sediment cores from the Zhejiang coast and the offshore cold-eddy with environmental changes in waters were discussed, and the histories of natural and human-induced environmental changes in the Changjiang Estuary and adjacent waters for the past hundred years were reconstructed. Major results and conclusions are as the following:
     1. Constitution, sources, variations and budgets of particulate P and N in the Changjiang Estuary and adjacent waters were revealed. Particulate inorganic P (PIP) and organic N (PON) were the major constitutions of particulate P and N, respectively. PIP was mainly input from the Changjiang. POP was from both marine biological input and terrestrial input with the former contributed more than79%of total input. Higher than89%of particulate N was from phytoplankton. PIP was stable, but most of the POP and TPN were recycled.
     PIP and PON were the major components of particulate P and N, accounting for57.2±11.4%of TPP and78.2±16.8%of TPN, respectively. Distributions and variations of particulate P and N illustrated that PIP was mainly from the Changjiang River and the Jiangsu coastal current (JCC). POP was from both terrestrial and marine biological input. PIN and PON were primarily of marine source. Impacted by the seasonal variations of primary productivity and Changjiang sediment load, the concentrations of particulate P and N were higher in spring than those in autumn, while the percentage of organic component were lower in spring. The budgets of particulate P and N showed that Changjiang sediment was the major source of SPM in the Changjiang Estuary and adjacent area, contributing88%of SPM influx in spring and summer. Fifty-seven percent of SPM was finally buried in seabed. Phytoplankton input contributed87%and79%of total POP input in spring-summer and autumn-winter, respectively.95%in spring-summer and89%in autumn-winter of particulate N were from phytoplankton input. The influx and outflow of PIP were largely equal. The missing flux of POP and TPN accounted for92%and95%of their total influx, respectively, implying that most of the particulate organic matter likely was dissolved or mineralized.
     2. In-depth knowledge of the sources, governing factors and environment indicative significances of biogenic elements and P species in sediments were gained. The Changjiang estuary, the JCC and marine biological input were three major sources of biogenic elements in sediments. In the coastal core sediment, the variations of Fe-P, Al-P, Det-P, BSi and δ13C were used to reflect the dry/wet variations of the Changjiang runoff for the past hundred years; Increases in grain size-normalized elements in the upper core recorded the aggravated eutrophication and elevation of productivity in inshore waters after the1990s. In the offshore core, the variations of TOC, TN,δ13C, BSi, Ex-P, Fe-P and lea-OP reflected the periodic fluctuations of the strength of the East Asia Winter Monsoon.
     The distributions of biogenic elements and P species showed that TOC and Lea-OP were from both river and marine biological inut. According to δ13C, about34-70%of organic matter was of terrestrial origin in coastal sediments while66-79%was of marine source in offshore sediments. TN was governed by marine primary productivity and BSi mainly originated from diatom. Fe-P, Al-P and Det-P were primarily of terrestrial sources from the Changjiang and the JCC. CFA-P was impacted by material input from the JCC and calcium organisms. TOC, TN, TP and non-apatite P were associated with fine sediment while Det-P was largely enriched in coarse particles.
     In the coastal core, the distributions of Fe-P and Al-P exhibited opposite trends to that of Det-P. Their variations were in response to the changed sediment grain size and Changjiang runoff, resulting from the interactions between runoff, sediment grain size and P contents. Marked low concentrations of BSi recorded the decreased diatom production in the late1980s due to low Changjiang runoff and the minimum flux of dissolved silicon. In the upper section of the core, grain-size normalized TOC, TN, TP, Ex-P, Fe-P and lea-OP showed marked increases. This revealed the eutrophication and elevated primary productivity in the coastal waters after the1990s. In the offshore core, the variations of TOC, TN,δ13C, BSi, Ex-P, Fe-P and lea-OP recorded the decadal oscillations of the winter monsoon strength. Strong winter monsoon strengthened the JCC and increased material delivery to the offshore water, and thus led to elevated primary productivity and higher biogenic element contents in sediments.
     3. The governing factors and environmental indicative significances of PHE and their chemical forms in sediments of the Changjiang Estuary and adjacent waters were investigated. Residual fraction was the major form of V, Cr, Co, Ni, Cu, Zn, Mo, Cd and Bi in sediments. These elements mainly came from terrestrial input, and the Changjiang River contributed82-90%of their total input. Enrichment of Cu, Zn, Cd and Bi was observed in the estuary and Zhejiang coast, and Pb enrichmenten in the northern middle shelf. In the coastal core, the variations of PHE, lithogenic elements and their residual fractions reflected the dry/wet fluctuations of the Changjiang runoff after the1850s. Increases of the enrichment factors (EFs) and labile fraction contents of Zn, Pb, Bi and Cu revealed pollution of these elements in the coastal sediments. In the offshore core, the changes in trace element contents recorded the periodic oscillations of the winter monsoon strength for the past century. The results of sedimentary PHE in reflecting the environmental changes were in agreement with those of sedimentary biogenic elements.
     Residual fraction was the major form of V, Cr, Co, Ni, Cu, Zn, Mo, Cd and Bi in sediments of the Changjiang Estuary and adjacent waters. Contents and distributions showed that these elements and their residual fractions came primarily from the sediment input of the Changjiang and the JCC. Sedimentary Cu, Zn, Cd, Bi and Pb had higher proportions of labile fractions which account for22-51%of their total contents. According to the distributions of EFs and labile fractions, coastal sediments might be polluted with Cu, Zn, Cd and Pb and the northern middle shelf sediments were enriched with Pb. The pollution sources of these elements likely included the Changjiang, coastal pollution discharge and atmospheric input for Pb. The budges revealed that the Changjiang was the major source of PHEs, contributing82-90%of total PHE input. Thirty-eight to77percent of PHEs were finally buried in sediments, primarily in the inshore area.
     In the coastal core, the vertical distributions of PHEs, lithogenic elements (Li, Sc, Rb, Cs and Th) and residual fractions were identical. Their sediment records reflected the dry/wet fluctuations of the Changjiang runoff after the1850s. The mechanisms of this reflection included direct river input, grain-size effect and organic matter association. In the upper section of the core, the EFs of Zn, Pb, Bi and Cu increased by13%,19%,20%and4%, respectively, and the contents of the labile fractions of Zn, Pb, Bi and Cu were also elevated. This implied the anthropogenic input of these elements after the1980s. In the upper16cm, oxidizable Co, Ni, Cu, Zn, Pb and Bi increased upward, which resulted from the elevated productivity in water after the1990s. In the offshore core, influenced by the JCC, the variations of PHEs and lithogenic elements were in agreement with the decadal fluctuations of winter monsoon. Strengthened winter monsoon increased the material input from the JCC and atmosphere, and then promoted the phytoplankton growth in offshore water, which jointly led to increased contents of trace elements in sediments.
引文
Abrahim G M S, Parker R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand[J]. Environmental Monitoring and Assessment,2008,136(1-3):227-238.
    Andrieux-Loyer F, Aminot A. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas[J]. Estuarine, Coastal and Shelf Science,2001,52(5): 617-629.
    Anju M, Banerjee D K. Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings[J]. Chemosphere,2010,78(11):1393-1402.
    Arain M B, Kazi T G, Jamali M K, Afridi H I, Jalbani N, Sarfraz R A, Baig J A, Kandhro G A, Memon M A. Time saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb and Zn in sediment samples of polluted lake[J]. Journal of Hazardous Materials,2008,160(1):235-239.
    Audry S, Blanc G, Schafer J. Solid state partitioning of trace metals in suspended particulate matter from a river system affected by smelting-waste drainage[J]. Science of The Total Environment,2006,363(1-3):216-236.
    Backstrom M, Bohlin H, Karlsson S, Holm N G. Element (Ag, Cd, Cu, Pb, Sb, Tl and Zn), element ratio and lead isotope profiles in a sediment affected by a mining operation episode during the late 19th century[J]. Water Air and Soil Pollution,2006,177(1-4):285-311.
    Backstrom M, Karlsson S, Allard B. Metal leachability and anthropogenic signal in roadside soils estimated from sequential extraction and stable lead isotopes[J]. Environmental Monitoring and Assessment,2004,90(1-3):135-160.
    Benitez-Nelson C R. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews,2000,51(1-4):109-135.
    Bernardez P, Prego R, Frances G, Gonzalezalvarez R. Opal content in the Ria de Vigo and Galician continental shelf:biogenic silica in the muddy fraction as an accurate paleoproductivity proxy[J]. Continental Shelf Research,2005,25(10):1249-1264.
    Bindler R, Renberg I, Rydberg J, Andren T. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy[J]. Environmental Pollution,2009,157(7):2132-2141.
    Boning P, Brumsack H J, Schnetger B, Grunwald M. Trace element signatures of Chilean upwelling sediments at similar to 36 degrees S[J]. Marine Geology,2009,259(1-4):112-121.
    Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science,1978,125(2).
    Boyle E A. Cadmium:chemical tracer of deep water paleoceanography[J]. paleoceanography, 1988,3:471-489.
    Bronk D A, Lomas M W, Glibert P M, Schukert K J, Sanderson M P. Total dissolved nitrogen analysis:comparisons between the persulfate, UV and high temperature oxidation methods[J]. Marine Chemistry,2000,69(1-2):163-178.
    Brown M R, Jeffrey S W. The amino acid and gross composition of marine diatoms potentially useful for mariculture[J]. Journal of Applied Phycology 1995,7(6):521-527.
    Buckley D E, Smith J N, Winters G V. Accumulation of contaminant metals in marine sediments of Halifax Harbour, Nova Scotia:environmental factors and historical trends[J]. Applied Geochemistry,1995,10(2):175-195.
    Burton E D, Phillips I R, Hawker D W. Trace metal distribution and enrichment in benthic, estuarine sediments:Southport Broadwater, Australia[J]. Environmental Geochemistry and Health,2005,27(5-6):369-383.
    Cardinal D, Savoye N, Trull T W, Andre L, Kopczynska E E, Dehairs F. Variations of carbon remineralisation in the Southern Ocean illustrated by the Ba-xs proxy[J]. Deep-Sea Research Part Ⅰ-Oceanographic Research Papers,2005,52(11):2193-2194.
    Cauwet G. Influence of sedimentological features on the distribution of trace metals in marine sediments[J]. Marine Chemistry,1987,22(2-4):221-234.
    Cha H, Lee C, Kim B, Choi M, Ruttenberg K. Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea)[J]. Marine Geology, 2005,216(3):127-143.
    Chai C, Yu Z, Song X, Cao X. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China[J]. Hydrobiologia,2006, 563(1):313-328.
    Chang S C, Jackson M L. Fractionation of soil phosphorus[J]. Soil Science,1957,84(2):133-144.
    Chiang K P, Chen Y T, Gong G C. Spring distribution of diatom assemblages in the East China Sea[J]. Marine Ecology-Progress Series,1999,186:75-86.
    Chiang K P, Chou Y H, Chang J, Gong G C. Winter distribution of diatom assemblages in the East China Sea[J]. Journal of Oceanography,2004,60(6):1053-1062.
    Christophoridis C, Fytianos K. Conditions affecting the release of phosphorus from surface lake sediments[J]. Journal of Environment Quality,2006,35(4):1181.
    Cooper S R, McGlothlin S K, Madritch M, Jones D L. Paleoecological evidence of human impacts on the Neuse and Pamlico Estuaries of North Carolina, USA[J]. Estuaries,2004,27(4): 617-633.
    Davies J M, Payne R. Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom[J]. Marine Biology,1984,78(3):315-324.
    Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta,1997,61(21):4507-4518.
    Dean W E. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60,000 years:teleconnections with Greenland Ice and the Cariaco Basin[J]. Quaternary Science Reviews,2007,26(1-2):98-114.
    Demaster D J, Mckee B A, Nittrouer C A, Qian J C, Cheng G D. Rates of Sediment Accumulation and Particle Reworking Based on Radiochemical Measurements from Continental-Shelf Deposits in the East China Sea[J]. Continental Shelf Research,1985,4(1-2):143-158.
    Dickinson W W, Dunbar G B, McLeod H. Heavy metal history from cores in Wellington Harbour, New Zealand[J]. Environmental Geology,1996,27(1):59-69.
    Duan S, Liang T, Zhang S, Wang L, Zhang X, Chen X. Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam[J]. Estuarine, Coastal and Shelf Science,2008,79(2):239-250.
    Duan Y, Anbar A D, Arnold G L, Lyons T W, Gordon G W, Kendall B. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta,2010,74(23):6655-6668.
    Eadie B J, Mckee B A, Lansing M B, Robbins J A, Metz S, Trefry J H. Records of nutrient-enhanced coastal ocean productivity in sediments from the Louisiana continental-shelf[J]. Estuaries,1994,17(4):754-765.
    Ellegaard M, Clarke A, Reuss N, Drew S, Weckstrom K, Juggins S, Anderson N, Conley D. Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading[J]. Estuarine, Coastal and Shelf Science,2006,68(3-4): 567-578.
    Emelyanov E M. Biogenic components and elements in sediments of the Central Baltic and their redistribution[J]. Marine Geology,2001,172(1-2):23-41.
    Engstrom D R, Schottler S P, Leavitt P R, Havens K E. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records[J]. Ecological Applications,2006,16(3):1194-1206.
    Fabricius K E. Effects of terrestrial runoff on the ecology of corals and coral reefs:review and synthesis[J]. Marine Pollution Bulletin,2005,50(2):125-146.
    Fang T H, Li J Y, Feng H M, Chen H Y. Distribution and contamination of trace metals in surface sediments of the East China Sea[J]. Marine Environmental Research,2009,68(4):178-187.
    Feng H, Han X F, Zhang W G, Yu L Z. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization[J]. Marine Pollution Bulletin,2004, 49(11-12):910-915.
    Feng X W, Jing X L, Yu X G, Li H, Chen J L, Qian J C. Sedimentary records of eutrophication in the Changjiang Estuary upwelling area over last 100 a[J]. Acta Oceanologica Sinica,2008, 27(6):49-61.
    Ferrari C P, Hong S, Van de Velde K, Boutron C F, Rudniev S N, Bolshov M, Chisholm W, Rosman K J R. Natural and anthropogenic bismuth in Central Greenland[J]. Atmospheric Environment,2000,34(6):941-948.
    Filgueiras A V, Lavilla I, Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples[J]. Journal of Environmental Monitoring,2002,4(6):823-857.
    Foley B, Jones I D, Maberly S C, Rippey B. Long-term changes in oxygen depletion in a small temperate lake:effects of climate change and eutrophication[J]. Freshwater Biology,2012, 57(2):278-289.
    Fowler S W, Teyssie J L, Church T M. Scavenging and retention of bismuth by marine plankton and biogenic particles[J]. Limnology and Oceanography,2010,55(3):1093-1104.
    Froelich P N, Arthur M A, Burnett W C, Deakin M, Hensley V, Jahnke R, Kaul L, Kim K H, Roe K, Soutar A, Vathakanon C. Early Diagenesis of Organic-Matter in Peru Continental-Margin Sediments-Phosphorite Precipitation[J]. Marine Geology,1988,80(3-4):309-343.
    Froelich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. Early oxidation of organic-matter in pelagic sediments of the eastern equatorial atlantic-suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979,43(7):1075-1090.
    Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the East China Sea in the winter of 1993[J]. Journal of Oceanography,1996,52:323-333.
    Gong G, Wen Y, Wang B, Liu G. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(6-7):1219-1236.
    Gooday A J, Jorissen F, Levin L A, Middelburg J J, Naqvi SWA, Rabalais N N, Scranton M, Zhang J. Historical records of coastal eutrophication-induced hypoxia[J]. Biogeosciences, 2009,6(8):1707-1745.
    Grousset F E, Quetel C R, Thomas B, Donard O F X, Lambert C E, Guillard F, Monaco A. Anthropogenic vs lithogenic origins of trace-elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles-northwestern Mediterranean-Sea[J]. Marine Chemistry,1995, 48(3-4):291-310.
    Hama T, Shin K H, Handa N. Spatial variability in the primary productivity in the East China Sea and its adjacent waters[J]. Journal of Oceanography,1997,53(1):41-51.
    Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982,46(5):970-976.
    Herczeg A L, Smith A K, Dighton J C. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia:C:N, delta N-15 and delta C-13 in sediments[J]. Applied Geochemistry,2001,16(1):73-84.
    Herczeg A L. Early diagenesis of organic matter in lake sediments:a stable carbon isotope study of pore waters[J]. Chemical Geology:Isotope Geoscience section,1988,72(3):199-209.
    Hodell D A, Schelske C L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario[J]. Limnology and Oceanography,1998,43(2):200-214.
    Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on the delta C-13 of sedimentary carbon in eutrophic Lake Mendota (USA):New models for interpreting isotopic excursions in the sedimentary record[J]. Geochimica et Cosmochimica Acta,2001,65(23): 4321-4337.
    Hori K, Saito Y, Zhao Q H, Cheng X R, Wang P X, Sato Y, Li C X. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression[J]. Marine Geology,2001,177(3-4):331-351.
    Hossain M A, Furumai H, Nakajima F. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area[J]. Water Science and Technology,2009, 59(2):303-310.
    Houhou J, Lartiges B S, Montarges-Pelletier E, Sieliechi J, Ghanbaja J, Kohler A. Sources, nature, and fate of heavy metal-bearing particles in the sewer system[J]. Science of The Total Environment,2009,407(23):6052-6062.
    Hsu S C, Lin F J. Elemental characteristics of surface suspended particulates off the Changjiang estuary during the 1998 flood[J]. Journal of Marine Systems,2010,81(4):323-334.
    Hsu S C, Liu S C, Huang Y T, Lung S C C, Tsai F J, Tu J Y, Kao S J. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007[J]. Journal of Geophysical Research-Atmospheres,2008,113(D18306), doi: 10.1029/2007JD009574.
    Hsu S C, Wong G T F, Gong G C, Shiah F K, Huang Y T, Kao S J, Tsai F J, Lung S C C, Lin F J, Lin I I, Hung C C, Tseng C M. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry,2010,120(1-4):116-127.
    Hu J, Liu Y, Liu J. The Comparison of phosphorus pools from the sediment in two bays of Lake Dianchi for cyanobacterial bloom assessment[J]. Environmental Monitoring and Assessment, 2006,121(1-3):1-14.
    Huh C A, Chen H Y. History of lead pollution recorded in East China Sea sediments[J]. Marine Pollution Bulletin,1999,38(7):545-549.
    Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from Pb-210, Cs-137 and Pu-239,Pu-240[J]. Marine Geology,1999,160(1-2):183-196.
    Hung T C, Meng P J, Wu S J. Species of copper and zinc in sediments collected from the Antarctic Ocean and the Taiwan Erhjin-Chi coastal area[J]. Environmental Pollution,1993,80(3): 223-230.
    Ingall E D, Bustin R M, Vancappellen P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales[J]. Geochimica et Cosmochimica Acta,1993,57(2):303-316.
    Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorus in selected histosols[J]. Soil Science,1998,163(1):36-45.
    Jensen H S, Kristensen P, Jeppesen E, Skytthe A. Iron-phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes[J]. Hydrobiologia, 1992,235:731-743.
    Jensen H S, McGlathery, K.J. M, R, Howarth R W. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds[J]. Limnology and Oceanography,1998,43(5): 799-810.
    Jensen H S, Mortensen P B, Andersen F O, Rasmussen E, Jensen A. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark[J]. Limnology and Oceanography,1995, 40(5):908-917.
    Jensen H S, Thamdrup B. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction [J]. Hydrobiologia,1993,253(1-3):47-59.
    Jin H, Chen J, Weng H, Li H, Zhang W, Xu J, Bai Y, Wang K. Variations in paleoproductivity and the environmental implications over the past six decades in the Changjiang Estuary[J]. Acta Oceanologica Sinica,2010,29(3):38-45.
    Jonge V, Engelkes M, Bakker J. Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea[J]. Hydrobiologia,1993,253(1-3):151-163.
    Kamenov G D, Brenner M, Tucker J L. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), similar to 1500 AD to present[J]. Geochimica et Cosmochimica Acta,2009,73(12):3549-3567.
    Kao S, Lin F, Liu K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2003,50(6-7):1203-1217.
    Karamanev D G, Nikolov L N, Mamatarkova V. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions[J]. Minerals Engineering,2002, 15(5):341-346.
    Kawahata H, Ohta H. Sinking and suspended particles in the South-west Pacific[J]. Marine and Freshwater Research,2000,51(2):113-126.
    Kazi T G, Jamali M K, Kazi G H, Arain M B, Afridi H I, Siddiqui A. Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test[J]. Analytical and Bioanalytical Chemistry,2005,383(2): 297-304.
    Kemp A L W, Mudrocho.A. Distribution and forms of nitrogen in a Lake-Ontario sediment core[J]. Limnology and Oceanography,1972,17(6):855-867.
    Kennedy V H, Sanchez A L, Oughton D H, Rowland A P. Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake[J]. Analyst,1997,122(8):R89-R100.
    Komarek M, Ettler V, Chrastny V, Mihaljevic M. Lead isotopes in environmental sciences:A review[J]. Environment International,2008,34(4):562-577.
    Kopacek J, Borovec J, Hejzlar J, Ulrich K U, Norton S A, Amirbahman A. Aluminum control of phosphorus sorption by lake sediments[J]. Environmental Science & Technology,2005, 39(22):8784-8789.
    Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006,75(1-4):29-57.
    Lambert D C, McDonough K M, Dzombak D A. Long-term changes in quality of discharge water from abandoned underground coal mines in Uniontown Syncline, Fayette County, PA, USA[J]. Water Research,2004,38(2):277-288.
    Lambert R, Grant C, Sauve S. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers[J]. Science of The Total Environment,2007,378(3):293-305.
    Lario J, Spencer C, Plater A J, Zazo C, Goy J L, Dabrio C J. Particle size characterisation of Holocene back-barrier sequences from North Atlantic coasts (SW Spain and SE England)[J]. Geomorphology,2002,42(1-2):25-42.
    Li D J, Zhang J, Huang D J, Wu Y, Liang J. Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China Series D-Earth Sciences,2002,45(12):1137-1146.
    Li M, Xu K, Watanabe M, Chen Z. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem[J]. Estuarine, Coastal and Shelf Science,2007,71(1-2):3-12.
    Li X D, Wai O W H, Li Y S, Coles B J, Ramsey M H, Thornton I. Heavy metal distribution in sediment profiles of the Pearl River estuary, South China[J]. Applied Geochemistry,2000, 15(5):567-581.
    Lim D I, Choi J Y, Jung H S, Rho K C, Ahn K S. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas[J]. Progress In Oceanography,2007, 73(2):145-159.
    Lin F J, Hsu S C, Jeng W L. Lead in the southern East China Sea[J]. Marine Environmental Research,2000,49(4):329-342.
    Lin S, Hsieh I J, Huang K M, Wang C H. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J]. Chemical Geology,2002,182(2-4):377-394.
    Liu E, Shen J, Zhang E, Wu Y, Yang L. A geochemical record of recent anthropogenic nutrient loading and enhanced productivity in Lake Nansihu, China[J]. Journal of Paleolimnology, 2010,44(1):15-24.
    Liu H, Li W. Dissolved trace elements and heavy metals from the shallow lakes in the middle and lower reaches of the Yangtze River region, China[J]. Environmental Earth Sciences,2011, 62(7):1503-1511.
    Liu J P, Li A C, Xu K H, Velozzi D M, Yang Z S, Milliman J D, DeMaster D J. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research,2006,26(17-18):2141-2156.
    Liu J, Xu K, Li A, Milliman J, Velozzi D, Xiao S, Yang Z. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology,2007,85(3-4):208-224.
    Liu M, Fan D J. Geochemical records in the subaqueous Yangtze River delta and their responses to human activities in the past 60 years[J]. Chinese Science Bulletin,2011,56(6):552-561.
    Liu S M, Zhang J, Chen S Z, Chen H T, Hong G H, Wei H, Wu Q M. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research,2003,23(11-13):1161-1174.
    Liu S M, Zhang J, Li R X. Ecological significance of biogenic silica in the East China Sea[J]. Marine Ecology Progress Series,2005,290:15-26.
    Logan B, Taffs K H, Eyre B D, Zawadski A. Assessing changes in nutrient status in the Richmond River estuary, Australia, using paleolimnological methods[J]. Journal of Paleolimnology, 2010.
    Lorenzo F, Alonso A, Pellicer M J, Pages J L, Perez-Arlucea M. Historical analysis of heavy metal pollution in three estuaries on the north coast of Galicia (NW Spain)[J]. Environmental Geology,2007,52(4):789-802.
    Loring D H, Rantala R T T. Manual for the geochemical analyses of marine sediments and suspended particulate matter[J]. Earth-Science Reviews,1992,32(4):235-283.
    Lu C, He J, Sun H, Xue H, Liang Y, Bai S, Sun Y, Shen L, Fan Q. Application of allochthonous organic carbon and phosphorus forms in the interpretation of past environmental conditions[J]. Environmental Geology,2008,55(6):1279-1289.
    Lu X, Song J, Yuan H, Li X, Zhan T, Li N, Gao X, Shi X. Grain-size related nitrogen distribution in southern Yellow Sea surface sediments[J]. Chinese Journal of Oceanology and Limnology, 2005,23(3):306-316.
    Lu Y, Meyers P A, Johengen T H, Eadie B J, Robbins J A, Han H. δ15N values in Lake Erie sediments as indicators of nitrogen biogeochemical dynamics during cultural eutrophication[J]. Chemical Geology,2010,273(1-2):1-7.
    Lukkari K, Hartikainen H, Leivuori M. Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis[J]. Limnology and Oceanography-Methods,2007,5:433-444.
    Lund W. Speciation Analysis-Why and How[J]. Fresenius Journal of Analytical Chemistry,1990, 337(5):557-564.
    Margui E, Salvad6 V, Queralt I, Hidalgo M. Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes[J]. Analytica Chimica Acta,2004,524(1-2):151-159.
    Martinez-Ruiz F, Kastner M, Paytan A, Ortega-Huertas M, Bernasconi S M. Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean[J]. Paleoceanography,2000,15(2):200-209.
    Marx S K, Kamber B S, McGowan H A, Zawadzki A. Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent[J]. Environmental Pollution,2010,158(5):1615-1628.
    Mayer L M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments[J]. Chemical Geology,1994,114(3-1):347-363.
    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry Geophysics Geosystems,2001,2:art. no.2000GC000109.
    McManus J, Berelson W M, Klinkhammer G P, Hammond D E, Holm C. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta,2005,69(1):95-108.
    Mebius L J. A Rapid Method for the Determination of Organic Carbon in Soil[J]. Analytica Chimica Acta,1960,22(2):120-124.
    Meyers P A, Eadie B J. Sources, Degradation and recycling of organic-matter associated with sinking particles in Lake-Michigan[J]. Organic Geochemistry,1993,20(1):47-56.
    Meyers P A. An overview of sediment organic matter records of human eutrophication in the Laurentian Great Lakes region[J]. Water, Air, & Soil Pollution:Focus,2006,6(5-6):453-463.
    Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry,2003, 34(2):261-289.
    Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic-matter[J]. Chemical Geology,1994,114(3-4):289-302.
    Milliman J D, Beardsley R C, Yang Z S, Limeburner R. Modern Huanghe-derived muds on the outer shelf of the East China Sea-Identification and potential transport mechanisms[J]. Continental Shelf Research,1985a,4(1-2):175-188.
    Milliman J D, Shen H T, Yang Z S, Meade R H. Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental-shelf[J]. Continental Shelf Research,1985b, 4(1-2):37-45.
    Mortlock R A, Froelich P N. A simple method for the rapid-determination of biogenic opal in pelagic marine-sediments[J]. Deep-Sea Research Part a-Oceanographic Research Papers, 1989,36(9):1415-1426.
    Muller B, Berg M, Yao Z P, Zhang X F, Wang D, Pfluger A. How polluted is the Yangtze River? Water quality downstream from the Three Gorges Dam[J]. Science of The Total Environment, 2008,402(2-3):232-247.
    Nameroff T J, Balistrieri L S, Murray J W. Suboxic trace metal geochemistry in the eastern tropical North Pacific[J]. Geochimica et Cosmochimica Acta,2002,66(7):1139-1158.
    Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals[J]. Paleoceanography,2004,19(PA1010), doi:10.1029/2003PA000912.
    Nelson D M, Treguer P, Brzezinski M A, Leynaert A, Queguiner B. Production and dissolution of biogenic silica in the ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles,1995,9(3): 359-372.
    Neumann T, Stogbauer A, Walpersdorf E, Stuben D, Kunzendorf H. Stable isotopes in recent sediments of Lake Arendsee, NE Germany:response to eutrophication and remediation measures[J]. Palaeogeography Palaeoclimatology Palaeoecology,2002,178(1-2):75-90.
    N'guessan Y M, Probst J L, Bur T, Probst A. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France):Where do they come from?[J]. Science of The Total Environment,2009,407(8):2939-2952.
    Ning X R, Vaulot D, Liu Z S, Liu Z L. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtse River) and the adjacent East China Sea[J]. Marine Ecology-Progress Series,1988,49(1-2):141-150.
    Noe G B, Harvey J W, Saiers J E. Characterization of suspended particles in Everglades wetlands[J]. Limnology and Oceanography,2007,52(3):1166-1178.
    Nozaki Y, Lerche D, Alibo D S, Tsutsumi M. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay:Evidence for anthropogenic Gd and In[J]. Geochimica et Cosmochimica Acta,2000,64(23):3975-3982.
    Okbah M A, Shata M A, Shridah M A. Geochemical forms of trace metals in mangrove sediments-Red Sea (Egypt)[J]. Chemistry and Ecology,2005,21(1):23-36.
    Otosaka S, Honda M C, Noriki S. La/Yb and Th/Sc in settling particles:Vertical and horizontal transport of lithogenic material in the western North Pacific[J]. Geochemical Journal,2004, 38(6):515-525.
    Paludan C, Jensen H S. Sequential extraction of phosphorus in freshwater wetland and lake sediment:Significance of humic acids[J]. Wetlands,1995,15(4):365-373.
    Pang C, Bai X, Hu D. Numerical study of water and suspended matter exchange between the Yellow Sea and the East China Sea[J]. Chinese Journal of Oceanology and Limnology,2003, 21(3):214-221.
    Pichtel J, Anderson M. Trace metal bioavailability in municipal solid waste and sewage sludge composts[J]. Bioresource Technology,1997,60(3):223-229.
    Psenner R, Pucsko R, Sage M. Fractionation of organic and inorganic phosphorus compounds in lake sediments, an attempt to characterize ecologically important fractions (Die Fraktionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten, Versuch einer Definition Okologisch Wichtiger Fraktionen)[J]. Archiv fur Hydrobiologie,1984,1(1): 111-155.
    Qian W H, Chen D, Zhu Y, Shen H Y. Temporal and spatial variability of dryness/wetness in China during the last 530 years[J]. Theoretical and Applied Climatology,2003b,76(1-2): 13-29.
    Qian W, Hu Q, Zhu Y, Lee D K. Centennial-scale dry-wet variations in East Asia[J]. Climate Dynamics,2003a,21(1):77-89.
    Rauret G, F. Lopez-Sanchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring,1999, 1(1):57-61.
    Rauret G, Rubio R, Lopezsanchez J F. Optimization of Tessier procedure for metal solid speciation in river sediments[J]. International Journal of Environmental Analytical Chemistry,1989a, 36(2):69-83.
    Rauret G, Rubio R, Lopezsanchez J F, Casassas E. Specific procedure for metal solid speciation in heavily polluted river sediments[J]. International Journal of Environmental Analytical Chemistry,1989b,35(2):89-100.
    Reddy K R, Patrick W H. Nitrogen transformations and loss in flooded soils and sediments[J]. Crc Critical Reviews in Environmental Control,1984,13(4):273-309.
    Reynolds C S. Succession and vertical distribution of phytoplankton in response to thermal stratification in a lowland mere, with special reference to nutrient availability [J]. Journal of Ecology,1976,64(2):529-551.
    Rios A F, Fraga F, Perez F F, Figueiras F G. Chemical composition of phytoplankton and particulate organic matter in the Ria de Vigo (NW Spain)[J]. Scientia Marina,1998,62(3): 257-271.
    Rodriguez L, Ruiz E, Alonso-Azcarate J, Rincon J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management,2009,90(2):1106-1116.
    Rozan T F, Taillefert M, Trouwborst R E, Glazer B T, Ma S F, Herszage J, Valdes L M, Price K S, Luther G W. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography,2002,47(5):1346-1354.
    Rubio B, Alvarez-Iglesias P, Vilas F. Diagenesis and anthropogenesis of metals in the recent Holocene sedimentary record of the Ria de Vigo (NW Spain)[J]. Marine Pollution Bulletin, 2010,60(7):1122-1129.
    Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental-margin environments[J]. Geochimica et Cosmochimica Acta, 1993,57(5):991-1007.
    Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography,1992,37(7):1460-1482.
    Schelske C L, Hodell D A. Using carbon isotopes of bulk sedimentary organic-matter to reconstruct the history of nutrient loading and eutrophication in lake erie[J]. Limnology and Oceanography,1995,40(5):918-929.
    Schelske C L, Robbins J A, Gardner W S, Conley D J, Bourbonniere R A. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake-Ontario[J]. Canadian Journal of Fisheries and Aquatic Sciences,1988,45(7): 1291-1303.
    Schelske C L, Stoermer E F, Kenney W F. Historic low-level phosphorus enrichment in the Great Lakes inferred from biogenic silica accumulation in sediments[J]. Limnology and Oceanography,2006,51(1):728-748.
    Schottler S P, Engstrom D R. A chronological assessment of Lake Okeechobee (Florida) sediments using multiple dating markers[J]. Journal of Paleolimnology,2006,36(1):19-36.
    Sen Gupta B, Lea D. Trance elements in foraminiferal calcite Modern Foraminifera. Springer Netherlands,2003, pp.259-277.
    Shan X Q, Bin C. Evaluation of sequential extraction for speciation of trace-metals in model soil containing natural minerals and humic-Acid[J]. Analytical Chemistry,1993,65(6):802-807.
    Sharpley A N, Smith S J. Fractionation of inorganic and organic phosphorus in virgin and cultivated soils[J]. Soil Science Society of America Journal,1985,49(1):127-130.
    Shen Z, Zhou S, Pei S. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science,2008,78(3): 481-492.
    Siver P A, Wizniak J A. Lead analysis of sediment cores from seven Connecticut lakes[J]. Journal of Paleolimnology,2001,26(1):1-10.
    Song J M, Pedersen T F. Application of transition metal isotope tracers in global change research[J]. Chinese Journal of Oceanology and Limnology,2005,23(2):218-225.
    Spencer K L, Cundy A B, Croudace I W. Heavy metal distribution and early-diagenesis in salt marsh sediments from the Medway Estuary, Kent, UK[J]. Estuarine Coastal and Shelf Science,2003,57(1-2):43-54.
    Tack F M G, Verloo M G. Chemical speciation and fractionation in soil and sediment heavy-metal analysis-a Review[J]. International Journal of Environmental Analytical Chemistry,1995, 59(2-4):225-238.
    Taylor S R, McLennan S M. The continental crust:its composition and evolution[M]. London: Blackwell,1985.
    Teranes J L, Bernasconi S M. The record of nitrate utilization and productivity limitation provided by delta N-15 values in lake organic matter-A study of sediment trap and core sediments from Baldeggersee, Switzerland[J]. Limnology and Oceanography,2000,45(4):801-813.
    Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals[J]. Analytical Chemistry,1979,51(7):844-851.
    Thien S J, Myers R. Determination of bioavailable phosphorus in soil[J]. Soil Science Society of America Journal,1992,56(3):814-818.
    Tribovillard N, Algeo T J, Lyons T, Riboulleau A. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology,2006,232(1-2):12-32.
    Tu Q, Shan X Q, Qian J, Ni Z M. Trace-metal redistribution during extraction of model soils by acetic-acid sodium-acetate[J]. Analytical Chemistry,1994,66(21):3562-3568.
    Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy[J]. Chemical Geology,2006,234(3-4):321-339.
    Vaalgamaa S, Korhola A. Geochemical signatures of two different coastal depositional environments within the same catchment[J]. Journal of Paleolimnology,2007,38(2): 241-260.
    Wang B, Wang X, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea[J]. Estuarine, Coastal and Shelf Science,2003,58(1):127-136.
    Wang B. Cultural eutrophication in the Changjiang (Yangtze River) plume:History and perspective[J]. Estuarine, Coastal and Shelf Science,2006,69(3-4):471-477.
    Wang C Y, Wang X L, Wang B D, Zhang C S, Shi X Y, Zhu C J. Temporal and spatial distribution of dissolved copper, lead, zinc and cadmium in the Changjiang Estuary and its adjacent waters[J]. Acta Oceanologica Sinica,2008,27(4):73-82.
    Wang D Y, He L, Wei S Q, Feng X B. Estimation of mercury emission from different sources to atmosphere in Chongqing, China[J]. Science of The Total Environment,2006,366(2-3): 722-728.
    Wang G P, Liu J S, Tang J. Historical variation of heavy metals with respect to different chemical forms in recent sediments from Xianghai Wetlands, Northeast China[J]. Wetlands,2004, 24(3):608-619.
    Wedepohl K H. Chemical-composition and fractionation of the continental-crust[J]. Geologische Rundschau,1991,80(2):207-223.
    Whiteley J D, Pearce N J G. Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK[J]. Applied Geochemistry,2003,18(6):901-913.
    Wu Y, Dittmar T, Ludwichowski K U, Kattner G, Zhang J, Zhu Z Y, Koch B P. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea[J]. Marine Chemistry,2007a,107(3):367-377.
    Wu Y, Zhang J, Li D J, Wei H, Lu R X. Isotope variability of particulate organic matter at the PN section in the East China Sea[J]. Biogeochemistry,2003,65(1):31-49.
    Wu Y, Zhang J, Liu S, Zhang Z, Yao Q, Hong G, Cooper L. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science,2007b,71(1-2): 13-25.
    Xia P, Meng X W, Yin P, Cao Z M, Wang X Q. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution,2011,159(1):92-99.
    Yan W J, Zhang S. The composition and bioavailability of phosphorus transport through the Changjiang (Yangtze) River during the 1998 flood[J]. Biogeochemistry,2003,65(2): 179-194.
    Yang C, Tian Y, Mingjianga Z. Effects of Prorocentrum donghaiense and Alexandrium catenella on the material transfer in a simulated marine food chain[J]. Acta Ecologica Sinica,2007, 27(10):3964-3972.
    Yang S Y, Lim D I, Jung H S, Oh B C. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea[J]. Marine Geology, 2004,206(1-4):41-53.
    Yao Q Z, Zhang J, Wu Y, Xiong H. Hydrochemical processes controlling arsenic and selenium in the Changjiang River (Yangtze River) system[J]. Science of The Total Environment,2007, 377(1):93-104.
    Youn J, Kim T J. Geochemical composition and provenance of muddy shelf deposits in the East China Sea[J]. Quaternary International,2011,230(1-2):3-12.
    Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International[J],2004,30(6):769-783.
    Zaborska A, Carroll J, Papucci C, Pempkowiak J. Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology[J]. Journal of Environmental Radioactivity,2007,93(1):38-50.
    Zhang H B, Luo Y M, Wong M H, Zhao Q G, Zhang G L. Defining the geochemical baseline:a case of Hong Kong soils[J]. Environmental Geology,2007a,52(5):843-851.
    Zhang H, Shan B Q. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China[J]. Science of The Total Environment,2008,399(1-3):113-120.
    Zhang J Z, Fischer C J, Ortner P B. Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay[J]. Global Biogeochemical Cycles,2004,18(4).
    Zhang J, Huang W W, Wang Q. Concentration and Partitioning of Particulate Trace-Metals in the Changjiang (Yangtze-River)[J]. Water Air and Soil Pollution,1990,52(1-2):57-70.
    Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes[J]. Estuarine Coastal and Shelf Science,2002,54(6):1051-1070.
    Zhang J, Liu S M, Ren J L, Wu Y, Zhang G L. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Progress In Oceanography,2007b,74(4):449-478.
    Zhang J, Wu Y, Jennerjahn T C, Ittekkot V, He Q. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry,2007c,106(1-2): 111-126.
    Zhang J. Geochemistry of trace-metals from Chinese River estuary systems-an overview[J]. Estuarine Coastal and Shelf Science,1995,41(6):631-658.
    Zhang S, Ji H, Yan W, Duan S. Composition and flux of nutrients transport to the Changjiang Estuary[J]. Journal of Geographical Sciences,2003,13(1):3-12.
    Zhang W G, Feng H, Chang J N, Qu J G, Xie H X, Yu L Z. Heavy metal contamination in surface sediments of Yangtze River intertidal zone:An assessment from different indexes[J]. Environmental Pollution,2009,157(5):1533-1543.
    Zheng L, Ye Y, Zhou H. phosphorus forms in sediments of the east china sea and its environmental significance[J]. Journal of Geographical Sciences,2004,14(1):113-120.
    Zhou M, Shen Z, Yu R. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research,2008,28(12): 1483-1489.
    Zhu C, Wang Z-H, Xue B, Yu P-S, Pan J-M, Wagner T, Pancost R D. Characterizing the depositional settings for sedimentary organic matter distributions in the Lower Yangtze River-East China Sea Shelf System[J]. Estuarine, Coastal and Shelf Science,2011,93(3): 182-191.
    Zielinski R A, Simmons K R, Orem W H. Use of U-234 and U-238 isotopes to identify fertilizer-derived uranium in the Florida Everglades[J]. Applied Geochemistry,2000,15(3): 369-383.
    Zimmerman A J, Weindorf D C. Heavy metal and trace metal analysis in soil by sequential extraction:a review of procedures[J]. International Journal of Analytical Chemistry,2010, doi:10.1155/2010/387803.
    程思海,陈道华.海洋沉积物中碳酸盐测定方法的研究[J].分析试验室,2010,(S1):424-426.
    郭志刚,杨作升,曲艳慧,范德江.海陆架泥质区沉积地球化学比较研究[J].沉积学报,2000,18(02):284-289.
    国家海洋局.中国海洋环境质量公报[EB].中国海洋信息网,2002-2010.
    胡敦欣,杨作升.东海海洋通量关键过程[M].北京:海洋出版社,2001.
    李凤业,高抒,贾建军,赵一阳.黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,2002,33(04):364-369.
    李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J].海洋环境科学,1998,17(1):15-20.
    罗民波,陆健健,王云龙,沈新强,晁敏.东海浮游植物数量分布与优势种[J].2007,27(12):5076-5085..
    秦蕴珊,赵一阳,陈丽蓉,赵松龄.东海地质[M].北京:科学出版社,1987.
    施能,朱乾根.1873-1995年东亚冬、夏季风强度指数[J].气象科技,2000,(03):14-18.
    沈焕庭,潘定安.长江河口最大混浊带[M].北京:中国海洋出版社,2011.
    史印山,池俊成,孔凡朝.东亚季风强度变化对河北省气候的影响[J].气象科技,2007,35(01):49-52.
    宋金明,李学刚,邵君波,贺志鹏,张乃星.南黄海沉积物中氮、磷的生物地球化学行为[J].海洋与湖沼,2006,37(4):370-376.
    宋金明.黄河口邻近海域沉积物中可转化的磷[J].海洋科学,2000,24(7):42-45.
    宋金明.元素早期成岩作用的数学模式[J].海洋通报,1991,10(3):101-110.
    宋金明.中国近海沉积物—海水界面化学[M].北京:海洋出版社,1997.
    宋金明.中国近海生物地球化学[M].济南:山东科学技术出版社,2004.
    孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J].海洋地质与第四纪地质,1990,10(03):23-34.
    王保栋.长江冲淡水的扩展及其营养盐的输运[J].黄渤海海洋,1998,16(02):41-47.
    王金辉,黄秀清,刘阿成,张有份.长江口及邻近水域的生物多样性变化趋势分析[J].海洋通报,2004,23(01):32-39.
    王丽萍,周晓蔚,郑丙辉,付青.长江口及毗邻海域沉积物生态环境质量评价[J].生态学报,2008,28(05):2191-2198.
    翁焕新,沈忠悦,陈建裕,张兴茂,钟国林.沿海表层沉积物中重金属的有效结合态[J].地质科学,2002,37(2):243-252.
    徐建军,朱乾根,周铁汉.近百年东亚冬季风的突变性和周期性[J].应用气象学报,199910(01):2-9.
    杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J].第四纪研究,2007,27(05):690-699.
    中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2011.
    朱媛媛.东、黄海沉积物中各形态磷的分布特征及其生物地球化学初步研究[D].青岛:中国海洋大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700