用户名: 密码: 验证码:
气候变化综合评估框架下中国土地利用和生物能源的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态系统、人类活动和气候变化之间存在着错综复杂的关系,土地利用/覆盖变化是链接三者的关键和核心,因此要解决土地利用/覆盖变化这样复杂的全球变化问题,必须综合考虑自然、社会经济等学科的相关科学见解,所以利用综合评估工具对其进行系统的“综合评价”是必然选择。
     本论文在全面分析已有相关科学研究的基础上,综合考虑社会能源经济环境,在气候变化综合评估框架下,利用改进的全球气候变化综合评估模型GCAM,根据碳税方案和低碳减排技术方案设定了有碳捕获和封存技术(CCS)和没有碳捕获和封存技术(NOCCS)两组气候政策情景,在每组气候政策情景下,分别设置了450ppm、500ppm和550ppm三种限制目标浓度情景。在此基础上基于未来生物能源会得到大力发展和2020年全球开始实施碳税方案的假设,分析比较了参考情景(BAU)、两组政策情景以及每种限制浓度情景下1990-2095年间土地利用变化、碳排放、生物能源供给等关键输出变量的变化特征,分析了在实施气候政策情景下中国未来土地利用变化的数量和空间分布特征,以及由此引起的碳排放变化趋势,模拟了特定土地利用类型生物能源的生产供应及其未来的数量变化和空间分布格局,并就生物能源发展对农业经济、能源消费和土地利用结构等的影响进行分析。另外,本论文还剖析了碳税和碳捕获与封存技术在减缓气候变化方面的作用。旨在为进一步探索应对气候变化的土地利用最优化配置格局以及国家和区域在应对气候变化方面提供政策建议和参考依据。在本文设定的情景下,主要研究结论如下:
     (1)在全球气候综合评估框架下,基于利润最大化的土地分配机制,本文利用GCAM模型模拟分析了不同情景下2005-2095年时段内耕地、休闲地等其他耕地、森林(包括管理森林和未管理森林)、草地(包括管理草地和未管理草地)、能源作物以及主要农作物的面积变化趋势。研究结果表明:
     在没有气候政策的参考情景下农林产品和畜牧产品的需求随着人口的增长和生活水平的提高而增加,主要是由于收入水平的提高促使人们倾向于消耗更多的畜牧产品;全球农产品市场价格波动幅度不大;到2020年由于能源作物的引入,各种利用类型的土地面积有一个急剧转变期,2020年后耕地面积呈现下降趋势,管理森林略呈上涨趋势,管理草地在2050年左右达到高峰然后急剧下降,未管理森林和未管理草地呈现略下降趋势,休闲地等其他可耕地面积基本保持不变;在主要粮食作物播种面积上,小麦和水稻的的种植面积整体上呈现下降趋势,玉米的种植面积整体上也呈下降趋势,但2050年有小幅回升;能源作物的种植面积呈现快速上升趋势,主要是由于能源需求的增长所造成的。
     在实施气候政策情景下,陆地生态系统的碳汇价值形成,土地所有者更愿意增加储存土壤植被碳来增加土地利润,碳税越高土地碳汇价值越大;土地分配机制是碳税政策、能源价格、农产品价格以及土地生产力和播种面积等共同作用的结果。在气候政策情景下耕地面积整体呈现上升趋势,变化幅度较大,休闲地等其他耕地面积呈现快速下降趋势;由于采伐等生产成本的增加,管理森林和管理草地呈现下降趋势,未管理草地、天然草地和灌木林的面积亦呈现下降趋势;由于碳汇价值增加,未管理森林的面积快速增加;全球农产品价格的上涨导致三大类作物玉米、小麦和水稻的种植面积增加,2050年出现种植峰值,整体上看,与2005年相比小麦和水稻的播种面积呈现下降趋势。
     (2)人类活动所导致的土地利用/覆盖变化是陆地和大气碳循环最直接的影响因子,而土地利用类型之间的转变是土地利用变化引起碳排放的主要原因,本研究在所设置的情景下的研究结果表明:气候政策情景下土地利用变化引起的碳排放在同一模拟时段内明显小于没有气候政策实施的参考情景(BAU),并且在2050后陆地生态系统表现为一致的碳汇功能;由于能源作物的种植,2020年是土地利用碳排放的跃变期,同一模拟时段内低浓度限制情景下的土地利用变化排放明显小于高浓度限制情景,进一步说明了气候政策在温室气体减排方面的作用。
     (3)生物能源是解决目前能源危机、环境问题以及减缓气候变化的有效途径。本研究在气候变化综合评估框架下模拟了农林剩余物、城市有机废弃物(MSW)及以柳枝稷和柳属等为代表的二代生物能源的生产供应及分布状况,结果表明:在实施气候政策的情景下,生物能源的可供应量是生物能源需求、高碳税和CCS技术共同驱动的结果,高价格导致高产量;农林剩余物和城市有机垃圾虽然本质上也是来源于土地产品,但并不直接占有多余的土地,不参与土地的分配竞争,生物能源价格越高产量越大;能源作物的种植面积是生物能源价格、碳税政策、陆地生态系统碳汇价值等基于利润最大化的土地分配结果,但高碳价减弱了能源作物种植面积的增加趋势;碳捕获与封存技术和生物能源发电结合产生的“负排放效应”增加了其相对利润,促使有碳捕获与封存技术情景下的生物能源越有竞争力;能源作物的主要分布区域是AEZ11和AEZ12,而且随着碳价的增加其分布区域有扩大的趋势。城市有机垃圾主要来源于食物和林木废弃品,生物能源价格越高其可供应量就越大。
     (4)生物能源发展对农产品市场价格、能源消费结构、土地利用结构、生态环境、水资源和生物多样性等都有一定的影响,本文模拟了二代生物能源并分析预测了在2005-2095年时段内生物能源发展对农业经济、能源消费结构和土地利用结构等的影响,结果表明:
     农产品市场:在没有实施气候政策的参考情景下,生物能源价格和粮食价格波动幅度不大,二者之间呈一定的负相关;从2020年开始,随着生物能源的大力发展,在气候政策情景下生物能源价格和粮食价格之间表现出很强的相关性,碳价越高生物能源价格越高,粮食价格变化也越大,二者呈现一致的变化趋势。碳捕获与封存技术减弱了粮食价格变化趋势,在同一限制浓度情景,具有碳捕获与封存技术的粮食价格变化趋势小于没有碳捕获与封存技术的粮食价格变化。
     能源消费结构:在没有实施气候政策的参考情景下,能源消费总量呈上升趋势,从2005到2095年,化石能源消费平均占一次能源消费总量的88%左右,生物能源平均占一次能源消费总量的4%左右(2005-2095);在实施气候政策情景下,能源消费总量明显下降,到2050年左右出现消费高峰,一次能源的占有比例降低,生物能源的占有比例增加;生物能源的发展在一定程度上改变了能源消费结构,政策制定越严厉生物能源的消费比例越大。
     土地利用结构:生物能源作物种植面积的增加直接带来休闲地等耕地面积的减少,而且能源作物种植也导致了森林、牧草地、天然草地和灌木林等土地类型数量的变化。
     (5)碳捕获与封存技术是减缓气候变化的重要选择方案。本文比较分析了两组气候政策情景中2005-2095时段内碳捕获与封存技术对减缓气候变化的影响,结果表明:达到不同限制目标浓度情景下显示出不同碳税路径,在极端低浓度限制条件下到本世纪末会产生相当高的碳税,在2020年CCS450、CCS500、CCS550、NOCCS450、NOCCS500和NOCCS550等六个限制浓度情景下碳税价格分别是364元、204元、118元、616元、327元和166元(2005年不变价),限制浓度越低碳税越高,在同一限制浓度情景下没有碳捕获与封存技术的情景下碳税明显增加;减排成本的变化和碳税价格的变化趋势一致,CCS450、CCS500、CCS550、NOCCS450、NOCCS500和NOCCS550等6个限制浓度情景下的减排成本分别占2020年GDP总量的0.13%、0.05%、0.02%、0.34%、0.11%、0.04%,这说明CCS技术在满足目标浓度中具有积极的作用。
     (6)本文就农业生产力变化对关键输出变量、土地利用面积变化、土地利用排放、二氧化碳浓度等模拟结果的影响进行了敏感性分析,结果表明:农业生产力的提高在一定程度上可以降低大气中温室气体浓度;农作物价格对生产力的变化较为敏感,生产力的提高在一定程度上可以降低农作物价格;生产力增加可以提高能源作物的生产量,但对来自农林剩余物的生物能源影响不大;在长时间尺度上,农业生产力的增加可以降低化石能源的消耗量。
The land is the carrier for everything on the planet, land use/land cover is thecore between ecosystem, human activity and climate change, the relations betweenthem are rather complex, it is the only way to take different opinions of all thedisciplines into consideration and use integrated assessment tool to analyses andevaluate comprehensively for solving the most complex global change problem. Inthis paper, After reviewing many literature about land use and biomass, we usePNNL’s integrated assessment modeling system,GCAM (Global ChangeAssessment model) and discuss numeral and spatial characteristics of land use andchange from2005to2095,and carbon emissions induced by land use and change;we also analyzes limiting concentration of greenhouse gases in the atmospherecarries implications for land use that are unavoidable and independent of theproduction of bioenergy crops, and various land use type change and spatialcharacteristics in the future;and further explore biomass development as a responseto agricultural economy、energy consumption and land use structure; and alsoanalyze the mechanism of carbon tax and low carbon technology for addressingclimate change;and also make further research into land resources optimizationutilization and provide policy and suggestion to address climate change for countryand regions. Main conclusions are as follows:
     (1) Land use and changes is quite a complex process which is driven by manyfactors such as natural, historical and economic factors, its results are change ofnumeral and spatial characteristics of land use and change, the land allocationscheme used by comprehensive appraisal framework of climate change is based onmaximizing profit at each location, The result shows:The demand for agroforestryproducts and livestock products will increase with the improvement developmentof population and standard living in the reference scenario in the future, peopletends to consume more livestock products with the improvement of living standard,but the prices of global agricultural products change at a modest rate. Whenbioenergy crops are introduced in2020, different land use type suffers an abruptchange, After2020crop land decreases;managed forest slightly rises;managedpasture reached its height about2050and then sharply goes down;unmanagedforest and unmanaged pasture somewhat decline;fallow land stays the same;planting areas of rice and wheat downtrend basically, but planting area of cornshow the peak in2050and has remained fundamentally unchanged after that;bioenergy crops land rapidly goes up in the simulation stage due to the growth ofenergy demand. In the policy scenario, the tax is applied to all carbon—fossil fuel, industrial, and land-use change carbon emissions,and the benefit of carbon storageand sequestration is evaluated in the terrestrial ecosystem, landowner would likeincrease carbon storage including soil and vegetation for more profit; carbonstorage implies that the unmanaged ecosystems will increase in value with thevalue of carbon, the higher tax, the more value of carbon assimilation;landallocation is the result of a combination of many factors together such as carbontax policy、energy market、agricultural products market and land productivity.Compared with the reference scenario, the price of global agricultural productsrapidly increases;planting area entirely grows upward, fallow land sharply goesdown;all of the managed forest and managed pasture will decrease due toimprovement of cutting cost, other land expands to lower the area of unmanagedpasture land、grass land and shrub land;unmanaged forest sharply goes up with anincrease of carbon price;The increase in the price of agricultural products promptthe increase of planting area of rice、wheat and corn, and their areas reach theheight in the year2050; In contrast, Carbon price is reduced by low carbontechnology CCS and unmanaged ecosystem compete successfully in a good manyland uses.
     (2)Human activities,through land use, land-use change and forestry (LULUCF)activities, affect changes in carbon stocks between the carbon pools of theterrestrial ecosystem and between the terrestrial ecosystem and the atmosphere,impacts on land-use and land-cover change, and carbon emissions from land usechange are mainly induced by transformation between different land use type. Inthis paper, we simulate carbon emissions from land use change by GCAM in theCO2-control scenario, the result shows:compared with the BAU, in the policyscenario carbon emissions decrease relative the reference scenario, and carbonemissions are negative in the total terrestrial ecosystems after2050. Whenbioenergy crops are introduced in2020, the land use change emissions are abrupt;in contrast, the emissions in the lower CO2-control concentration are much lessthan that in the higher CO2-control concentration, this further indicates climatepolicy play an important role on emissions mitigation; CO2capture and storage(CCS) has little effect on emission mitigation from land use change.In contrast,emissions with CO2capture and storage (CCS) are slightly more than that withoutCCS in the early period, but carbon sink is a bit less than that without CO2captureand storage (CCS) after2050.
     (3) Biomass development is the better way for solving energy crisis andenvironment problems and for mitigating climate change. This studies simulatesupply and demand of second bioenergy by GCAM in China, the results shows: the availability of biomass supply is the result of a combination of many factorstogether such as biomass energy demand、carbon tax policy and CCS, the highercarbon tax would result in more production of biomass energy;residue biomass andMunicipal Solid Waste (MSW) originate from land products, but they occupy nomore land and could not allocate land as a second bioenergy, residue biomass ismainly distributed in AEZ10、AEZ11and AEZ12, the higher bioenergy price wouldresult in higher production of residue biomass in the future, but the distributionwould not basically change;we have assumed two bioenergy crops such asswitchgrass and willow that are representative for those that can be grownadvantageously in different AEZ of China on the basis of their biologicalcharacteristic, These choices do not imply that other similar crops would not alsobe grown, and these crops and modeling results should be interpreted as beingrepresentative of similar crops or potential bioenergy crop available as well,bioenergy crop land is based on maximizing profit that is determined by jointaction of bioenergy price、carbon tax and terrestrial sink, but much higher carbontax would decline the expansion of bioenergy crops land; bioenergy crop landwith climate policy becomes much larger than that without climate policy in thesame step, bioenergy land area increases in both CCS scenario and NOCCSscenario;This particular technology combination result in more bioenergy landwith CCS scenario because bioenergy obtains its carbon from the atmosphere andif that carbon were to be captured and isolated permanently from the atmospherethe net effect of the two technologies would be to produce energy with negativeCO2emissions,but bioenergy is just energy substitution in the NOCCS scenario.Biomass crops are mainly distributed in AEZ11and AEZ12and expand with anincrease of carbon tax. The higher bioenergy price would result in much morepotential production of MSW from food and wood processing residues, the trend ofpotential production that is determined by GDP and population which areexogenous variable in different scenario is basically consistent.
     (4)Bioenergy development has an impact on farm-product prices、 energyconsumption structure、land use structure、ecological environment、water resourcesand biodiversity at different degree, in this paper we just consider the“second-generation” bioenergy and simulate their effects on such a large timescale. the result shows:
     Agricultural Commodity Market: bioenergy market is the linkage betweenagricultural market and energy market, Fluctuations in the price of energy wouldlead to the corresponding change of planting areas、crop prices and land use; theprice could show the correlation between energy market and agricultural market, the correlation between them is very strong while we make great efforts to developbioenergy since2020in the policy scenario;in the reference scenario fluctuationsin the price of bioenergy and crop is small and there is a negative correlationbetween bioenergy price and crop prices;in the climate policy scenario highercarbon price would lead to higher bioenergy price and food price and the trend ofcarbon price accords with the price of bioenergy and crop; CCS could reduceincrease in the price of crop to a certain extent, the changes in crop prices withoutCCS show variations higher than that of crop prices with CCS up to the samelimiting concentration.
     Energy consumption structure: Both implementation of mitigation climatechange policy such as energy-saving and emission-reduction、carbon tax and CCStechnology and development of second-generation bioenergy would reduce cost ofbioenergy production, and also increase its relative profit. Bioenergy that isdeveloped in the world has great influence on energy consumption structure inChina. In the reference scenario the total energy consumption goes up in thiscentury, the proportion of fossil energy consumption in primary energyconsumption is about88%which is the average from2005to2095, and theproportion of bioenergy consumption in primary energy consumption is roughly4%; in the policy scenario the total energy consumption declines in this centuryand reaches the height about2050, decrease in the proportion of fossil energyconsumption, increase in the proportion of bioenergy energy consumption. Theproportion of bioenergy increases with the implementation of strict limitingCO2-control in a carbon constrained world.
     Land use structure: Expansion of bioenergy crops directly results in thedecrease of fallow land,and other lands such as forest、pasture、grassland and shrubland would change accordingly due to expansion of bioenergy crops.
     (5)Carbon market mechanism and low carbon technology such as CCS are animportant measure for mitigating climate change. Different limiting CO2concentrations show different carbon tax pathes. Carbon tax would reach a prettyprice in an extremely limiting CO2concentration the end of this century. Thecarbon price in the CCS450、CCS500、CCS550、NOCCS450、NOCCS500andNOCCS550target scenario is364、204、118、616、327and166yuan in2005RMBin the year2020. the carbon price in2020is about39times higher than in2095inall scenarios. In the same scenario group higher carbon tax would result in lowerCO2concentration. carbon tax without CCS is significantly higher than with CCSin the same step if obtaining the same limiting concentration. the trend of reductioncost is similar to that of carbon tax in all the scenarios. The proportion of reduction cost in GDP in the year2020in the CCS450、CCS500、CCS550、NOCCS450、NOCCS500and NOCCS550target scenario is about0.13%、0.05%、0.02%、0.34%、0.11%and0.04%. the reduction cost without CCS for the450ppm、500ppm and550ppm CO2limit is1.8、1.7and1.7times than with CCS, CCS technology willplay a positive role in mitigation of climate change.
     (6) sensitivity analysis: Crop productivity growth could decrease CO2concentration in the atmosphere;the results for bioenergy crops land,crop land,forest and agricultural prices are sensitive to crop productivity growth, and Cropproductivity growth could decline agricultural prices to a certain extent; policyscenario result for bioenergy price is not sensitive to crop productivity growth; intwo scenario groups productivity growth could improve the production ofbioenergy crops,but the result for residue biomas is almost sensitive; On such alarge time scale crop productivity growth could decrease fossil energyconsumption.
引文
[1] Berndes, G.(2002). Bioenergy and water-the implications of large-scale bioenergy productionfor water use and supply. Global Environmental Change12(4):7-25.
    [2] Brenkert A, S Smith, S Kim and H Pitcher.2003. Model Documentation for the MiniCAM.PNNL-14337, Pacific Northwest National Laboratory, Richland, Washington.
    [3] C.A. Campbell, R. P. Zentner, B.-C. Liang, G. Roloff, E. C. Gregorich, B. Blomert.2000.Organic C accumulation in soil over30years in semiarid southwestern Saskatchewan–Effect ofcrop rotations and fertilizers. Canadian Journal of Soil Science,80(1):179-192.
    [4] Chapin, III, F. Stuart, Matson, Pamela A., Vitousek, Peter M.2002, Principles of TerrestrialEcosystem Ecology.
    [5] Chytry, M., Py ek, P., Wild, J., Pino, J., Maskell, L.C., Vila, M.,2009. European map of alienplant invasions based on the quantitative assessment across habitats.Diversity and Distributions15,98–107.
    [6] Clarke, J.F. and J.A. Edmonds.1993.“Modeling Energy Technologies in a Competitive Market.”Energy Economics15(2):123-129.
    [7] Clarke, L, J Edmonds, H Jacoby, H Pitcher, J Reilly and R Richels.2007a. CCSP Synthesis andAssessment Product2.1, Part A: Scenarios of Greenhouse Gas Emissions and AtmosphericConcentrations. U.S. Government Printing Office, Washington DC.
    [8] Clarke, L, J Lurz, M Wise, J Edmonds, S Kim, S Smith and H Pitcher.2007b. ModelDocumentation for the MiniCAM Climate Change Science Program Stabilization Scenarios:CCSP Product2.1a. PNNL Technical Report PNNL-16735.
    [9] Clarke, L., Calvin, K., Edmonds, J., Kyle, P., Wise, M.2008b. Technology and internationalclimate policy. Discussion Paper08-21, Harvard Project on International Climate Agreements,Belfer Center for Science and International Affairs, Harvard Kennedy School.
    [10] Clarke, L., J. Weyant, J. Edmonds,2008a.“On sources of technological change: what do themodels assume?” Energy Economics30:409–424.
    [11] Clarke, L., P. Kyle, M. Wise, K. Calvin, J. Edmonds, S. Kim, M. Placet, and S. Smith.2008c.CO2Emissions Mitigation and Technological Advance: An Updated Analysis of AdvancedTechnology Scenarios, Pacific Northwest National Laboratory, Technical Report PNNL-18075.
    [12] Dale V H. The relationship between land use change and climatechange.EcologicalApplications,1997,7(3):753-769.
    [13] Dixon RK (1994). Carbon pools and flux of global forest ecosystems. Science,265,171–171.
    [14] Edmonds J, M Wise, H Pitcher, R Richels, T Wigley, and C MacCracken.1996. An IntegratedAssessment of Climate Change and the Accelerated Introduction of Advanced EnergyTechnologies: An Application of MiniCAM1.0, Mitigation and Adaptation Strategies for GlobalChange1(4):311-339.
    [15] Edmonds, J. and Reilly, J. M.:1985, Global Energy: Assessing the Future, Oxford UniversityPress,New York, NY.
    [16] Edmonds, J.A. and N.J. Rosenberg,2005, Climate change impacts for the conterminous USA:An integrated assessment summary [summary of special issue]. Climatic Change69(1):151-162.
    [17] European Commission. The impact of a minimum10%obligation for biofuel use in the EU-27in2020on agricultural markets[R]. Brussels,2007-04–30.
    [18] Fahey L. Competitor Scenarios: Projecting a Rivals Marketplace Strategy. CompetitiveIntelligence Review,1986:10(2).
    [19] Feamside P M Deforestation in Brazilian Amazonia, the effect of population and landtenure.1993.
    [20] Fink A, Schlake O. Scenario Management An Approach for Strategic Fore sight. CompetitiveIntelligence Review2000:11(1).
    [21] Gebhart D L, Johnson H B, Mayeux H S, Polly H W. The CRP increase soil organic carbon.Journal of Soil and Water Conservation,1994,49:488~492.
    [22] Houghton R A, Hackler J L. Sources and sinks of carbon from land-use change in China. GlobalBiogeochemical Cycles,2003,17(2):1034. doi.10.1029/2002GB001970.
    [23] Houghton R A, Hobbie J E, Mellilo J M, et al. Changes in the carbon content of terrestrial biotaand soils between1860and1980: A net release of CO2to atmosphere. Ecological Monographs,1983,53(3):235-262.
    [24] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere fromchanges in land use and land management1850-2000. Tellus B,2003,55(2):378-390.
    [25] Houghton R A. Temporal patterns of land-use change and carbon storage in China and tropicalAsia. Science in China: Series C,2002,45(Supp.):10-17.
    [26] Houghton RA. The annual net flux of carbon to the atmosphere from changes in land use1850-1990. Tellus B,1999,51(2):298-313.
    [27] Houghton, R.A.1999. The annual net flux of carbon to the atmosphere from changes in land use1850-1990. Tellus51B:298-313.
    [28] Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, and CAJohnson, Cambridge University Press, Cambridge, U.K. Accessed at.
    [29] Hulme, M., T. Jiang, and T.M.L. Wigley.1995."SCENGEN, a climate change scenario generator,a user manual."(Norwich, U.K.: Climatic Research Unit, University of East Anglia).
    [30] IPCC2001a-Intergovernmental Panel on Climate Change.2001. Climate Change2001. TheScientific Basis: A Report of Working Group I of the Intergovernmental Panel on ClimateChange, eds JT.
    [31] IPCC,1990. Climate Change. The IPCC Scientific Assessment.Cambridge University Press,Cambridge, New York.
    [32] IPCC,1995. SecondAssessmen t Synthesis of Scientific-Technical Information Relevant toInterpreting Article2of the UNFCCC.Cambridge University Press, Cambridge, New York(available at:
    [33] IPCC,1999. Procedures for the preparation, review, acceptance, adoption, approval andpublication of IPCC reports. Annex to the Report on the15th Session of the IPCC, SanJos!e,15–18April1999.
    [34] IPCC,2001: Climate Change2001: The Scientific Basis. Contribution of Working Group I to theThird Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y.Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)].Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,881pp.
    [35] IPCC,2002. Draft Report of the19th Session of the IPCC, Geneva,17–20April2002.
    [36] IPCC. Climate Change1995: Impacts, Adaptation and Mitigation of Climate Change, workinggroup Ⅱ report. London: Cambridge University Press,1995.
    [37] IPCC. Climate Change2001: Impacts, Adaptation and Vulnerability of Climate Change, workinggroup Ⅱ report. London: Cambridge University Press,2001.
    [38] IPCC. Climate Change2007: Impacts, Adaptation and Vulnerability-Working Group IIContribution to IPCC Fourth Assessment Report. London: Cambridge University Press,2007.
    [39] IPCC. Climate Change2007: The Physical Science Basis-Working Group I Contribution toIPCC Fourth Assessment Report. London: Cambridge University Press,2007.
    [40] Kim, S.H., J.A. Edmonds, J. Lurz, S.J. Smith, and M. Wise (2006).“The ObjECTS Frameworkfor Integrated Assessment: Hybrid Modeling of Transportation.” Energy Journal27:63-91
    [41] King, A. W., Post, W. M., and Wullschleger, S. D.1997. The potential response of terrestrialcarbon storage to changes in climate and atmospheric CO2. Climatic Change,35(2),199–227.Springer. Retrieved March9,2011, fromhttp://www.springerlink.com/index/K528446L38325833.pdf.
    [42] Lambin E F, Baulies X, Bockstael N et al. Land-Use and Land-Cover Change (LUCC):Implementation Strategy (IGBP Report48/IHDP Report10),1999.
    [43] Lambin, E.,1997. Modeling and monitoring land-cover change processes in tropical regions.Progress in Physical Geography,21(5):375-393.
    [44] Lee,2005.“An Emissions Data Base for Integrated Assessment of Climate Change Policy UsingGTAP” GTAP Resource#1143, Center for Global Trade Analysis,Purdue University.
    [45] MANSKI C F, LERMAN S R. The estimation of choice probabilities from choice based samples[J]. Econometrica,1977,45(8):1977-1988.
    [46] Mike Hulme, Sarah CB Raper, Tom ML Wigley.,1995.An integrated framework to addressclimate change (ESCAPE) and further developments of the global and regional climate modules(MAGICC) Original Research Article,Energy Policy(23),pp:347-355.
    [47] Motelay-Massei A, Ollivon D, Garban B, Teil MJ, Blanchard M, Chevreuil M. Distribution andspatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere,2004,55:555-565.
    [48] Nunes C, Augé J I, ed. IGBP Report48&IHDP Report10: Land-Use and Land-Cover ChangeImplementation Strategy Stockholm.1999,14:21~30.
    [49] Olson J.S., Watts J.A. and Allinson L.J.1983Carbon in Live Vegetation in Major WorldEcosystems. Environmental Sciences Division Publication No.1997. Oak Ridge NationalLaboratory, Tennessee.
    [50] Pacala, S. and R. Socolow.2004.“Stabilization Wedges: Solving the Climate Problem for theNext50Years with Current Technologies,” Science305:968-972.
    [51] Post W M, Izaurralde R C, Jastrow J D, et al. Enhancement of carbon sequestration in US soils[J]. Bioscience,2004,54:895-908. 
    [52] Raper, SCB, TML Wigley and RA Warrick.1996. Global Sea-Level Rise: Past and Future. inSea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies. J.D. Milliman,B.U. Haq, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.11–45.
    [53] Sands, R. and Leimbach, M.: Modeling Agriculture and Land Use in an Integrated AssessmentFramework. Climatic Change56(1)(2003), pp.185-210.
    [54] Sliver W.L. The potential effects of elevated CO2and climate change on tropical forest soils andbiogeochemical cycling. Climatic Change,1998)(39):337-361.
    [55] Turner Ⅱ B L&Meyer W B.1998.Global land use and land cover change:an overview,3-10.
    [56] Turner II B L, Moss R H and Skole D L(ed.). Relating Land Use and Global Land-CoverChange: A Proposal for an IGBP-HDP Core Project. A Report from the IGBP/HDP WorkingGroup on Land-Use/Land-Cover Change.Published in Stockholm, Februry1993by IGBP andHDP.
    [57] Turner II BL, Skole D, Sanderson S et al. Land-use and Land-cover Change Science/ResearchPlan. IGBP Report No.35and IHDP Report No.7. Stochkholm: IGBP,1995.
    [58] Turner W C, Clark R, Kates W.et al.1990. The earth as transformed by human action.Cambridge university press, Cambridge.
    [59] Walker B, Will S. A synthesis of GCTE and related research. in IGBP Science,1997, No.1, IGBPSecretariat, Sweden pp32.
    [60] Wang Y, Amundson R. The impact of land use change on C turnover in soils. GlobalBiogeochemical Cycles.1999,13(1):47~57.
    [61] Wigley, T.M.L. and Raper, S.C.B.,1987. Thermal expansion of sea water associated with globalwarming. Nature330,127-131.
    [62] Wigley, T.M.L. and Raper, S.C.B.,1992. Implications for climate and sea level of revised IPCCemissions scenarios. Nature357,293-300.
    [63] Wigley, T.M.L. and Raper, S.C.B.,1993. Future changes in global-mean temperature and sealevel.(In) Climate and Sea Level Change: Observations, Projections and Implications (eds.R.A.Warrick, E.M. Barrow and T.M.L. Wigley), Cambridge University Press, Cambridge,U.K.,111-133.
    [64] Wigley, T.M.L. and S.C.B. Raper.2002."Reasons for larger warming projections in the IPCC
    [65] Wigley, TML and SCB Raper,2002. Reasons for larger warming projections in the IPCC ThirdAssessment Report. Journal of Climate.15:2945–2952.
    [66] Wigley, TML and SCB Raper.1992. Implications for climate and sea-level of revised IPCCemissions scenarios,Nature,357:293–300.
    [67] Wise MA, KV Calvin, AM Thomson, LE Clarke, B Bond-Lamberty, RD Sands, SJ Smith, ACJanetos, JA Edmonds.2009."Implications of Limiting CO2Concentrations for Land Use andEnergy." Science324(5931):1183-1186.
    [68] Zhang Zhongxiang. The Economics of Energy Policy in China-Implications for Global ClimateChange. Edward Elgar Cheltenham.UK,1998.
    [69]摆万奇,柏书琴.土地利用和覆盖变化在全球变化研究中的地位与作用[J].地域研究与开发,1999(04).
    [70]摆万奇,赵士洞.土地利用变化驱动力系统分析[J].资源科学,2001(03).
    [71]毕于运.秸秆资源评价与利用研究[D].中国农业科学院,2010.
    [72]蔡玉梅,刘彦随,宇振荣,等.土地利用变化空间模拟的进展——CLUE-S模型及其应用[J].地理科学进展,2004(04).
    [73]曹裕松,李志安,傅声雷,等.模拟氮沉降对鹤山3种人工林表土碳释放的影响[J].江西农业大学学报,2006(01).
    [74]陈百明.试论中国土地利用和土地覆被变化及其人类驱动力研究[J].自然资源,1997(02).
    [75]陈伟,张军,刘清.生物燃料生产的负面影响评述[J].全球科技经济瞭望,2007(11).
    [76]陈卫,邬沧萍,桂世勋,等.开拓创新规范发展——《人口研究》创刊30周年纪念[J].人口研究,2007(06).
    [77]陈卫,吴丽丽.中国人口迁移与生育率关系研究[J].人口研究,2006(01).
    [78]陈迎.适应问题研究的概念模型及其发展阶段[J].气候变化研究进展,2005(03).
    [79]陈佑启,杨鹏.国际上土地利用/土地覆盖变化研究的新进展[J].经济地理,2001(01).
    [80]陈瑜琦,李秀彬,盛燕,等.发展生物能源引发的土地利用问题[J].自然资源学报,2010(09).
    [81]程序,朱万斌,谢光辉.论农业生物能源和能源作物[J].自然资源学报,2009(05).
    [82]程序.生物质能与节能减排及低碳经济[J].中国生态农业学报,2009(02).
    [83]邓琦,周国逸,刘菊秀,等. CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响[J].植物生态学报,2009(06).
    [84]邓祥征,韩建智,王小彬,等.免耕与秸秆还田对中国农田土壤有机碳贮量变化的影响[J].中国土壤与肥料,2010(06).
    [85]邓祥征,姜群鸥,战金艳.中国土地生产力变化的情景分析[J].生态环境学报,2009(05).
    [86]邓祥征,战金艳.中国北方农牧交错带土地利用变化驱动力的尺度效应分析[J].地理与地理信息科学,2004(03).
    [87]邓勇,房俊民,陈方,等.生物燃料最新发展态势分析[J].中国生物工程杂志,2008(08).
    [88]杜菲,杨富裕, Casler M. D.,等.美国能源草柳枝稷的研究进展[J].安徽农业科学,2010(35).
    [89]杜习乐,吕昌河,王海荣.土地利用/覆被变化(LUCC)的环境效应研究进展[J].土壤,2011(03).
    [90]段增强, Verburg P. H.,张凤荣,等.土地利用动态模拟模型的构建及其应用——以北京市海淀区为例[J].地理学报,2004(06).
    [91]方创琳.中国人地关系研究的新进展与展望[J].地理学报.
    [92]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996(05).
    [93]方精云,朴世龙,赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001(05).
    [94]方精云.森林群落呼吸量的研究方法及其应用的探讨[J].植物学报,1999(01).
    [95]飞翔.生物质能产业发展中政府规制与激励[D].福建农林大学,2010.
    [96]付加锋,刘小敏.基于情景分析法的中国低碳经济研究框架与问题探索[J].资源科学,2010(02).
    [97]傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报,1996(05).
    [98]高文永.中国农业生物质能源评价与产业发展模式研究[D].中国农业科学院,2010.
    [99]郭斌,陈佑启,姚艳敏,等.土地利用与土地覆被变化驱动力研究综述[J].中国农学通报,2008(04).
    [100]国家林业局,http://www.forestry.gov.cn/portal/main/s/65/content-326341.html.
    [101]郝兴宇,林而达,杨锦忠,等.自由大气CO2浓度升高对夏大豆生长与产量的影响[J].生态学报,2009(09).
    [102]何春阳,史培军,陈晋,等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学(D辑:地球科学),2005(05).
    [103]贺菊煌.经济增长模型中的储蓄率内生化问题[J].经济研究,2005(08).
    [104]黄琳凯.柳枝稷种质资源评价、分子标记开发及遗传连锁图谱构建[D].四川农业大学,2010.
    [105]黄秋昊,蔡运龙.国内几种土地利用变化模型述评[J].中国土地科学,2005(05).
    [106]姜克隽,胡秀莲,刘强,等.2050低碳经济情景预测[J].环境保护,2009(24).
    [107]姜克隽,胡秀莲,庄幸,等.中国2050年的能源需求与CO2排放情景[J].气候变化研究进展,2008(05).
    [108]姜克隽,胡秀莲,庄幸,等.中国2050年低碳情景和低碳发展之路[J].中外能源,2009(06).
    [109]姜克隽,胡秀莲,庄幸,等.中国2050年的能源需求与CO2排放情景[J].气候变化研究进展,2008(05).
    [110]解靓,钟凯文,孙彩歌,等.土地利用与土地覆盖模型研究概述[J].农机化研究,2008(07).
    [111]金琳,李玉娥,高清竹,等. DNDC模拟中国20年农田管理土壤碳变化[J].土壤通报,2010(05).
    [112]兰肇华.生物燃料发展及其影响研究[D].武汉理工大学,2009.
    [113]李边疆,王万茂.区域土地利用与生态环境耦合关系的系统分析[J].干旱区地理,2008(01).
    [114]李长久,2010,全球耕地减少:人类与地球共生的困惑,中国环保网.
    [115]李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量[J].林业科学,2011(07).
    [116]李静,赵庚星,范瑞彬.黄河三角洲土地利用及土地覆盖变化驱动力分析[J].西北农林科技大学学报(自然科学版),2003(03).
    [117]李静,赵庚星,田素锋,等.论土地利用/土地覆盖变化驱动力研究[J].国土资源科技管理,2004(01).
    [118]李克让,陈育峰,黄玫,等.气候变化对土地覆被变化的影响及其反馈模型[J].地理学报.
    [119]李秀彬.土地利用变化的解释[J].地理科学进展,2002(03).
    [120]林而达,刘颖杰.温室气体排放和气候变化新情景研究的最新进展[J].中国农业科学,2008(06).
    [121]林而达,许吟隆,蒋金荷,等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应[J].气候变化研究进展,2006(02).
    [122]蔺卿,罗格平,陈曦. LUCC驱动力模型研究综述[J].地理科学进展,2005(05).
    [123]刘成武,黄利民.土地利用/土地覆盖变化的研究方法[J].地域研究与开发,2004(04).
    [124]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000(05).
    [125]刘嘉,陈文颖,刘德顺.对稳定浓度目标下温室气体排放路径的探讨[J].中国人口.资源与环境,2011(08).
    [126]刘鹏程,丘华昌.不同方式秸秆还田培肥土壤的模拟试验[J].土壤肥料,1994(06).
    [127]刘强.能源环境政策评价模型的比较分析[J].中国能源,2008(05).
    [128]刘强.石油价格变化对中国经济影响的模型研究[J].数量经济技术经济研究,2005(03).
    [129]刘小敏.中国2020年碳排放强度目标的情景分析[D].中国社会科学院研究生院,2011.
    [130]刘彦随,陈百明.中国可持续发展问题与土地利用/覆被变化研究[J].地理研究,2002(03).
    [131]刘振,周溪召.巢式Logit模型在交通方式选择行为中的应用[J].上海海事大学学报,2006(03).
    [132]陆化普,王继峰,张永波.城市交通规划中交通可达性模型及其应用[J].清华大学学报(自然科学版)网络.预览,2009(06).
    [133]罗哲贤.植被带宽度对局地环流及温度场影响的数值研究[J].地理学报,1994(01).
    [134]南娟,王喆.基于巢式Logit模型的机场吞吐量预测方法[J].科学技术与工程,2008(24).
    [135]倪健.区域尺度的中国植物功能型与生物群区[J].植物学报,2001(04).
    [136]聂冲,贾生华.离散选择模型的基本原理及其发展演进评介[J].数量经济技术经济研究,2005(11).
    [137]裴彬,潘韬.土地利用系统动态变化模拟研究进展[J].地理科学进展,2010(09).
    [138]彭功勋.城市生活固体废弃物(MSW)的沉降变形研究[D].河海大学,2004.
    [139]邵景安,李阳兵,魏朝富,等.区域土地利用变化驱动力研究前景展望[J].地球科学进展,2007(08).
    [140]石龙宇,卢新,崔胜辉.土地变化的生态效应研究进展[J].中国土地科学,2008(04).
    [141]石瑞香,康慕谊. NECT上农牧交错区耕地变化及其驱动力分析[J].北京师范大学学报(自然科学版),2000(05).
    [142]石正国,延晓冬,尹崇华,等.人类土地利用的历史变化对气候的影响[J].科学通报,2007(12).
    [143]史军,刘纪远,高志强,等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004(02).
    [144]松岗讓,姜克隽,胡秀莲.全球气候变化模型的研究与发展[J].中国能源,1998(03).
    [145]孙凤莲.林木生物质能源开发利用及其产业支撑体系构建研究[D].华中农业大学,2010.
    [146]碳交易-百度百科, http://baike.baidu.com/view/831144.htm.
    [147]碳税-百度百科, http://baike.baidu.com/view/1908382.htm.
    [148]唐华俊,陈佑启,邱建军等.中国土地利用/土地覆盖变化研究.北京:中国农业科学科技出版社,2004.
    [149]唐华俊,吴文斌,杨鹏,等.土地利用/土地覆被变化(LUCC)模型研究进展[J].地理学报,2009(04).
    [150]陶光灿,谢光辉, Rberg H. Kan,等.广西木薯茎秆资源的能源利用[J].中国工程科学,2011(02).
    [151]田宜水.中国第二代生物燃料资源发展潜力分析[J].中国能源,2010(07).
    [152]田宇鸣,李新.土地利用/覆被变化(LUCC)环境效应研究综述[J].环境科学与管理,2006(05).
    [153]田展,冯磊,陈葆德,等.情景在气候变化研究中的应用研究进展[J].高原气象.
    [154]王灿,陈吉宁,邹骥.可计算一般均衡模型理论及其在气候变化研究中的应用[J].上海环境科学,2003(03).
    [155]王灿,陈吉宁,邹骥.气候政策研究中的数学模型评述[J].上海环境科学,2002(07).
    [156]王海鸿.基于粮食安全与能源安全的农地利用理论研究[D].兰州大学,2009.
    [157]王静爱,何春阳,董艳春,等.北京城乡过渡区土地利用变化驱动力分析[J].地球科学进展,2002(02).
    [158]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000(05).
    [159]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999(03).
    [160]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999(04).
    [161]王万茂.论土地科学学科体系建设[J].中国土地科学,2002(05).
    [162]王小彬,武雪萍,赵全胜,等.中国农业土地利用管理对土壤固碳减排潜力的影响[J].中国农业科学,2011(11).
    [163]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001(01).
    [164]王秀兰.土地利用/土地覆盖变化中的人口因素分析[J].资源科学,2000(03).
    [165]王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响[J].亚热带农业研究,2005(03).
    [166]王兆礼,曾乐春.中国区域土地利用变化对生态环境的影响研究进展[J].中山大学研究生学刊(自然科学、医学版),2005(03).
    [167]王宗明,张柏,宋开山,等.松嫩平原土地利用变化对区域生态系统服务价值的影响研究[J].中国人口.资源与环境,2008(01).
    [168]魏一鸣,吴刚,刘兰翠,等.能源-经济-环境复杂系统建模与应用进展[J].管理学报,2005(02).
    [169]吴文斌,杨鹏,谈国新,等.基于Logit模型的世界主要作物播种面积变化模拟[J].地理学报,2007(06).
    [170]谢高地,李士美,肖玉,等.碳汇价值的形成和评价[J].自然资源学报,2011(01).
    [171]谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学,2007(05).
    [172]徐敏云,李培广,谢帆,等.土地利用和管理方式对农牧交错带土壤碳密度的影响[J].农业工程学报,2011(07).
    [173]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007(06).
    [174]许坚,刘爱霞. LUCC研究与土地科学发展[J].中国土地科学,2004(06).
    [175]杨宝军,侯立文.基于Nested Logit模型的IT外包供应商选择[J].工业工程与管理,2009(01).
    [176]杨昌涛,靳文舟,范雪婷.基于巢式Logit模型的交通方式选择行为研究[J].公路与汽运,2011(04).
    [177]杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003(08).
    [178]杨梅,张广录,侯永平.区域土地利用变化驱动力研究进展与展望[J].地理与地理信息科学,2011(01).
    [179]杨民胜,吴志华,陈少雄.桉树的生态效益及其生态林经营[J].桉树科技,2006(01).
    [180]杨庆媛.土地利用变化与碳循环[J].中国土地科学,2010(10).
    [181]姚凤梅,秦鹏程,张佳华,等.基于模型模拟气候变化对农业影响评估的不确定性及处理方法[J].科学通报,2011(08).
    [182]于贵瑞,李轩然,王秋凤,等.中国陆地生态系统的碳储量及其空间格局(英文)[J]. Journalof Resources and Ecology,2010(02).
    [183]于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向[J].地理科学,2004(05).
    [184]袁俊.湖北省土地利用变化及其驱动力分析[J].国土与自然资源研究,2003(04).
    [185]岳珍,赖茂生.国外“情景分析”方法的进展[J].情报杂志,2006(07).
    [186]臧秀清.城市生活垃圾多循环处置系统的构建与效益研究[D].燕山大学,2010.
    [187]张阿玲,李继峰.构建中国的能源-经济-环境系统评价模型[J].清华大学学报(自然科学版),2007(09).
    [188]张凡,李长生,王政.耕作措施对陕西耕作土壤碳储量的影响模拟[J].第四纪研究,2006(06).
    [189]张华,张勃.国际土地利用/覆盖变化模型研究综述[J].自然资源学报,2005(03).
    [190]张士功.中国耕地资源的基本态势及其近年来数量变化研究[J].中国农学通报,2005(06).
    [191]张世文,唐南奇.土地利用/覆被变化(LUCC)研究现状与展望[J].亚热带农业研究,2006(03).
    [192]张树伟.基于一般均衡(CGE)框架的交通能源模拟与政策评价[D].清华大学,2007.
    [193]张树伟.能源经济环境模型研究现状与趋势评述[J].能源技术经济,2010(02).
    [194]张文辉,何景峰,周建云.能源柳研究现状与国内引种栽培[J].生物质化学工程.
    [195]张希彪,王鑫,刘彬,等.陇东黄土高原土地覆被变化的驱动力及生态环境效应[J].土壤通报,2006(04).
    [196]张新长,黄秋华,杨剑.土地利用数据在不同尺度下的精度损失模型研究[J].中山大学学报(自然科学版),2007(03).
    [197]张雪芹,葛全胜.气候变化综合评估模型[J].地理科学进展,1999(01).
    [198]张燕林,郑礼明.中国粮食安全和虚拟耕地进口实证研究[J].新疆农垦经济,2009(12).
    [199]张永民,赵士洞,张克斌.科尔沁沙地及其周围地区土地利用变化的时空动态模拟[J].北京林业大学学报,2003(03).
    [200]赵丽红.土地资源、粮食危机与中拉农业合作[J].拉丁美洲研究,2010(03).
    [201]赵永,王劲峰.经济分析CGE模型与应用[M].中国经济出版社:2008
    [202]赵玉清,蔡真,林章凛.生物能源的几点新思考[J].生物加工过程,2008(06).
    [203]赵振家,杨晓梅,李永华.土地利用/土地覆盖变化与全球环境变化[J].地理译报,1996(03).
    [204]赵振家. GPS卫星系统及发展趋势[J].地球信息,1996(01).
    [205]郑粉莉,贺秀斌.黄土高原植被破坏与恢复对土壤侵蚀演变的影响[J].中国水土保持,2002(07).
    [206]周大地主编.2020中国可持续能源情景.北京:中国环境出版社,2003
    [207]周广胜,王玉辉,许振柱,等.中国东北样带碳循环研究进展[J].自然科学进展,2003(09).
    [208]周效志.垃圾填埋场流体产生与地球化学迁移转化过程模拟研究[D].中国矿业大学,2009.
    [209]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000(05).
    [210]朱跃中.中国交通运输部门中长期能源发展与碳排放情景设计及其结果分析(二)[J].中国能源,2001(12).
    [211]朱跃中.中国交通运输部门中长期能源发展与碳排放情景设计及其结果分析(一)[J].中国能源,2001(11).
    [212]宗蓓华.战略预测中的情景分析法[J].预测,1994(02).
    [213]邹亚荣,张增祥,周全斌,等.中国农牧交错区土地利用变化空间格局与驱动力分析[J].自然资源学报,2003(02).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700