用户名: 密码: 验证码:
银杏复合系统碳储量及土壤碳循环过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林经营措施对系统碳固定有着显著影响。开展复合经营系统固碳和碳循环的研究,对全面分析和评价银杏复合经营生态系统的固碳价值有着重要的意义。本文以江苏省泰兴市不同银杏(Gingko biloba L.)复合经营方式和传统农业经营方式(银杏-桑树(GM),银杏-小麦-花生(GWP),银杏-油菜-花生(GRP)模式、林下抛荒模式(GNT)和小麦-花生模式(WP))为研究对象,对其碳储量、土壤碳循环过程及其影响因素等进行5年的跟踪研究(2008-2012年),采用通径分析方法对银杏复合系统碳储量和碳循环影响因子进行分析,为揭示银杏复合经营碳循环机理、全面分析和评价复合系统的固碳价值奠定基础。主要研究结果如下:
     1、银杏复合经营系统和经营时间显著影响了系统银杏和林下作物碳储量。复合系统中生物碳储量显著高于农地,并随着复合时间延长显著上升,持续经营5年之后,不同复合系统中生物碳储量并不存在显著差异,但是仍然高于农地。可见,银杏复合经营促进了系统生物碳储量。
     2、银杏复合系统模式下在0-20cm层次中土壤碳储量随着经营时间呈现上升趋势;而不同复合模式下凋落物碳储量随经营时间变化各不相同;不同复合系统下土壤碳储量和凋落物碳储量存在显著差异,且均显著高于农地;GM模式下土壤碳储量均显著高于其它复合模式;经过5年持续经营之后,GNT模式凋落物碳储量显著高于其它模式。长期银杏复合经营在促进土壤碳储量的同时,也促进了系统凋落物碳储量。
     3、银杏复合系统总碳储量随着复合经营时间呈现上升趋势。银杏复合系统总碳储量显著高于WP模式,GM模式中总碳储量显著高于其它银杏复合模式。所有模式中,土壤碳储量比例最高。长期银杏复合经营提升了系统总碳储量。通径分析表明,土壤碳储量是影响总碳储量的主要因素。
     4、不同凋落物及其组成显著影响了凋落物的分解速度。不同复合系统中凋落物残留率随着经营时间而发生变化,均显著低于农业模式。复合系统下凋落物碳释放量显著高于农地。不同模式间凋落物碳释放量变化趋势各不相同,其中,GM和GNT模式中,凋落物碳释放量随着复合时间显著增加。持续经营5年之后,GNT模式下凋落物碳释放量显著高于其它模式。银杏复合系统促进了凋落物的分解,同时促进了凋落物碳释放。
     5、银杏复合系统显著影响了土壤总呼吸、微生物呼吸和根系呼吸。不同年份间,复合系统下这些指标均显著高于农地。银杏复合系统中土壤总呼吸和微生物呼吸碳损失随着复合经营时间普遍呈现增加趋势。而不同复合系统中根系呼吸在不同年份间变化趋势存在一定差异。经过5年持续经营之后,GNT模式下土壤总呼吸、根系呼吸和微生物呼吸碳释放均最高。可见,银杏复合经营促进了林下土壤总呼吸、根系呼吸和微生物呼吸碳排放。
     6、银杏复合系统土壤中每年均能固定大量的碳,而且随着林分生长,系统的土壤固碳能力和土壤碳截留能力进一步得到了提升。但是在开始抛荒的初始阶段会导致系统土壤碳流失;GM模式中,土壤碳截留能力优秀,并能促进了系统碳储量。长期复合经营可以进一步提升系统土壤固碳和碳截留能力。
     7、银杏复合模式间土壤有机碳组分变化趋势各不相同。在GNT模式下,有机碳和及其组分则呈现先下降后上升趋势;除了易氧化碳外,GRP和GWP模式下复合系统下土壤有机碳和有机碳组分均呈现上升趋势;在经过长期银杏复合经营之后,除了无机碳和重组有机碳组分外,复合系统下其它有机碳组分均显著高于WP模式。
     8、银杏复合经营土壤中,酶活性在5年持续经营过程中变化趋势各不相同。GWP、GRP和GM模式下内切葡聚糖酶、漆酶和木聚糖酶活性均呈现上升趋势;GNT模式下,外切葡聚糖酶、木质素过氧化物酶、锰过氧化物酶、漆酶和木聚糖酶活性均呈现上升趋势,但是内切葡聚糖酶和β-葡萄糖苷酶活性则呈现先下降后上升趋势。可见,长期银杏复合经营促进了纤维素分解相关酶、木质素分解相关酶和木聚糖酶活性。
     9、银杏复合经营土壤中,微生物活性在5年持续经营过程中变化趋势各不相同。GWP和GRP模式中,这3个指标均呈现显著上升趋势;在GNT模式中,则呈现先下降后上升趋势。到了2012年,GNT模式下土壤微生物碳和土壤基础呼吸显著高于其它模式。农地中土壤代谢熵显著高于复合系统,而微生物熵和变化规律较差。总的来说,长期银杏复合经营促进了系统中的土壤微生物碳、土壤基础呼吸和可矿化碳等微生物活性。
     综上所述,长期银杏复合经营可以有效的提升系统中生物、凋落物和土壤碳储量,并能够促进系统中凋落物分解碳释放和微生物呼吸碳释放;此外,银杏复合系统也促进了土壤中与碳循环密切相关的碳组分、凋落物分解过程相关酶活性和土壤微生物活性。从系统碳储量来说,GM模式下复合系统固碳能力最强;而在GNT模式中,系统凋落物碳释放高,同时,微生物呼吸碳损失也高。在银杏复合系统中,影响土壤凋落物碳释放的因素主要是:轻组有机碳、木质素过氧化物酶和微生物生物量碳;影响土壤微生物呼吸的主要因素为:可溶性有机碳、漆酶活性和微生物生物量碳;影响土壤碳截留的因素为:易氧化碳、木聚糖酶活性和累积可矿化碳含量。
There is a widespread interest in increasing carbon sequestrations by forest andagricultural production operations. Agroforestry systems are very important to carbonsequestrations and cycle. We compared the impacts of four Ginkgo agroforestry systems and areference system (a conventional agrosystem with a sequential rotation of wheat and peanuts;WP), on a variety of total carbon stocks, soil carbon cycle systems, and some factors of cycleprocesses, then analyzed the factors of soil cycle processes and carbon stocks by path analysis.The objectives of this study were to investigate the processes of carbon cycle, and evaluate thepotential carbon sequestration of Ginkgo agroforestry systems. The four agroforestry systemswere: Gingko, wheat and peanut (GWP); Gingko, rapeseed and peanut (GRP); Gingko andmulberry (GM); and Ginkgo fallow system (GNT). The results showed that:
     1The different Ginkgo agroforestry systems and ages significantly affected Ginkgo andcrops biomass and carbon stocks. The biomass carbon stocks in agroforestry systems weresignificantly higher than WP systems, and increased with the system age. In2012, there was nosignificantly different biomass carbon stock among Ginkgo agroforestry systems, and they stillhigher than agriculture systems.
     2Significant soil carbon stocks and litter carbon stocks were found in different Ginkgoagroforestry systems, and they were both significantly higher in agroforestry systems than WPsystems. GM systems had significantly higher soil carbon stocks than other Ginkgoagroforestry systems. In soil0-20cm layer, soil carbon stocks in Ginkgo agroforestry systemsincreased with the system age, while the trends of litter carbon stocks were different inagroforestry systems. After5years, the litter carbon stocks in GNT systems were significantlyhigher than other systems.
     3The total carbon stocks in Ginkgo agroforestry systems increased with the system age.Significantly higher total carbon stocks were found in agroforestry systems than WP systems.The proportion of soil carbon stocks was highest in all systems. From the path analysis, the soilcarbon stock is the key factor of total carbon stock.
     4Different litter types and compositions significantly affected the litter decomposition rate.The litter residual rates in different agroforestry systems were changed with the system age, butthey all significant lower than WP systems. Significantly higher litter carbon releases werefound in agroforestry systems than WP systems. The trends of litter carbon releases weredifferent in different systems, while they increased with system age in GM and GNT systems.In2012, GNT systems had significantly higher litter carbon releases than other systems.
     5The different agroforestry systems significantly affected soil total respiration, microbialrespiration, and roots respiration, and these indexes were significantly higher in agroforesteysystems than in WP system during the year of2008-2012. Soil total respiration and microbial respiration increased with system age in Ginkgo agroforestry systems. However, the trends ofroots respiration were different among different Ginkgo agroforestry systems. After5years, theGNT system had the highest soil total respiration, microbial respiration, and roots respiration.
     6A lot of soil carbon was sequestrated in Ginkgo agroforestry systems every year. The soilcarbon sequestration and carbon retention of agroforestry systems also grew with growth ofGinkgo. However, in the early years of fallow, a lot of soil carbon was lost in Ginkgoagroforestry systems. GM systems had the best soil carbon retention, and these systems alsoincreased carbon stocks.
     7Within5year, the trends of soil organic carbon and fractions were different amongdifferent systems. They were decreased in early years, and then increased. Except readyoxidized carbon fractions, soil organic carbon and other carbon fractions were increased withsystem age. After18agroforestry system, except soil inorganic carbon and heavy fractionsorganic carbon, other organic carbon and fractions were significantly higher in Ginkgoagroforestry systems than in WP systems.
     8The enzyme activity of cellulose and lignin, and xylanase activity were significantlyhigher in Ginkgo agroforestry systems than in WP systems. Within5years, endo-1,4-β-D-glucanase, laccase, and xylanase activity in GWP, GRP and GM systems were increasedwith systems age, while exo-1,4-β-D-glucanase, lignin peroxidase, Manganese peroxidase,laccase and xylanase activity in GNT systems were also increased with systems age. However,the endo-1,4-β-D-glucanase and β-D-glucosidase activity were decreased in early years, andthen increased.
     9Significant higher soil microbial biomass carbon, soil basal respiration, and totalmineralized carbon were found in Ginkgo agroforestry systems than WP systems, and theysignificantly increased with the system age in GWP and GRP systems. Besides, In GNTsystems, they decreased at early years, and then increased. After5years, GNT had thesignificantly higher soil microbial biomass carbon and soil basal respiration than other systems.The WP systems had significantly higher metabolic quotient than other systems, but themicrobial quotient was lacked regularity.
     In summy, Ginkgo agroforestry systems increased biomass carbon stocks, litter carbonstocks, and soil carbon stocks, and it also increased litter compositions and microbialrespiration, soil organic carbon fractions, enzyme activity, and soil biological activity. InGinkgo agroforestry systems, the light fraction organic carbon, lignin peroxidase activity, andsoil microbial biomass carbon are the the key factor of litter carbon releases; the dissolvedorganic carbon, laccase activity, and soil microbial biomass carbon are the key factor of soilmicrobial respiration; the ready oxidized carbon, xylanase activity, and total mineralized carbonare the key factor of soil carbon retention.
引文
[1]白雪爽,胡亚林,曾德慧,等.半干旱沙区退耕还林对碳储量和分配格局的影响[J].生态学杂志,2008,27(10):1647-1652.
    [2]蔡祖聪.土壤气体研究展望[J].土壤学报,1993,30(2):117-124.
    [3]曹福亮.中国银杏志[M].北京:中国林业出版社,2007
    [4]陈法霖,江波,张凯,等.退化红壤丘陵区森林凋落物初始化学组成与分解速率的关系[J].应用生态学报,2011,22(3):565-570.
    [5]陈光水,杨玉盛,王小国,等.格氏栲天然林与人工林根系呼吸季节动态及影响因素[J].生态学报,2005,25(8):1941-1947.
    [6]陈琦,尹粉粉,曹靖,等.秦岭西部不同发育阶段油松和日本落叶松人工林土壤酶活性变化和分布特征[J].生态与农村环境学报,2010,26(5):466-471.
    [7]陈晏,戴传超,王兴祥,等.施加内生真菌拟茎点霉(Phomopsis sp.)对茅苍术凋落物降解及土壤降解酶活性的影响[J].土壤学报,2010,47(3):537-545.
    [8]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J].菌物学报,2007,26(1):153-160.
    [9]揣小伟,黄贤金,郑泽庆,等.江苏省土地利用变化对陆地生态系统碳储量的影响[J].资源科学,2011,33(10):1932-1939.
    [10]邓强辉,潘晓华.稻鸭共育对土壤环境的影响[J].土壤通报,2009,40(5):1081-1084.
    [11]董步生主编.银杏栽培与发展研究[M].南京:东南大学出版社,2002
    [12]杜虎,宋同清,曾馥平,等.桂东不同林龄马尾松人工林的生物量及其分配特征[J].西北植物学报,2013,33(2):0394-0400.
    [13]段华平,牛永志,李凤博,等.耕作方式和秸秆还田对直播稻产量及稻田土壤碳固定的影响[J].江苏农业学报,2009,25(3):706-708.
    [14]范叶青,周国模,施拥军,等.坡向坡位对毛竹林生物量与碳储量的影响[J].浙江农林大学学报,2012,29(3):4-10.
    [15]方运霆,莫江明, Sandra Brown,等.鼎湖山自然保护区土坡有机碳贮盆和分配特征[J].生态学报,2004,24(1):135-142.
    [16]方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,200525(6):12-17.
    [17]方晰,田大伦,项文化.间伐对杉木人工林生态系统碳贮量及其空间分配格局的影响[J].中南林业科技大学学报,2010,30(11):47-53.
    [18]高会议,郭胜利,刘文兆,等.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态[J].生态学报,2009,29(5):2551-2559.
    [19]耿玉清,余新晓,岳永杰,等.北京山地针叶林与阔叶林土壤活性有机碳库的研究[J].北京林业大学学报,2009,31(5):19-25.
    [20]宫超,汪思龙,曾掌权,等.中亚热带常绿阔叶林不同演替阶段碳储量与格局特征[J].生态学杂志,2011,30(9):1935-1941.
    [21]关松萌.上壤酶及其研究法[M].北京:农业出版社,1986.
    [22]郭起荣,杨光耀.中国竹林的碳素特征[J].世界竹藤通讯,2005,3(3):25-28.
    [23]韩广轩,周广胜,许振柱,等.玉米农田土壤呼吸作用的空间异质性及其根系呼吸作用的贡献[J].中国农业科学,2007,27(12):5254-5261.
    [24]韩剑,张静文,徐文修,等.新疆连作、轮作棉田可培养的土壤微生物区系及活性分析[J].棉花学报,2011,23(1):69-74.
    [25]韩永伟,韩建国,张蕴薇,等.农牧交错带退耕还草对土壤淀粉酶和脲酶活性的影响[J].草地学报,2005,13(1):59-64.
    [26]郝杰杰,宋福强,田兴军,等.几株半知菌对马尾松落叶的分解[J].林业科学,2006,42(11):69-75.
    [27]郝瑞军,方海兰,沈烈英,等.城市不同功能区绿地土壤有机碳矿化和酶活性变化[J].中国农学通报,2009,25(2):229-235.
    [28]何振立.土壤微生物量的测定方法:现状和展望[J].土壤学进展,1994,22(4):36-44.
    [29]胡诚,曹志平,胡婵娟,等.不同施肥管理措施对土壤碳含量及基础呼吸的影响[J].中国生态农业学报,2007,15(5):63-67.
    [30]胡亚林,汪思龙,颜绍馗,等.杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J].应用生态学报,2005,16(8):1411-1416.
    [31]黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):10-16.
    [32]黄文丁,王汉杰编著.林农复合经营技术[M].北京:中国林业出版社,1992.
    [33]黄雪菊,王琴,孙辉,等.不同地表覆盖下低温季节对西南亚高山土壤微生物量碳动态的影响[J].山地学报,2007,30(5):543-549.
    [34]黄懿梅,安韶山,刘连杰,等.黄土丘陵区土壤基础呼吸对草地植被恢复的响应及其影响因素[J].中国生态农业学报,2009,17(5):862-869.
    [35]贾丙瑞,周广胜,王风玉,等.土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报,2005,16(8):1547-1552.
    [36]焦秀梅.湖南省森林植被的碳储量及其地理分布规律[J].中南林学院学报,2005,25(1):4-8.
    [37]姜霞,王进,李丛瑞,等.黔中地区3种林分土壤轻组有机碳含量研究[J].江苏农业科学,2013,41(2):359-361.
    [38]解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-698.
    [39]敬艳辉,邢留伟.通径分析及其应用[J].统计教育,2006,(2):24-27.
    [40]康文星,王卫文,何介南.洞庭湖湿地草地不同利用方式对土壤碳储量的影响[J].中国农学通报,2011,27(2):35-39.
    [41]孔玉华,姚凤军,鹏爽,等.不同利用方式下草地土壤碳积累及汇/源功能转换特征研究[J].草业科学,2010,27(4):40-45.
    [42]雷安平,杨琼,罗颖,等.无瓣海桑根际土壤理化性状和土壤酶活性[J].经济林研究,2009,27(4):17-21.
    [43]黎华寿,骆世明.高州市典型坡地不同利用方式对土壤理化性状的影响[J].华南农业大学学报,2001,22(2):1-4.
    [44]李翠莲,戴全厚.喀斯特退耕还林地土壤酶活性变化特征[J].湖北农业科学,2012,51(22):5034-5038.
    [45]李海奎,雷渊才.中国森林植被生物量和碳储量评估[M].北京:中国林业出版社.2010.
    [46]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002:1-3.
    [47]李庆云,樊巍,余新晓,等.豫东平原农区杨树-农作物复合生态系统的碳贮量[J].应用生态学报,2010,21(3):613-618.
    [48]李瑞霞,凌宁,郝俊鹏,等.林龄对侧柏人工林碳储量以及细根形态和生物量的影响[J].南京林业大学学报,2013,37(2):21-27.
    [49]李文华,赖世登.中国农林复合经营[M].北京:科学出版社.1994.
    [50]李雅红,江洪,原焕英,等.西天目山毛竹林土壤呼吸特征及其影响因子[J].生态学报,2010,30(17):4590—4597.
    [51]李意德,吴仲民,曾庆波,等.尖峰岭热带雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [52]李永涛,蔺中,李晓敏,等.蚯蚓和堆肥固定化添加模式对漆酶降解土壤五氯酚的影响[J].生态环境学报2011,20(11):1739-1744.
    [53]李云,周建斌,董燕捷,等.黄土高原不同植物凋落物的分解特性[J].应用生态学报,2012,23(12):3309-3316.
    [54]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552.
    [55]林培松,高全洲.粤东北山区几种森林土壤有机碳储量及其垂直分配特征[J].水土保持学报,2009,23(5):243-247.
    [56]刘斌,黄玉溢,陈桂芬.桑园土壤铁素状况及桑树铁营养研究进展[J].现代农业科技,2009,(21):230-231.
    [57]刘恩,王晖,刘世荣.南亚热带不同林龄红锥人工林碳贮量与碳固定特征[J].应用生态学报,2012,23(2):335-340.
    [58]刘梦云,常庆瑞,齐雁冰,等.黄土台塬不同林分结构土壤有机碳质量分数特征[J].植物营养与肥料学报,2012,18(6):1418-1427.
    [59]刘宁,余雪标,林培群,等.桉树-甘蔗复合经营土壤化学性状及酶活性研究[J].安徽农业科学,2009,37(27):13192-13195.
    [60]刘世岩,曹成有.混农林业及其应有概况[J].防护林科技,2004,(4):42-43.
    [61]刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷、状况及其对施肥的反应特点[J].农业现代化研究.2003,24(4):279-283.
    [62]刘迎春,王秋凤,于贵瑞,等.黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力[J].生态学报,2011,31(15):4277-4286.
    [63]刘颖,韩士杰.长白山典型森林生态系统土壤呼吸的季节动态[J].东北林业大学学报,2012,40(11):107-112.
    [64]刘圳,白昌军,虞道耿.牧草间作对桉树人工林下土壤酶活性的影响[J].安徽农业科学,2009,37(12):5723-5724.
    [65]刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化[J].清华大学学报,2005,45(6):788-791.
    [66]柳梅英,包安明,陈曦,等.近30年玛纳斯河流域土地利用/覆被变化对植被碳储量的影响[J].自然资源学报,2010,25(6):926-939.
    [67]鲁萍,郭继勋,朱丽.东北羊草草原主要植物群落土壤过氧化氢酶活性的研究[J].应用生态学报,2002,13(6):675-679.
    [68]骆士寿,陈步峰,陈永富,等.海南霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2):123-128.
    [69]吕俊强,钟章成.三峡库区农林复合模式经营及其可持续发展研究[J].西南农业大学学报,1998,20(6):644-649.
    [70]吕睿瑞,田宝玉,高媛媛,等.不同地区森林土壤降解天然木质纤维素能力的分析评价[J].生物技术,2010,20(2):77-81.
    [71]罗友进,赵光,高明,等.不同植被覆盖对土壤有机碳矿化及团聚体碳分布的影响[J].水土保持学报,2010,24(6):117-123.
    [72]马少杰,李正才,王斌,等.不同经营类型毛竹林土壤活性有机碳的差异[J].生态学报,2012,32(8):2603-2611.
    [73]马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667.
    [74]毛瑢,崔强,赵琼,等.不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性[J].应用生态学报,2009,20(9):2079-2084.
    [75]莫江明,彭少麟, Sandra Brown,等.鼎湖山马尾松林群落生物量生产对人为干扰的响应[J].生态学报,2004,24(2):193-200.
    [76]庞家平,陈明勇,唐建维,等.橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态[J].山地学报,2009,27(4):433-441.
    [77]彭方仁,李杰,张纪林,等.海岸带不同林农复合经营模式的生物生产力研究[J].南京林业大学学报(自然科学版),2000,24(3):78-82.
    [78]朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学杂志,2001,20(1):33-37.
    [79]裘福庚,方嘉兴.农林复合经营系统及其实践[J].林业科学研究,1996,9(3):318-322.
    [80]曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
    [81]渠开跃,冯慧敏,代力民,等.辽东山区不同林型土壤有机碳剖面分布特征及碳储量研究[J].土壤通报,2009,40(6):1316-1321.
    [82]尚雯,李玉强,王少昆,等.科尔沁沙地流动沙丘造林后表层土壤有机碳和轻组有机碳的变化[J].应用生态学报,2011,22(8):2069-2074.
    [83]申艳,杨慧玲,何维明.冬小麦生境中土壤养分对凋落物碳氮释放的影响[J].植物生态学报,2010,34(5):498-504.
    [84]沈宏,曹志红,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [85]沈宏,曹志红.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    [86]时忠杰,徐太平,高吉喜,等.海南岛尾细桉人工林碳贮量及其分布[J].林业科学,2011,47(10):21-28.
    [87]宋新章,江洪,余树全,等.中亚热带森林群落不同演替阶段优势种凋落物分解试验[J].应用生态学报,2009,20(3):537-542.
    [88]宋兆民,孟平.中国农林业的结构与模式[J].世界林业研究,1993(5):77-82.
    [89]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥田土壤酶活性的动态变化特征[J].生态环境,2008,17(5):2059-2063.
    [90]谭周进,李倩,陈冬林,等.稻草还田对晚稻土微生物及酶活性的影响[J].生态学报,2006,26(10):3385-3392.
    [91]谭周进,肖启明,杨海君,等.旅游对张家界国家森林公园土壤酶及微生物作用强度的影响[J].自然资源学报,2006,21(1):133-138.
    [92]唐罗忠,葛晓敏,吴麟,等.南方型杨树人工林土壤呼吸及其组分分析[J].生态学报,2012,32(22):7000-7008.
    [93]陶勇,陈防,万开元,等.汉江平原杨树林下土壤酶及微生物的年动态变化[J].福建林业科学,2009,36(4):90-97.
    [94]陶玉华,冯金朝,曹书阁,等.广西沙塘林场马尾松和杉木人工林的碳储量研究[J].西北农林科技大学学报(自然科学版),2012,40(5):46-52.
    [95]田蕾,陈小云,胡淼,等.蚯蚓及蚓粪对白腐真菌降解土壤中菲的动态影响[J].农业环境科学学报,2008,27(1):0221-0225.
    [96]万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412.
    [97]汪贵斌,曹福亮,程鹏,等.不同银杏复合经营模式土壤肥力综合评价[J].林业科学,2010,46(8):1-7.
    [98]汪金松,赵秀海,张春雨,等.改变C源输入对油松人工林土壤呼吸的影响[J].生态学报,2012,32(9):2768-2777.
    [99]王兵,刘国彬,薛萐,等.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009,17(3):282-287.
    [100]王兵,杨清培,郭起荣,等.大岗山毛竹林与常绿阔叶林碳储量及分配格局[M].广西植物,2011,31(3):62-68.
    [101]王春梅.量化退耕还林后土壤碳变化[J].北京林业大学学报,2007,29(3):112-119.
    [102]王丹,王兵,戴伟,等.杉木生长及土壤特性对土壤呼吸速率的影响[J].生态学报,2011,31(3):0680—0688.
    [103]王国兵,郝岩松,王兵,等.土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J].北京林业大学学报,2006,28(S2):73-79.
    [104]王金叶,车克钧,张学龙,等.祁连山森林土壤碳的初步研究[J].甘肃农业大学学报,1996,(4):356-360.
    [105]王磊,丁晶晶,季永华,等.江苏省森林碳储量动态变化及其经济价值评价[J].南京林业大学学报(自然科学版),2010,34(2):1-5.
    [106]王清奎,汪思龙,冯宗炜.杉木纯林与常绿阔叶林土壤活性有机碳库的比较[J].北京林业大学学报.2006,28(5):1-6.
    [107]王清奎,汪思龙,于小军,等.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响[J].应用生态学报,2007,18(6):1203-1207.
    [108]王瑞静,赵敏,高峻.城市森林主要植被类型碳储量研究——以崇明岛为例[J].地理科学,2011,31(4):109-113.
    [109]王卫霞,史作民,罗达.等.我国南亚热带几种人工林生态系统碳氮储量[J].生态学报,2013,33(3):0925-0933.
    [110]王文静,王百田,吕钊,等.山西太岳山不同林分土壤有机碳储量研究[J].干旱区资源与环境,2013,27(1):81-85.
    [111]王肖楠,耿玉清,余新晓.等.栓皮栎林与油松林土壤有机碳及其组分的研究[J].土壤通报,2012,43(3):604-610.
    [112]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [113]尉海东,马祥庆.中亚热带不同发育阶段杉木人工林生态系统碳贮量研究[J].江西农业大学,2006,28(2):239-244.
    [114]魏媛,张金池,俞元春,等.退化喀斯特植被恢复过程中土壤基础呼吸及代谢熵的变化[J].土壤通报,2010,41(4):798-803.
    [115]翁伯琦,王义祥.亚热带山区红壤地碳平衡研究进展[J].应用生态学报,2006,17(1):143-150.
    [116]吴发启,周正立,刘海斌.2005.黄土高原中南部农果复合型生态农业生产力特征.应用生态学报,16(2):67-71.
    [117]吴钢.黄淮海平原农林生态系统N、P、K营养元素循环[J].应用生态学报,1993,4(2):141-145.
    [118]吴惠芳,龚春风,刘鹏,等.锰对商陆根际微生物及上壤酶的影响[J].贵州农业科学,2009,37(12):94-28.
    [119]吴际友,叶道碧,王旭军.长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J].东北林业大学学报,2010,38(3):97-100.
    [120]吴建国,徐德应.土地利用变化对土壤有机碳的影响——理论、方法、实践[M].北京:中国林业出版社,2004.
    [121]吴建国,张小全,王彦辉.等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-30.
    [122]吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530-538.
    [123]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [124]吴建军.发展中国家农林系统的研究与实践[J].农村生态环境.1990,(1):43-47.
    [125]吴鹏飞,朱波,刘世荣,等.不同林龄桤-柏混交林生态系统的碳储量及其分配[J].应用生态学报,2008,19(7):1419-1424.
    [126]吴庆标,王效科,欧阳志云.活性有机碳含量在凋落物分解过程中的作用[J].生态环境2006,15(6):1295-1299.
    [127]吴永铃,王兵,戴伟,等.杉木人工林土壤酶活性与土壤性质的通径分析[J].北京林业大学学报,2012,34(2):78-84.
    [128]吴永铃,王兵,赵超,等.杉木人工林不同发育阶段土壤肥力综合评价研究[J].西北农林科技大学学报(自然科学版),2011,39(1):69-76.
    [129]吴志祥,谢贵水,杨川,等.幼龄胶园间种土壤肥力及土壤酶活性特征研究[J].南方农业学报,2011,42(1):58-64.
    [130]武小钢,郭晋平,杨秀云,等.2011.芦芽山典型植被土壤有机碳剖面分布特征及碳储量.生态学报,31(11):57-67.
    [131]项文化,田大伦,闰文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,3:57-64.
    [132]肖朝霞,王金成,刘建新,等.黄土高原子午岭油松林管理方式对黑碳和颗粒有机碳积累的影响[J].干旱区农业研究,2011,29(4):115-121.
    [133]肖春波,王海,范凯峰,等.崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J].上海交通大学学报,2010,28(1):30-34.
    [134]谢锦升,杨玉盛,解明曙,等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报,2008,45(1):170-176.
    [135]谢静,郑学良,朱清科,等.黄土区人工林与自然封育对土壤养分的影响[J].水土保持通报,2012,32(2):35-41.
    [136]熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性的季节动态变化[J].应用环境生物学报,2004,10(4):416-420.
    [137]熊文愈.农林复合生态系统的类型和效益.农林复合生态系统学术讨论会论文集[A].哈尔滨:东北林业出版社,1988.
    [138]熊文愈.中国农林复合系统经营与实践[M].南京:江苏科技出版社,1994.
    [139]徐华勤,肖润林,向佐湘,等.稻草覆盖、间作三叶草茶园土壤酶活性和养分的关系[J].生态学杂志,2009,28(8):1537-1543.
    [140]徐舰.2006.银杏、柑桔不同复合经营模式生长效益评价.经济林研究,24(2):32-34.
    [141]徐兰成,李庆云,万猛,等.复合农林业系统碳贮量研究进展[J].河南林业科技,2007,27(3):36-38.
    [142]徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报,2008,19(3):539-544.
    [143]徐小锋,宋长春,宋霞,等.湿地根际土壤碳矿化及相关酶活性分异特征[J].生态环境,2004,13(1):40-42.
    [144]徐志波,江长胜,郝庆菊,等.稻-油轮作农田油菜生长季土壤呼吸作用及其影响因素分析[J].中国生态农业学报,2012,20(12):1599-1605
    [145]许涛,宋之光,刘君峰,等.雨水中碳丰度季节性特征及对酸雨形成的贡献[J].环境科学,2008,29(2):322-327.
    [146]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [147]薛萐,刘国彬,戴全厚,等.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J].应用生态学报,2008,19(3):518-525.
    [148]闫德仁,刘永军,冯立岭,等,农林复合经营土壤养分的变化[J].东北林业大学学报,2001,29(1):53-56.
    [149]闫德仁,闫婷,赵春光.2011.草原天然植被和草原造林固碳储量的对比研究.内蒙古林业科技,37(1):7-10.
    [150]闫平,高述超,刘德晶.2008.兴安落叶松林3个类型生物及土壤碳储量比较研究.林业资源管理,(3):79-83.
    [151]杨明臻,林衣东,韩文炎,等.施氮对茶园土壤基础呼吸的影响[J].土壤通报,2012,43(6):1355-1561.
    [152]杨倩,张清平,蒋海亮,等.保护性耕作对黄土旱塬玉米土壤呼吸及微生物数量的影响[J].草业科学,2012,29(12):1810-1815.
    [153]杨玉盛,陈光水,王小国,等.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报,2005,42(4):584-591.
    [154]杨玉盛,谢锦升,盛浩,等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11):1123-1132.
    [155]杨智杰,陈光水,谢锦升,等.杉木、木荷纯林及其混交林凋落物量和碳归还量[J].应用生态学报,2010,21(9):2235-2240.
    [156]叶绍明,龙滔,蓝金宣,等.尾叶桉与马占相思人工复层林碳储量及分布特征研究[J].江西农业大学学报2010,32(4):735-742.
    [157]于建光,李辉信,陈小云,等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响[J].应用生态学报,2007,18(4):818-824.
    [158]于严严.1980-2000年中国耕作土壤有机碳的动态变化海洋地质与第四纪地质2006,26(6):123-130.
    [159]余彬彬,金则新,李钧敏.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性[J].西北林学院学报,2008,23(5):30-33.
    [160]俞慎,何振立,陈国潮,等.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433-440.
    [161]袁东海,王兆骞,郭新波,等.红壤小流域不同利用方式水土流失和有机碳流失特征研究[J].水土保持学报,2002,16(2):24-29.
    [162]张迪,韩晓增,李海波,等.不同植被覆盖与施肥管理对黑土活性有机碳及碳库管理指数的影响[J].生态与农村环境学报,2008,24(4):1-5.
    [163]张家来,刘立德.江滩农林复合生态系统综合效益的评价[J].生态学报,1995,15(4):442-449.
    [164]张骏,袁位高,葛滢,等.浙江省生态公益林碳储量和固碳现状及潜力[J].生态学报,2010,30(14):3839-3848.
    [165]张磊,肖剑英,谢德体,等.长期免耕水稻田土壤的生物特征研究[J].水土保持学报,2002,16(2):112-116.
    [166]张丽莉,张玉兰,陈利军,等.稻-麦轮作系统土壤糖酶活性对开放式CO2浓度增高的响应[J].应用生态学报,2004,15(6):1019-1025.
    [167]张鹏超,张一平,杨国平,等.哀牢山亚热带常绿阔叶林乔木碳储量及固碳增量[J].生态学杂志,2010,29(6):1047-1053.
    [168]张强,佟晓华,李国文.从土壤中筛选产木聚糖酶的菌株[J].吉林农业大学学报,1996,18(S):158-160.
    [169]张伟东,汪思龙,杨会侠.等.树种和凋落物对杉木林土壤微生物性质的影响[J].应用与环境生物学报,2010,16(2):168-172.
    [170]张宪权,王文杰,祖元刚,等.东北地区几种不同林分土壤呼吸组分的差异性[J].东北林业大学学报,2005,33(2):46-49.
    [171]张修玉,管东生,黎华寿,等.广州典型森林土壤有机碳库分配特征[J].中山大学学报(自然科学版),2009,48(5):137-142.
    [172]张焱华,吴敏,何鹏,等.土壤酶活性与土壤肥力关系的研究进展[J].安徽农业科学,2007,35(34):11139-11142.
    [173]张赟齐,王陆军,丁正亮,等.安徽老山亚热带常绿阔叶林降雨中氮和可溶性有机碳的动态变化[J].水土保持学报,2010,24(2):146-149.
    [174]张治军,张小全,王彦辉,等.重庆铁山坪马尾松林生态系统碳贮量及其分配特征[J].林业科学,2009,45(5):49-53.
    [175]章铁,刘秀清,孙晓莉.复合经营模式对土壤酶活性的影响[J].经济林研究,2007,25(3):6-10.
    [176]章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268.
    [177]赵超,王兵,戴伟,等.不同海拔毛竹土壤酶活性与土壤理化性质关系的研究[J].河北林果研究,2010,25(1):1-6.
    [178]赵敏,周广盛.中国森林生态系统的植物碳储量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [179]赵筱青,杨树华.滇西南亚热带山地主要植被类型下土壤微量元素状况研究[J].水土保持研究.2008,15(5):140-144.
    [180]甄丽莎,谷洁,高华,等.秸秆还田与施肥对土娄土酶活性的影响[J].西北农业学报,2012,21(6):196-201.
    [181]钟羡芳,杨玉盛,高人,等.2008.老龄杉木人工林生态系统碳库及分配.亚热带资源与环境学报,3(2):15-22.
    [182]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    [183]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [184]周玉荣,于振良,赵士洞.中国主要森林生态系统的碳储量与碳平衡[J].植物生态学报,2000,24(5):518-522.
    [185]周玉燕,贾晓红,赵昕,等.不同植被配置下土壤碳矿化潜力[J].生态学杂志,2011,30(11):2442-2448.
    [186]朱清科,沈应柏,朱金兆.黄土区农林复合系统分类体系研究[J].北京林业大学学报,1999,(3):36-40.
    [187]竺肇华.农用林业研究概况.农林复合生态系统学术研讨论文集[A],哈尔滨:东北林业大学出版社,1988.
    [188]祝志勇.概述我国农林复合经营的历史与现状[J].江苏林业科技,2002,(6):34-37.
    [189]庄铁诚,张瑜斌,林鹏,等.武夷山森林土壤生化特性的初步研究[J].应用生态学报,1999,10(3):283-285.
    [190] Acosta-Martínez, V., Mikha, M.M., Vigil, M.F, et al. Microbial communities and enzyme activities insoils under alternative crop rotations compared to wheat–fallow for the Central Great Plains[J]. Appl. SoilEcol.,2007,37:41–52.
    [191] Albrecht, A., Kandji, S.T. Carbon sequestration in tropical agroforestry systems[J]. Agriculture,Ecosystems&Environment,2003,99,15–27.
    [192] Alward, R.D., Detling, J.K., Milchunas, D.G. Grassland vegetati on changes and nocturnal globalwarming[J]. Science,1999,283(5399):229-231.
    [193] Bambrick, A.D., Whalen, J.K., Bradley, R.L., Cogliastro, A., Gordon, A.M., Olivier, A., Thevathasan,N.V. Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec andOntario, Canada[J]. Agrofor Syst.,2010,79:343–353
    [194] Bene J.G., Beall and A Cote. Tree,Food and People[M], Ottawa,TDRC,1977.
    [195] Bezdicek, D.F., Papendick, R.I., Lal, R.,1996. Introduction: importance of soil quality to health andsustainable land management. In: Doran[M], J.W., Jones, A.J.(Eds.), Methods of Assessing Soil Quality.Soil Science Society of America, vol.49. Spec. Publ, Madison, WI, pp.1–18.
    [196] Blair, G.J., Lefroy, R.D.B., Lisle, L. Soil carbon fractions based on their degree of oxidation, and thedevelopment of a carbon management index for agricultural systems[J]. Aust. J. Agric. Res.,1995,46:1459–1466.
    [197] Blanco-Canqui, H., Lal, R. Soil structure and organic carbon relationships following10years of wheatstraw management in no-till[J]. Soil Tillage Res.,2007,95:240–254.
    [198] Bremner, E., Van Kissel, C. Plant-available nitrogen from lentil and wheat residues during a subsequentgrowing season[J]. Soil Sci. Soc. Am. J.,1992,56:1155–1160.
    [199] Cao, F., Kimmins, J.P., Jolliffe, P.A., Wang, J.R. Relative competitive abilities and productivity inGinkgo and broad bean and wheat mixtures in southern China[J]. Agrofor Syst.,2010,79:369–380.
    [200] Chan, K.Y. Soil particulate organic carbon under different land use and management[J]. Soil Use andManagement,2001,17:217-221.
    [201] Dagang, A.B.K., Nair, P.K.R. Silvopastoral research and adoption in Central America: recent findingsand recommendations for future directions[J]. Agroforestry Systems,2003,59,149–155.
    [202] Davis S D, Mooney H A. Water use patterns of four cooccuring chapanal shrubs[J]. Oocologia,1986,70:172-177.
    [203] DelLucia, E.H., Hamilton, J.G., Naidu, S.L., et al. Net primary production of a forest ecosystem withexperimental CO2enrichment[J]. Science,1999,284(5417):1177-1179.
    [204] Dixon, R. K. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [205] Dodla, S.K., Wang, J.J., DeLaune, R.D. Characterization of labile organic carbon in coastal wetland soilsof the Mississippi River deltaic plain: Relationships to carbon functionalities[J]. Science of The TotalEnvironment,2012,35:151-158.
    [206] Dodor, D.E., Tabatabai, M.A. Amidohydrolases in soils as affected by cropping systems[J]. Appl. SoilEcol.,2003,24:73–90.
    [207] Doran J W,Jones A J,Arshad M A,et al.Determinants of soil quality and health[A].Soil Quality and SoilErosion.CRC Press,1999,17-36.
    [208] Edwards.C.A., Lal.R., Madden.P., Miller.R.H., House. G.. Sustainable Agricultural Systems[A]. Soil andwater Conservation Society. Ankeny, lowa, USA,1990.
    [209] Fang. J.Y. Global Ecology Climate Changes and Ecological Effects[J]. Beijing: Higher Educationpress&Springer Verlag.2000,192-194.
    [210] Fang S,Li H,Sun Q,et al. Biomass production and carbon stocks in poplar-crop intercropping systems:a case study in northwestern Jiangsu, China[J]. Agrofor Syst.,2010,79:213–222.
    [211] Fellman, J.B., D’Amore, D.V., Hood, E., Boone, R.D. Fluorescence characteristics and biodegradabilityof dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeastAlaska[J]. Biogeochemistry,2008,88:169–184.
    [212] Franzluebbers, A.J., Hons, F.M., Zuberer, D.A. Soil organic carbon, microbial biomass, andmineralizable carbon and nitrogen in sorghum[J]. Soil Sci. Soc. Am. J.,1995,59:460–466.
    [213] Fujisaka S., Wollenberg E. From forest to agroforest and logger to agroforestry:A casestudy[J].Agroforestry Systems,1991,14:113-129.
    [214] Garrity, D.P. Agroforestry and the achievement of the millennium development goals[J]. Agrofor. Syst.,2004,61:5–17.
    [215] Ge, G., Li, Z., Fan, F., Chu, G., Hou, Z., Liang, Y. Soil biological activity and their seasonal variations inresponse to long-term application of organic and inorganic fertilizers [J]. Plant Soil,2010,326:31–44.
    [216] Haile, S.G., Nair, V.D., Nair, P.K.R.. Contribution of trees to carbon storage in soils of silvopastoralsystems in Florida,USA[J]. Global Change Biology,2010,16,427–438.
    [217] Hassink, J. Active organic matter fractions and microbial biomass as predictors of N-mineralization[J].Eur. J. Agric.,1994,3:257–265.
    [218] Houghton, R.A. Land use change and carbon cycle[J].Global Change Biology,1995,1:275-287.
    [219] Hu, S., Coleman, D.C., Carroll, C.R., Hendrix, P.F., Beare, M.H. Labile soil carbon pools in subtropicalforest and agricultural ecosystems as influenced by management practices and vegetation types[J].Agriculture, Ecosystems&Environment,1997,65:69-78.
    [220] Ibrahim, M., Villanueva, C., Mora, J. Traditional and improved silvopastoral systems and theirimportance in sustainability of livestock farms. In: Mosquera MR, Riguerio A, McAdam J eds.Silvopastoralism and Sustainable Land Management[M]. CAB International, Wallingford, UK.13–18.
    [221] IPCC. Fourth Assessment Report on Climate Change[M],2007. Cambridge University Press, Cambridge,USA.
    [222] Janzen, H.H., Campbell, C.A., Brandt, S.A., Lafond, G.P., Townley-Smith, L. Light fraction organicmatter in soils from long term crop rotations[J]. Soil Sci. Soc. Am. J.,1992,56:1799–1806.
    [223] Jiang, P.K., Xu, Q.F. Abundance and Dynamics of Soil Labile Carbon Pools Under Different Types ofForest Vegetation[J]. Pedosphere,2006,16:505-511.
    [224] Jones, D.L., Willett, V.B. Experimental evaluation of methods to quantify dis-solved organic nitrogen(DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biol. Biochem.,2006,38:991–999.
    [225] Kalbitz, K., Meyer, A., Yang, R., Gerstberger, P. Response of dissolved organic matter in the forest floorto long-term manipulation of litter and throughfall inputs[J]. Biogeochemistry,2007,86:301–318.
    [226] Kalbitz, K., Solinger, S., Park, J.H., Michalzik, B., Matzner, E. Controls on the dynamics of dissolvedorganic matter in soils: a review[J]. Soil Sci.,2000,165:277–304.
    [227] Kalembassa, S.J., Jenkinson, D.S. A comparative study of titrametic and gravimetric methods for thedetermination of organic carbon in soils[J]. J. Sci. Food Agric.1973,24:1085–1090.
    [228] Kanmegne, J., Duguma, B., Henrot, J., Isirimah, N.O. Soil fertility enhancement by planted tree-fallowspecies in the humid lowlands of Cameroon[J]. Agrofor. Syst.,1999,46:239–249.
    [229] King K.F.S. The history of agroforestry. In:Nair.P.K.R.(eds.)Agroforestry systems in the Tropics[M].PP:3-11.Kluwer Academic Publishers, Netherlands,1989.
    [230] King KFS. Agri-silviculture.Bulletin No.1[A], Department of Forestry, University of Ibadan, Nigeria,1968.
    [231] Kirk T K, Cullen D. Enzymology and molecular genetics of wood degradation by white-rot fungi. Anoverview of biomechanical pulping research. In: Young R A, Akhtar M eds., Environmentally FriendlyTechnologies for the Pulp and Paper Industry. New York: John Wiley&Sons Inc.,1998,273-307.
    [232] Klinge H. Root mass estimation in lowland tropical rainforest of Central Amasonia. Fine root masses of apale yellow latosol and a giant humta podsol[J]. Trop. Ecol.,1973,4:29-38.
    [233] Lal, R., Kimble, J.M., Follet, R.F. Land use and soil C pools in terrestrial ecosystems. In: Lal, R., Kimble,J.M., Follet, R.F., Stewart, B.A.(Eds.), Management of Carbon Sequestration in Soil. Adv. Soil Sci. CRCPress, Boca Raton, New York,1988, pp.1–10.
    [234] Lefroy E.C. Trees and shrubs as sources of fodder in Australia[J]. Agroforestry Systems,1992,20:140-132.
    [235] Li, W., Li, J., Lu, J., Zhang, R., Wang, G. Legume–grass species influence plant productivity and soilnitrogen during grassland succession in the eastern Tibet Plateau[J]. Applied Soil Ecology,2010,44:164-169.
    [236] López-Bellido, L., López-Bellido, R., Redondo, R., Benítez, J. Faba bean nitrogen fixation in awheat-based rotation under rainfed Mediterranean conditions[J]: Effect of tillage system. Field CropsResearch,2006,98:253-260.
    [237] López-Fando, C., Pardo, M.T. Soil carbon storage and stratification under different tillage systems in asemi-arid region[J]. Soil Tillage Res.,2011,111:224–230.
    [238] Lou, Y., Wang, J., Liang, W. Impacts of22-year organic and inorganic N managements on soil organic Cfractions in a maize field, northeast China[J]. Catena,2011,87:386–390.
    [239] Luan, J., Xiang, C., Liu, S., Luo, Z., Gong, Y., Zhu, X. Assessments of the impacts of Chinese firplantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan,China[J]. Geoderma,2010,156:228-236.
    [240] Lunderen B.O. ICRAF’s first Ten years[J]. Agriforestry System[J],1987,5:197-218
    [241] Mead D J. The role of agroforestry in industrialized nations: the southern hemisphere perspective withspecial emphasis on Australia and New Zealand[J]. Agroforestry Systems,1995,31:143-156.
    [242] Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolved organic carbon andnitrogen asynthdsis for temperate fordsts. Biogeochemistry,2001,52:173-205.
    [243] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central EuropeanNorway spruce cosystem. Eur[J]. Soil Sci,1999,50:579-590.
    [244] Mo, J.M., Brown, S., Peng, S.L., et al. Nitrogen availability in disturbed, rehabilitated and mature forestsof tropical China[J]. Forest Ecology and Management,2003,175(13):573-583.
    [245] Nair P.K.R, Classification of agroforestry systems[J]. Agroforestry system,1985,3:97-128.
    [246] Naklang, K., Whitbread, A., Lefroy, R., Blair, G., Wonprasaid, S., Konboon, Y., Suriyaarunroj, D. Themanagement of rice straw, fertilizers and leaf litters in rice cropping systems in Northeast Thailand[J].Plant Soil,1999,209:21–28.
    [247] Nambiar E K S. Do nutrient retranslocate from fine root?[J] Can J. For. Res.,1987,17:913-918.
    [248] Neff J C, Hopper D U. Vegetation and climate controls on potential CO2,DOC and DON production innorthem latitude soils[J]. Global Change Biology,2002,8:872-884.
    [249] Nelson, D.W., Sommers, L.E. Total nitrogen analysis of soil and plant tissues[J]. J. Assoc. Off. Anal.Chem.,1980,63:770–778.
    [250] Oelbermann, M., Paul, V.R., Gordon, A.M. Carbon sequestration in tropical and temperate agroforestrysystems: a review with examples from Costa Rica and southern Canada[J]. Agriculture, Ecosystems&Environment,2004,104,359–377.
    [251] Ostle, N.J., Levy, P.E., Evans, C.D., Smith, P. UK land use and soil carbon sequestration [J]. Land UsePolicy,2009,26: S274-S283.
    [252] Ouédraogo, E., Mando, A., Stroosnijder, L. Effects of tillage, organic resources andnitrogen fertilizer onsoil carbon dynamics and crop nitrogen uptake in semi-aridWest Africa[J]. Soil Tillage Res.,2006,91:57–67.
    [253] Pan, G., Guo, T. Pedogenic carbon at esinaridic soil of China and significance in terrestrial carbontransfer. In: LatR, eds. Global Climate Change and Pedogenic Carbonates[M]. USA: Lewis publishers.1999.135-148.
    [254] Persson H, Firocks YV, Majdi H, et al. Root distribution in a Norway spruce (Pinus abies L.karst.) stanksubjected to drought and ammonium sulphate application[J]. Plant and Soil,1995,168:161-165.
    [255] Plaza C, Hemndez D, Garca-Gil JC, et, al. Mircobial activity in pig slurry-amended soils under semi aridcondition[J]. Soil Biology and Biochemistry,2004,31:1577-1585.
    [256] Post, W.M., Emanuel, W.R., Zinke, P.J., et al. Soil carbon pools and life zones[J]. Nature,1982,298:156-159.
    [257] Post, W.M., King, A.M., Wullschleger, S.D. Soil organic matter models and global estimates of soilorganic carbon. In: Powlson D.S., et al. eds. Evaluation of Soil Organic MatterModels [M]. BerlinHeidelberg: Spring Verlag,1996.201-224.
    [258] Prinsley R.T. The role of trees in sustainbable agriculture an overview[J],Agroforestry systems,1992,20:57-67.
    [259] Raich, J.W, Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls[J].Biogeochemistry,2000,48:71–90.
    [260] Raintree J B. The state of the art of agroforestry diagnoses and design[J]. Agroforestry Systems,1987,5:219-250.
    [261] Rao M.R. Coe R.E. The results of agroforestry research[J]. Agroforestry Today,1992,4:4-8.
    [262] Rodrigues, G.S., de Barros, I., Ehabe, E.E., Lang, P.S., Enjalric, F. Integrated indicators for performanceassessment of traditional agroforestry systems in South West Cameroon[J]. Agrofor. Syst.,2009,77:9–22.
    [263] Saffigna, P.G., Powlson, D.S., Brookes, P.C., Thomas, G.A. Influence of sorghum residues and tillage onsoil organic matter and soil microbial biomass in an Australian Vertisol[J]. Soil Biol. Biochem.,1989,21:759–765.
    [264] Sanchez P A. Science in agroforestry[J]. Agroforestry Systems,1995,30:5-55.
    [265] Sardans, J., Penuelas, J., Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C andN content under prolonged warming and drought in a Mediterranean shrubland[J]. Appl. Soil Ecol.,2008,39:223–235.
    [266] Schwendenmann, L., Veldkamp, E. The Role of Dissolved Organic Carbon, Dissolved Organic Nitrogen,and Dissolved Inorganic Nitrogen in a Tropical Wet Forest Ecosystem[J]. Ecosystems,2005,8:339–351.
    [267] Sedjo, R.A., The carbon cycle and global forest ecosystem[J]. Water, Air, and Soil Pollution,1993,70:295-307.
    [268] Skjemstad, J.O., Swift, R.S., McGowan, J.A. Comparison of the particulate organic carbon andpermanganate oxidation methods for estimating labile soil organic carbon[J]. Aust. J. Soil Res.,2006,44:255–263.
    [269] Smolander, A., Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N inrelation to tree species[J]. Soil Biol. Biochem.,2002,34:651-660.
    [270] Soto-Pinto L,Anzueto M,Mendoza J,et al. Carbon sequestration through agroforestry in indigenouscommunities of Chiapas, Mexico[J]. Agrofor Syst.,2010,78:39–5.
    [271] Steppler,H.A, Nair P.L.R, ed. Agroforestry: a decade of development ICRAF[M], Nairobi,1987.
    [272] Subedi, K.D., Ma, B.L., Liang, B.C. New method to estimate root biomass in soilthrough root-derivedcarbon[J]. Soil Biol. Biochem.,2006,38:2212–2218.
    [273] Takimoto A. Carbon Sequestration Potential of Agroforestry Systems in the West African Sahel: AnAssessment of Biological and Socioeconomic Feasibility[D]. PhD dissertation, University of Florida,Florida, USA,2007.
    [274] Tian, L., Dell, E., Shi, W. Chemical composition of dissolved organic matter in agroecosystems:correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Appl. Soil Ecol.,2010,46:426–435.
    [275] Tirol-Padre, A., Ladha, J.K. Assessing the reliability of permanganate-oxidizable carbon as an index ofsoil labile carbon[J]. Soil Sci. Soc. Am. J.,2004,68:969–978.
    [276] Trasar-Cepeda, C., Leirós, M.C., Gil-Sotres, F. Hydrolytic enzyme activities in agricultural and forestsoils[J]. Some implications for their use as indicators of soil quality. Soil Biol. Biochem.,2008,40:2146–2155.
    [277] Vance, E.D., Brookes, P.C., Jenkinson, D.S. An extraction method for measuring microbial biomass C[J].Soil Biol. Biochem.,1987,19:703-707.
    [278] Watson, R.T., Noble, I.R., Bolin, B, et al. IPCC special Report on Land Use. Land Use Change andForestry[R],2000.
    [279] WBGU Special Report. The Accounting of Biological Sinks and Sources Under the Kyoto Protoco[R].1998.
    [280] Woodwell, G.M. The biota And world carbon budget[J]. Science,1978,199:141-146.
    [281] Yang, C., Yang, L., Ouyang, Z. Organic carbon and its fractions in paddy soil as affected by differentnutrient and water regimes[J]. Geoderma,2005,124:133–142.
    [282] Yu, M.J., Chen, Q.C, Li, M.H, et a1. Litterfall in the ever green broad leaved forests dominated byCyclobalanopsis glauca in Zhejiang, SE China[J]. Acta Phytoecol Sin,1996,20(2):144-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700