用户名: 密码: 验证码:
南川柳对三峡消落带干湿交替环境的生理生态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区消落带自然环境复杂多变,冬蓄夏汛水文生态过程形成典型的淹水-落干的干湿交替环境已引起国内外环境生态研究者的广泛关注。目前,在三峡地区资源与环境友好型利用背景下,消落带植被恢复与重建成为库区消落带生态环境治理的重要内容,但如何评价先锋适生植物的标准还存在较大分歧,特别是先锋植物对干湿交替生境的生理生态响应机制更是知之甚少。本研究以消落带植物南川柳(Salix rosthornii)作为研究对象,研究消落带自然环境条件下植被恢复示范区南川柳生态位特征、植物群落以及抗性生理指标响应机制,揭示南川柳在自然生境下植物群落及抗性生理指标的变化规律;在室内条件下,借助盆栽模拟实验,模拟干旱和水淹胁迫条件,分析南川柳抗性生理指标和光合作用特征适应机制,探讨南川柳对干旱、水淹胁迫的生理生态响应及光合作用特征的适应机制,为三峡库区消落带植被恢复与重建工作中适生植物的筛选提供理论依据。
     通过野外样方调查,研究了重庆主城石门段消落带植被恢复示范区主要优势种植物优势度、生态位特征。结果表明,石门消落带示范区主要优势植物种南川柳、秋华柳、中华蚊母、卡开芦、野青茅、甜根子草、扁穗牛鞭草、水苦荬的生态位宽度分别在乔、灌、草本层中占有优势地位;各层次生态位重叠表现为草本层>乔木层>灌木层,表明该示范区内植物生态位重叠度较大,分化不明显,种间竞争激烈。通过南川柳与其它39种主要植物种的生态位宽度及生态位重叠值分析比较,表明南川柳在乔木层占据绝对优势,具有较强的耐淹水能力,在消落带不同高程带均可以种植,能与其他灌木及草本植物形成优势群落。
     根据三峡库区重庆主城段消落带冬蓄夏汛的水文生态过程,研究了典型的冬季蓄淹水没和夏季汛期淹水对消落带不同高程土著种植物南川柳的盖度、基径和株高等生物学特征及其物种多样性格局的影响。结果表明:冬季水淹胁迫显著增大了172m高程南川柳平均盖度与株高和175m平均株高(P<0.05),而对于两高程基径影响均未达到显著水平(P>0.05)。夏季水淹胁迫后,172m高程南川柳平均盖度显著降低(P<0.05),而对于基径和株高影响较小(P>0.05);175m高程南川柳生物学特征变化均未达到显著水平(P>0.05)。经过冬季和夏季淹水,172m高程物种Patrick丰富度指数和Shannon-Wiener多样性指数先增大后降低,而175m则出现相反变化趋势;172m高程Simpson优势度指数显著增大(P<0.05),而175m仅冬季淹水后显著增大(P<0.05)。就淹水后生物特征短时效而言,南川柳可以有效地作为三峡消落带植被恢复的适生物种,为降低夏季淹水后由泥沙堆压造成的物理胁迫,需要适当的人为管护。
     在野外原位条件下,研究了夏季汛期水淹过程(淹水时长、淹水频率和淹水深度)对不同高程带南川柳抗性生理指标的影响。在2012年夏季汛期观测到了具有明显特征的干湿交替过程总共有两次,初次淹水时长持续35天,第二次则只持续了5天。研究结果表明,172m南川柳RWC和EL值经历初次水淹后迅速增大而后降低,而175m和对照组分则出现逐渐降低的趋势;172m和175m高程带南川柳MDA含量先增大后降低,对照组分则是逐渐升高;南川柳脯氨酸含量的变化趋势也大致呈先增大后降低的变化规律,172m高程是逐渐增大的;南川柳抗氧化酶活性变化趋势不是同步统一的,这可能与各种抗氧化酶的作用机制、植物体的反馈调节及消落带高温伏旱条件密切相关。总体而言,夏季汛期水淹对低高程消落带植物南川柳的逆境胁迫作用较为明显,对于中上部的影响不是很显著。此外,库区夏季的高温伏旱胁迫对于消落带上部南川柳的胁迫作用较为显著,这也表明消落带植物南川柳的生理响应是由消落带夏季汛期干湿交替胁迫和高温伏旱胁迫共同作用的结果。
     为了探明消落带植物南川柳的耐旱特性,在盆栽条件下,对南川柳1年生幼苗采用控水方式进行干旱胁迫处理,同时设置对照组进行正常灌溉,测定叶片相对含水量(RWC)、电解质渗漏(EL)、丙二醛(MDA)等一系列与植物耐旱能力相关的生理指标以及抗氧化性酶活性的变化。结果表明:在干旱胁迫下南川柳幼苗叶片具有较强的水分保持能力,并且在复水后有相对较快的恢复能力;10天和20天的干旱胁迫对南川柳叶片电解质渗漏的影响与对照相比差异不显著,随胁迫时间的持续,EL和MDA都显著升高(P<0.05)。在干旱胁迫下,实验组分南川柳叶片脯氨酸含量大致呈递增趋势,并且在干旱处理40天达到最大值,表明南川柳对于干旱胁迫的适应能力约为40天。南川柳幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性整体呈先升高后降低的趋势,其中CAT对胁迫最为敏感,而POD响应相对较为缓慢;在复水20天后3种酶活性有所恢复,但均未恢复到对照的水平。模拟研究了三峡库区消落带水分变化特征对南川柳幼苗光合作用特征的影响,干旱处理对于南川柳净光合速率具有抑制作用,形成显著的的负响应能力,但由于逆境胁迫干扰强度的差异,净光合速率并不能很好地表达各处理组分之间光能合成响应能力的大小。南川柳幼苗净光合速率受到多种因素的综合影响,对不同干旱胁迫处理表现出来的净光合响应能力,与其光合气体交换参数和资源利用效率密切相关,发现南川柳净光合速率与蒸腾速率、表观CO2利用效率和叶片相对含水量呈现显著正相关(P<0.05);与气孔导度显著相关(P<0.05);与胞间CO2浓度呈显著负相关(P<0.05),与水分利用效率并无显著相关性(P>0.05)。
     通过室内模拟水淹胁迫实验,结果表明,只有淹水持续时间达到一定阈值时,不同水淹深度对于南川柳叶片含水率才能产生显著影响。南川柳EL对于水淹深度70cm较为敏感,对于40cm较为适应。在水淹胁迫下,南川柳耐水淹的极大值为持续淹水30天。南川柳MDA含量对于水淹时间具有较广的生态幅,水淹深度越大,MDA含量越高。在水淹持续时间20天内,南川柳脯氨酸含量较高。从南川柳叶片抗氧化酶活性来看,淹水30天并未是南川柳最大的耐淹水时长,当淹水深度较大时,植株才会通过抗氧化酶系统来进行生理生化调节,以适应水淹胁迫对植株造成的伤害。
The natural environmental characteristics of Three Gorges Reservoir are changing andcomplex. The alternate flooding and drying environment induced by the typical hydro-ecologicalprocesses of winter impoundment and summer flooding,the widespread concern has been causedamong the environmental and ecological researchers. At present, the water-level-fluctuating zone(WLFZ) vegetation restoration and reconstruction becomes one of the major tasks of the ThreeGorges Reservoir ecological environmental management under the context of resources andenvironment eco-friendly utilized. However, large differences concerning about criterions exist inhow to evaluate pioneer suitable plants. Furthermore, little is known about the physiological andecological responses of the pioneer plants to the alternating wet and dry habitats. In this study,fluctuating zone plants Salix rosthornii was selected as the researched object. A field plotinvestigation was conducted to determine its plant communities, niche characteristics andresponse mechanism of the physiological resistance in natural habitats. Parallel pot experimentswere carried out under laboratory conditions, which simulated drought and flooding stressconditions, in order to analyze physiological characteristics of resistance and photosyntheticcharacteristics of Salix rosthornii. This research tries to provide a theoretical basis for suitableplant selection in the reservoir restoration and reconstruction, particularly for indigenous plantspecies applied in ecological environment fluctuating zone.
     By a field quadrat survey, dominances of the dominant species, niche characteristics wereinvestigated of Shimen fluctuating zone vegetation restoration demonstration area of main cityChongqing. The results indicated that:1) The dominant plants in Shimen fluctuating zonedemonstration area were: Salix rosthornii, Salix variegate, Distylium chinense, Saccharumspontaneum, Phragmites karka, Deyeuxia Arundinacea, Hemarthria compressa, Veronicaundulate. And their niche breadth occupies a dominant position in tree, shrub, and herb layer,respectively;2) Various levels niche overlap performance was herb layer> tree layer> shrub layer,indicating that plant niche overlap in the region, the differentiation is not obvious, and theinterspecific competition is fierce. The niche breadth and niche overlap of Salix rosthornii werecompared to other39main plant species in the demonstration area, which indicated that Salixrosthornii had absolute dominance in the tree layer. This survey proved that Salix rosthornii had astrong resistance to flooding; it could be used at different elevations of the fluctuating zone andform dominant community with other shrubs and herbaceous plants.
     Based on the hydrological process of Three Gorges Reservoir, plant coverage, basal diameter and plant height of Salix rosthornii at different elevations were measured. The effects of seasonalflooding on biological characteristics and species diversity were also analyzed. The resultsshowed that: winter flooding significantly increases the average coverage and plant height at172m altitude and the average plant height at175m altitude (P <0.05). However, plant basaldiameter had no difference at either elevation (P>0.05). After summer flooding, the averagecoverage reduced significantly at172m altitude (P <0.05), while the basal diameter and plantheight were less affected (P>0.05); At175m altitude, none of the biological characteristicsreached significance level (P>0.05). After the winter and summer flooding, the172m elevationspecies Patrick richness index and Shannon-Wiener diversity index first increases and thendecreases, while the175m showed the opposite trends; At172m elevation, the Simpsondominance index significantly increased (P <0.05), while at175m it only increased after winterflooding (P <0.05). For the short time biological characteristics after flooding, Salix rosthorniican be effectively used as the Three Gorges fluctuating zone vegetation restoration species. Inorder to reduce the physical stress caused by sediment pile pressure after summer flooding, itrequires proper maintenance and protection.
     In field conditions, the effects of summer flooding on physiological responses of Salixrosthornii were investigated. The flooding duration, flooding frequency and depth of flooding atdifferent elevation were measured. Two typical alternating wet and dry processes were observedin the2012summer flood season. The initial flooding lasted35days, and the second processlasted only5days. The results showed that, RWC and EL of Salix rosthornii at172m altitudeincreaseed rapidly after the initial flooding and then decreased, while the175m and the controlgroup showed a decrease trend. The MDA content of treatment group increased and thendecreased at both172m and175m elevation, while the control gradually increased. The prolinecontent had the same trends as the MDA. The activities of three antioxidant enzymes trends werenot synchronized, which might due to the variety of antioxidant enzymes, plant feedbackregulation mechanism, and the high temperature and drought conditions of the fluctuating zone.Overall, the summer flooding had a significant impact on Salix rosthornii at lower elevation, butnot so obvious at middle or upper part of the fluctuating zone. In addition, the reservoir area hightemperature and drought stress in summer flooding season also had great influences on the plantsat upper elevation, which suggests that physiological responses of Salix rosthornii were thecombine effects of the alternating wet and dry conditions and high temperature and droughtstress.
     In order to ascertain the drought tolerant characteristics of fluctuating zone plants Salixrosthornii, and provide theoretical basis for fluctuating zone population structure and plantselection, a pot experiment was conducted on Salix rosthornii1-year-old seedlings under watercontrol drought stress. Leaf relative water content (RWC), electrolyte leakage (EL),malondialdehyde (MDA) and a series of physiological indicators related to plant droughttolerance and resistance to oxidation activity changes were measured. The results indicated that:1) Salix rosthornii seedling leaves had strong moisture retention capacity under drought stress and relatively fast recovery after re-watering;2)10days and20days of drought stress had nosignificant effects on EL and MDA. With the continued drought stress, EL and MDA increasedsignificantly;3) the overall trend of superoxide dismutase (SOD), peroxidase (POD) and catalase(CAT) activity under drought stress was first increased and then decreased. CAT was the mostsensitive to drought stress, while POD was relatively insensitive. After re-watering20days, allthree enzyme activities started to recovery, but not to the level of the control group. Thesimulated study also investigated the impact of the Three Gorges Reservoir water changecharacteristics on the Salix rosthornii seedlings photosynthesis characteristics. The resultsshowed that drought stress had a significant negative effect on net photosynthetic rate. Due to thedifferences of stress disturbance intensity, however, net photosynthetic rate might not be the bestindicator to depict the size of the light synthetic response capacity among treatments. Variousfactors could affect net photosynthetic rate. The photosynthetic gas exchange parameters and theefficiency of energy use are closely related to the net photosynthetic response capabilities underdifferent drought stress. This study found that net photosynthetic rate was positively related totranspiration rate, CO2utilization efficiency and relative leaf water content (P <0.05). It wassignificantly related to stomatal conductance (P <0.05); however, intercellular CO2concentrationwas negatively related (P <0.05), and was not significantly related to water use efficiency (P>0.05).
     A30-day indoor simulated waterlogging experiment was conducted to investigatewaterlogging resistance of Salix rosthornii. The results showed that different waterlogging depthhad an impact on the relative leaf water content when waterlogging duration reaches a certainthreshold. The leaf electrolyte leakage (EL) was more sensitive to70cm waterlogging than40cm.During the waterlogging cycle, the highest EL was the30-days. The MDA content underwaterlogging had wide ecological amplitude, the greater the depth of waterlogging, the higher thecontent of MDA. In20days of duration, proline content was higher under waterlogging than thecontrol. Leaf antioxidant enzyme activities did not reach to its peak value during the experiment,and this study found that physiological and biochemical regulation through antioxidant enzymesystem to accommodate waterlogging stress only take effects when waterlogging depth wasrelatively higher.
引文
[1] Armstrong J, Armstrong W. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+and wateruptake, and lateral root emergence [J].Ann. Bot.,2005,96:625-638.
    [2] Arora A, Sairam P K, Srivastava G C. Oxidative stress and anti-oxidative system in plants[J].CurrentScience,2002,82:1227-1238.
    [3] Ashley A W,Wayne D E. A practical scientific approach to riparian vegetation rehabilitation in Australia[J].Journal of Environmental Management,2003,68(4):329-341.
    [4] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improve plant abiotic stress resistance[J].Environ Exp Bot,2007,59(2):206-216.
    [5] Azza N, Denny P, Koppel J V. Floating mats: their occurrence and influence on shoreline distribution ofemergent vegetation[J]. Freshwater Biology,2006,51:1286-1297.
    [6] Bacanamwo M, Purcell L C. Soybean dry matter and N accumulation response to flooding stress, Nsources and hypoxia[J]. Journal of Experimental Botany.1999,50:689-696.
    [7] Balerdi C F, Crane J H, Schaffer B. Managing your tropical fruit grove under changing water tablelevels[J]. Fact Sheet HS,2003,957:1-5.
    [8] Barta A L, Sulc R M. Interaction between waterlogging injury and irradiance level in alfalfa[J]. CropScience,2002,42:1529-1534.
    [9] Bassir,Rigonli F,Giacometti G M. ChloroPhyll binding Proteins with antenna function in higher plantsand green algae[J].Photochem photobtol,1990,52:1187-1206.
    [10] Blake T J. Reid D M. Ethylene, water relations and tolerance to waterlogging of three Eucalyptusspecies[J].Austrailian Journal of Plant Physiology,1981,8:497-505.
    [11] Blom C W, Voesenek L A. Flooding: The survival strategies of plants[J].Tree Physiology,1996,11:290-295.
    [12] Boivin P, Favre F, Hammecker C, et al. Processes driving soil solution chemistry in a floodedrice-cropped vertisol: Analysis of long-time monitoring data[J]. Geoderma,2002,110:87-107.
    [13] Cao F L, Conner W H. Selection of flood-tolerant Populus deltoids clones for reforestation projects inChina[J].Forest Ecology and Management,1999,117:211-220.
    [14] Chang W P, Huang L, Shen M. et al. Patterns of protein synthesis and tolerance of anoxia in root tips ofmaize seedlings acclimated to a low-oxygen environment, and identification of proteins by massspectrometry[J]. Plant Physiology,2000,122:295-318.
    [15] Chen H, Qualls R, Miller G. Adaptive resoponses of Lepidium latifolium to soil flooding:Biomassallocation, adventitious rooting, aerenchyma formation and ethylene production[J]. Envrionmental andExperimental Botany,2002,48:119-128.
    [16] Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance: Diurnal aquaporin expressionand the effects of nutrient stress[J].Journal of Experimental Botany,2000,51:61-70.
    [17] Colin-Belgrand M, Dreyer E, Biron P. Sensitivity of seedlings from different oak species towaterlogging: Effects on root growth and mineral nutrition[J].Annales des Sciences Forestieres,1991,48:193-204.
    [18] Colmer T D. Long-distance transport of gases in plants:A perspective on internal aeration and radialoxygen loss from roots[J].Plant, Cell and Environment,2003,26:17-36.
    [19] DaCosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrassspecies in response to drought stress[J].Journal of the American Society for Horticultural Science,2007,132:319-326.
    [20] Dat, J F, Capelli N., Folzer H., et al. Sensingand signalling during plant flooding[J]. Plant Physiol. Bioc,2004,42:273–282.
    [21] De Simone O, Haase K, Muller E, et al. Apoplasmic barriesrs and oxygen transport properties ofhypodermal cell walls in roots from Amazonian tree species[J]. Plant Physiology,2003,132:206-217.
    [22] Dhindsa R S. Drought tolerance in twomosses: correlated with enzymatic defence against liquidperoxidation [J]. J. ExP Bot,1981(32):79-91.
    [23] Drew M. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia andanoxia[J].Annual Review Plant Physiology and Plant Molecular Biology,1997,48:223-250.
    [24] Drew M C, Cobb B G, Johnson J R, et al. Metabolic acclimation of root tips to oxygendeficiency[J].Annals of Botany,1994,74:281-286.
    [25] Editorical. Purification processes,ecological functions,planning and design of riparian buffer zones inagricultural watersheds[J]. Ecological Engineering,2005,24:421-432.
    [26] Else M A, Coupland D, Dutton L, et al. Decreased root hydraulic conductivity reduces leaf waterpotential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Riccinuscommunis) despite diminished delivery of ABA from the roots to shoots in the xylemsap[J]. Physiol.Plant,2001,111:46-54.
    [27] Enstone D E, Peterson C A. Suberin lamella development in maize seedling roots grown in aerated andstagnant conditions[J].Plant, Cell, and Envrionment,2005,28:444-455.
    [28] Evans D E. Aerenchyma formation[J]. New phytol.,2004,161:35-49.
    [29] Fabbri L T, Rua G H, Bartoloni N. Different patterns of aerenchyma formation in two hygrophyticspecies of Paspalum (Poacease) as response to flooding[J]. Flora: Morphology, Distribution, FunctionalEcology of Plants,2005,200:354-360.
    [30] Felle H H. pH regulation in anoxic plants[J]. Annals of Botany,2005,96:519-532.
    [31] Folzer H, Dat J, Capelli N, et al. Response to flooding of sessile oak: An integrative study[J]. TreePhysiol.,2006,26:759-766.
    [32] Foyer C H, Lopezo D H, Dat J F, et al. Hydrogen Peroxide and Glutathione-assoeisted mechanisms ofacclamatory stress tolerance and signalling[J]. Physiologia Plantarum,1997,100,241-254.
    [33] Franeiseo C P, Fernando Z, Alejandra A, et al. Two different late Embryogenesis abundant Proteinsfrom ArabidoPsis thaliana contain specific domains that in hibit Eseherichia coli growth[J]. Bioehemicaland BioPhysical Researeh Communications,2006,342(2):406-413.
    [34] Fukao T, Bailey-Serres J. Plant response to hypoxia–is survival a balancing act[J]. Trends in PlantScience.2004,9:449-456.
    [35] Futoshi N, Hiroyuki Y. Effects of pasture development on the ecological functions of riparian forests inHokksido in northern Japan[J]. Ecological Engineering,2005,24:539-550.
    [36] Gibberd M R. Gray J D, Cocks P S, et al. Waterlogging tolerance among a diverse renge of Trifoliumaccessions is related to root porosity, lateral root formation and ‘aerotropic rooting’[J]. Annals of Botany,2001,88:579-589.
    [37] Gratanil, Varone L. Leaf key traits of Erica arborea L, Erica multiflora L and Rosmarinus offcinalis Lco-occurring in the Mediterranean maquis[J]. Flora,2004,199:58-69.
    [38] Gravatt DA, Kirby CJ. Patterns of photosynthesis and starch allcocation in seedling of four bottomlandhardwood tree species subjected to flooding[J].Tree Physiology,1998,18:411-417.
    [39] Grinnell, J. The Niche-relationship of the California[J]. Thrasher.Auk,1917,34:27-433.
    [40] Groh B, Hubner C, Lendzian K J. Water and oxygen permeance of phellems isolated from trees: Therole of waxes and lentciels[J]. Planta,2002,215:794-801.
    [41] Hale B W, Adams M S. Ecosystem management and the conservation of river-floodplain systems[J].Landscape Urban Plan,2007,80:23-33.
    [42] Hebelstrup K H, Igamberdiev A U, Hill R D. Metabolic effects of hemoglobin gene expression inplants[J].Gene,2007,398-86-93.
    [43] Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2detoxifying enzymes in green andgreening barley seedlings under cadmium stress[J]. Plant Science,2001,160:1085-1093.
    [44] Heim A, Luster J, Brunner I, et al. Effects of Al treatment or Norway spruce roots:Elementdistribution.Al binding forms and release of organic substance[J]. Plant Soil,1999,216:103-116.
    [45] Hemandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress on chloroplasts of pea plants[J].Plant Science,1995,105,151-167.
    [46] Holmes P M, Esler K J, Richardson D M. Guidelines for improved management of riparian zonesinvaded by alien plants in south Africa[J]. South African Journal of Botany,2008,74:538-552.
    [47] Huang B, Johnson J W, Nesmith D S, et al. Growth, physiological and anatomical responses of twowheat genotypes to waterlogging and nutrient supply[J].Journal of Experimental Botany.1994,45:193-202.
    [48] Huang B, Johnson J W, Nesmith D S. Responses to root-zone CO2enrichment and hypoxia of wheatgenotypes differing in waterlogging tolerance[J]. Crop Science,1997,37:464-468.
    [49] Hutchinson G E. An Introduction to Population Ecology [M]. Yale University Press, New Haven,Connecticut,USA,1978.
    [50] Hutchinson G.E. Concluding remarks [J]. Cold Spring Harbor Symposia on Quantitation Biology,1957,22:415-427.
    [51] Igamberdiev A U, Hill R. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative toclassic fermentation pathways [J]. J. Exp. Bot.2004,55:2473-2482.
    [52] Ingram J, Bartels D. The molecular basis of dehydration to lerance in Plants[J].Annual Review on Plantphysiolo-gy&plant molecular Biology,1996,47:377-403.
    [53] Ismail M R, Noor K M. Growth and physiological processes of young starfruit (Averrhoa carambola L.)pl55ants under soil flooding [J]. Scientia Horticulturae,1996,65:229-238.
    [54] Ito O, Ella E, Kawano N. Physiological basis of submergence tolerance in rainfed lowland riceecosystem [J]. Field Crops Research,1999,64:75-90.
    [55] Jackson M B, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relationto soil flooding and submergence[J].Plant Biology,1999,1:274-287.
    [56] Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress[J]. Annals of Botany.2005,96:501-505.
    [57] Jackson M B, Hall K C. Early stomatal closure in waterlogging pea plants is mediated by abscisic acid inthe absence of foliar water deficits[J].Plant, Cell and Environment,1987,10:121-130.
    [58] Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments, morphology and leaf gas exchange duringex vitro acclimatization of micropoagated CAM Doritaenopsis plantlets under relative humidity and airtemperature[J]. Environ Exp Bot,2006,55:183-194.
    [59] Jiang G M, Dong M. A. Comparative study on photosynthesis and water use efficiency between clonaland Non clonal plant species along the northeast China Transect(NECT)[J]. Acta Botanica SInica,2000,8:855-863.
    [60] Jun-ya Y, Aiko O, Yuko H, et al. Effects of high light and low temperature during winter on needlephotodamage of Abies mariesii growing at the forest limit on Mt[J]. Norikura in Central Japan.Plant Sci,2003,165:257-264.
    [61] Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding.New phytologist,1987,106:465-495.
    [62] Kato-Noguchi H. Abscisic acid and hypoxic induction of anoxia tolerance in roots of lettuce seedlings.Journal of Experimental Botany.2000a,51:1939-1944.
    [63] Kato-Noguchi H. Evaluation of the importance of lactate for the activation of ethanolic fermentation inlettuce roots in anoxia[J]. Physiologia Plantarum,2000b,109:28-33.
    [64] Kause G H, Weis E. ChlorophyⅡfluorescence and Photosynthesis: The basis[J]. Ann Rev Plant MolBiol,1991,42:313-349.
    [65] Keddy P A. Shoreline vegetation in Axe Lake, Ontario: Effects of exposure on zonation patterns[J].Ecology,1983,64(2):331-344.
    [66] Kirk G D, Solivas J L, Alberto M C. Effects of flooding and redox conditions on solute diffusion insoil[J]. European Journal of Soil Science.2003,54:617-624.
    [67] Kludze H K, Pezeshki S R, Delaune R D. Evaluation of root oxygenation and growth in baldcypress inresponse to short-term soil hypoxia[J]. Canadian Journal of Forest Research.1994,24:804-809.
    [68] Kozlowski T. Responses of woody plants to flooding and salinity[J]. Tree physiol. Monograph,1997,1:1-29.
    [69] Kozlowski T T. Plant responses to flooding of soil[J]. BioScience,1984,34:162-167.
    [70] Li B,Yuan X Z, Xiao H Y, et al. Design of the dike-pond system in the littoral zone of a tributary in theThree Gorges Reservoir,China[J]. Ecological engineering,2011,37:1718-1725.
    [71] Li C, Zhong Z, Geng Y, et al. Comparative studies on physiological and biochemical adaptation ofTaxodium distichum and Taxodium ascendens seedlings to different soil water regimes[J]. Plant Soil,2010,329:481-494.
    [72] Liao C T, Lin C H. Effect of flooding stress on photosynthetic activities of Momordica charantia[J].Plant Physiol. Biochem,1994,32:1-5.
    [73] Lu Y, Watanabe A, Kimura M. Contribution of plant photosynthates to dissolved organic carbon in aflooded rice soil[J].Biogeochemistry,2004,71:1-15.
    [74] Ma C C, Gao Y B, Guo H Y, et al. Interspecific transition among caragana microphylla,C. davazamciiand C. korshinskii along geographic gradient Ⅱ.Characteristics of photosynthesis and watermetabolism[J].Acta Botanica Sinica,2003,10:1228-1237.
    [75] Malik A I, Colmer T D, Lamber H, et al. Changes in physiological and morphological traits of roots andshoots of wheat in response to different depths of waterlogging[J].Aust. J. Plant. Physiol.,2001,28:1121-1131.
    [76] Martinez-Carrasco R. Changes in chlorophyll fluorescence during the course of photoperiod and inresponse to drought in Casuarina equisetifolia forestry[J].Photosynthetica,2002,40(3):363-368.
    [77] Mccord J M, Fridovich I. Superoxide dismutase: Anenzymic function for erythrocuprein (Hemocaprein)[J].The Journal of Biological Chemistry,1969,224:6094-6055.
    [78] Mergemann H, Santer M. Ethylene induces epidermal cell death at the site of adventitious rootemergensce in rice[J].Plant Physiol.2000,124:609-614.
    [79] Moog P R, Brueggemann W. Influence of root oxygen deficiency on photosynthesis and saccharidecontents of Carexspecies[J].Photosynthetica,1993,28:523-529.
    [80] Munkvold G P,Yang X B. Crop damage and epidemics associated with1993floods in Iowa[J].PlantDiesease,1995,79:95-101.
    [81] Nicolas E, Torrecillas A, Dell Amico J, et al. The effect of short-term flooding on the sap flow, gasexchange and hydraulic conductivity of young apricot trees[J].Trees-Structure and Function,2005,19:51-57.
    [82] North G B, Martre P, Nobel P S. Aquaporins account for variations in hydraulic conductance formetabolically active root regions of Agave deserti in wet, dry and rewetted soil[J].Plant, Cell andEnvironment,2004,27:219-228.
    [83] Pagnussat G C, Simontacchi M, Puntarulo S, et al. Nitric oxide is required for rootorganogenesis[J].Plant Physiology,2002,129:954-956.
    [84] Parelle J, Brendel O, Bodenes C, et al. Differences in morphological and physiological responses towaterlogging between two sympatric oak species (Quercus petraea [Matt.] Liebl., Quercus robur L.)[J].Ann. Forest Sci.,2006,63:257-266.
    [85] Parent C, Berger A, Folzer H, et al. A novel nonsymbiotic hemoglobin from oak: Cellular and tissuespecificity of gene expression[J].New phytol,2008,177:142-154.
    [86] Peng H P, Chan C S, Shih, M C, et al. Signaling events in the hypoxia incution of alcoholdehydrogenase gene in Arabidopsis[J].Plant Physiology,2001,126:742-749.
    [87] Perazzolli M, Dominici P, Pomero-Puertas M, et al. Arabidopsis nonsymbiotic hemoglobin AHb1modulates nitric oxide bioactivity[J].The Plant Cell,2004,16:2785-2794.
    [88] Postaire O, Verdoucq L, Maurel C. Aquaporins in Plants: From molecular structure to integratedfunctions[J].Advances in Botanical Research,2007,46:75-136.
    [89] Probert M E, Keating B A. What soil constrainst should be included in crop and forest models?Agriculture, Ecosystems and Envirionment,2000,82:273-281.
    [90] Pyankov V I, Gunin P D. C4palnts in the vegetation of Mongolia: their natural occurrence andgeographical distribution in relation to climate[J]. Oecologia,2000,123:15-31.
    [91] Rebecca A K, Rumishammin M, William C S. Preference for riparian buffers[J]. Landscape and Urbanplanning,2009,91:88-96.
    [92] Rezeshki S R, Chambers J L. Stomatal and photosynthetic response of sweet gum to flooding[J].Canadian Journal of Forest Research,1985,15:371-375.
    [93] Rezeshki S R, Delaune R D. Responses of seedlings of selected woody species to soiloxidation-reduction conditions[J]. Environmental and Experimental Botany,1998,40:123-133.
    [94] Rezeshki S R. Responses of baldcypress (Taxodium distichum) seedlings to hypoxia: Leaf proteinconten, ribulose-1,5bisphophate carboxylase/oxygenase activity and photosynthesis[J]. Photosynthetica,1994,30:59-68.
    [95] Rezeshki S R. Responses of three bottomland species with different flood tolerance capabilities tovarious flooding regimes[J]. Wetlands Ecology and Mangement,1996,4:245-256.
    [96] Rezeshki S R. Wetland plant responses to soil flooding[J]. Environmental and Experimental Botany,2001,46:299-312.
    [97] Scandalids J G. Oxygen stress and superoxide dismutasus [J]. Plant physiology,1993,101:7-12.
    [98] Setter T L, Ellis M, Laureles E V, et al. Physiology and genetics of submergence tolerance in rice[J].Annals of Botany,1997,79:67-77.
    [99] Smirnoff N. The role of active oxygen in the response of plants to water-deficit and desiccation[J]. NewPhytologist,1993,125(1):27-58.
    [100] Soukup A, Vortubova O, Cizkova H. Development of anatomical structure of roots of Phragmitesaustralis[J].New Phytologist,2002,153:277-287.
    [101] Subbaiah C C, Sachs M M. Molecular and cellular adaptations of maize to flooding stress[J]. Ann. Bot,2003,91:119-127.
    [102] Tadege M, Brandle R, Kuhlemeier C. Anoxia tolerance in tobacco roots:Effects of overexpression ofpyruvate decarboxylase[J]. Plant Journal,1998,14:327-335.
    [103] Tang Z, Kozlowski T. Some physiological and growth responses of Betula papyrifera seedlings toflooding[J].Physiological Plantarum,1982,55:415-420.
    [104]Terwilleger V J, Zeroni M. Gas exchange of adesert shrub (Zygoohyllum dumosum Boiss.) underdifferent soil moisture regimes during summer drought[J]. Vegetatio,1994,115:133-144.
    [105] Thomson C J, Greenway H. Metabolic evidence for stellar anoxia in maize roots exposed to low O2concentrations[J]. Plant physiology,1991,96:1294-1301.
    [106] Tournaire-Roux C, Sutka M, Javot H. Cytosolic pH regulates root water transport during anoxic stressthrough gating of aquaprins[J]. Nature,2003,425:393-397.
    [107] Vandeleur R, Niemietz C, Tilbrook J, et al. Roles of aquaporins in root responses to irrigation[J].Plantand Soil,2005,274:141-161.
    [108] Vartapetian B B, Andreeva I N, Generozova I P, et al. Fuctional electron microscopy in studies of plantresponse and adaptation to anaerobic stress[J]. Ann. Bot,2003,91:155-172.
    [109] Vartapetian B B, Jackson M B. Plant adaptation to anaerobic stress[J]. Annals of Botany,1997,79:3-20.
    [110] Vasellati V, Oesterheld M, Medan D, et al. Effects of flooding and drought on the anatomy ofPaspalum dilatatum[J]. Annals of Botany,2001,88:355-360.
    [111]Visser E, Colmer T, Blom C, et al. Changes in growth, porosity, and radial oxygen loss fromadventitious roots of selected mono-and dicotyledonous wetland species with contransing types ofarenchyma[J]. Plant, Cell and Environment,2000,23:1237-1245.
    [112] Voesenek L A C J, Clomer T D, Pierik R, et al. How plants cope with complete submergence[J]. NewPhytologist,2006,170:213-226.
    [113] Voesenek L A C J, Rijnders J H G M, Peeters A J M, et al. Plant hormones regulate fast shootelongation underwater from genes to communities[J]. Ecology,2004,85:16-27.
    [114] Voesenek L, Banga M, Thier R, et al. Submergence-induced ethylene synthesis, entrapment, andgrowth in two plant species with contrasing flooding resistances[J]. Plant Physiology,1993,103;783-791.
    [115] Vretare V, Weisner S E B, Strand J A, et al. Phenotypic plasticity in Phragmites australis as afunctional response to water depth [J]. Aquatic Biotany,2001,69:127-145.
    [116] Walmsley A. Greenways: multiplying and diversifying in the21st century[J]. Landscape Urban Plan,2006,76(1/4):252-290.
    [117] Whittaker R H. Communities and Ecosystems[M]. New York:Macmillan,1975.
    [118] Wilcox D, Meeker J. Disturbance effects on aquatic vegetation in regulated and unregulated lakes innorthern Minnesota[J].Canadian Journal of Botany,1991,69(7):1542-1551.
    [119] Xu L X, Han L B, Huang B R. Membrane fatty acid composition and saturation levels associated withleaf dehydration tolerance and post-drought rehydration in Kentucky bluegrass[J]. Crop Science,2011,51(1):273-281.
    [120] Yamamoto F, Sakata T, Terazawa K. Physiological, morphological and anatomical response of Fraxinmandshurica seedlings to flooding[J]. Tree physiol,1995,15:713-719.
    [121] Yang S L, Lan S S, Gong M H. Hydrogen peroxide induced proline and metabolic pathway of itsaccumulation in maize seedlings[J]. Journal of Plant physiology,2009,166(15):1694-1699.
    [122] Yu B J, Liu Y L. Effects of salt stress on the metabolism of active oxygen in seedings of annualhalophyte Glycine soja[J]. Acta Bot Boreali-occident Sin,2003,23(1):18-22.
    [123] Zarate-Valde J L, Zdsoski R J, Lauchli A E. Short-term effects of moisture on soil solution pH and soilEh[J]. Soil Science,2006,171:423-431.
    [124]艾丽皎,吴志能,张银龙.消落带土壤环境研究进展[J].北方园艺.2012(17):199-203.
    [125]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较[J].西南农业大学学报:自然科学版,2005,27(5):684-688.
    [126]白世红,马风云,侯栋,等.黄河三角洲植被演替过程种群生态位变化研究[[J].中国生态农业学报,2010,18(3):581-587.
    [127]曹兵,苏润海,王标,等.水分胁迫下臭椿幼苗几个生理指标的变化[J].林业科技,2003,28(3):l-3.
    [128]曹福亮,蔡金峰,汪贵斌,等.水淹胁迫对乌桕生长及光合作用的影响[J].林业科学,2010,46(10):57-61.
    [129]曹书敏,杨晴,杨俊明.家榆和金叶榆光合、蒸腾及荧光参数对水分胁迫的响应[J].安徽农业科学,2011,39(22):13477-13480.
    [130]陈芳清,郭成圆,王传华,等.水淹对秋华柳幼苗生理生态特征的影响[J].应用生态学报,2008,19(6):1229-1233.
    [131]陈芳清,黄友珍,樊大勇,等.水淹对狗牙根营养繁殖植株的生理生态学效应[J].广西植物,2010,30(4):488-492.
    [132]陈芳清,李永,郄光武,等.水蓼对水淹胁迫的耐受能力和形态学响应[J].武汉植物学研究,2008,26(2):142-145.
    [133]陈芳清,李永,郄光武.水蓼对模拟水淹的生理生态学响应[J].生态环境,2008,17(3):1096-1099.
    [134]陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境,2004.13(3):286-291.
    [135]陈军,戴俊营.干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报,1996,22(6):757-762.
    [136]陈立松,刘星辉.果树对水分胁迫的反应与适应性[J].干旱地区农业研究,1999,17(1):88-94.
    [137]陈少瑜,郎南军,李吉跃,等.干旱胁迫下坡柳等幼苗质膜相对透性和脯氨酸含量的变化[J].广西植物,2006,26(1):80-84.
    [138]陈绍光,李燕南,王沙生.空气和土壤干早对不同杨树种类无性系生长及光合的影响[J].北京林业大学学报,1996,18(3):34-41.
    [139]陈婷,曾波,罗芳丽,等.外源乙稀和a-萘乙酸对三峡库区岸生植物野古草和秋华柳茎通气组织形成的影响[J].植物生态学报,2007,31(5):919-922.
    [140]陈婷.三峡库区消落带存在的问题及其可持续发展研究[J].安徽农业科学,2009,37(19):9091-9092.
    [141]陈颖,谢寅峰,沈惠娟.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报(自然科学版),2002,26(2):958-961.
    [142]崔晓阳.森林树种的氮营养行为及其分异研究[D].东北林业大学博士学位论文,1997,67-74.
    [143]戴方喜,许文年,刘德富,等.对构建三峡库区消落带梯度生态修复模式的思考[J].中国水土保持,2006(1):34-36.
    [144]邓勋飞,张后勇,何勇,等.水稻叶水势与不同水分处理定量关系研究[J].浙江大学学报(农业与生命科学版),2005,31(5):581-586.
    [145]刁承奉,黄京鸿.三峡水库水位消落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-79.
    [146]方精云,沈泽昊,唐志尧,等.中国山地植物物种多样性调查计划及若干技术规范[J].生物多样性,2004,12(1):5-9.
    [147]冯大兰,刘芸,黄建国,等.二峡库区消落带芦苇穗期光合生理特性研究[J].水生生物学报,2009,33(5):866-873.
    [148]冯义龙,先旭东,莫正国.库区消落带植物群落恢复的植物选择——以奉节县竹衣河为例[J].南方农业,2008,2(12):68-70.
    [149]冯义龙,先旭东,王海洋.重庆市区消落带植物群落分布特点及水淹后演替特点预测[J].西南师范大学学报(自然科学版),2007,32(5):112-117.
    [150]冯义龙,先旭东.优良湿地植物——南川柳[J].南方农业,2012,6(9):49.
    [151]冯义龙.适宜重庆主城段消落带绿化植物的选择[J].南方农业,2007,4(8)7-11.
    [152]冯义龙.优良的消落带绿化植物——火炭母.南方农业[J].2009,3(8):7.
    [153]付爱红,陈亚,李卫红,等.干旱、盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749.
    [154]付为国,李萍萍,卞新民,等.镇江内江湿地植物群落演替进程中种群生态位动态[J]生态环境2008,17(1):278-284.
    [155]高悦,朱永铸,杨志民,等.干旱胁迫和复水对冰草相关抗性生理指标的影响[J].草地学报,2012,20(03):336-341.
    [156]郭全邦,刘玉成,李旭光.缙云山森林次生演替序列优势种群的生态位[J].西南师范大学学报(自然科学版).1997,1(22):73-78.
    [157]韩玉林,黄苏珍,孙桂弟.5种鸢尾属观赏地被植物的抗旱性研究[J].江苏农业科学,2007,(2):79-81.
    [158]贺强,崔保山,赵欣胜,等.水、盐梯度下黄河三角洲湿地植物种的生态位[J].应用生态学报,2008,19(5):969-975.
    [159]洪明,郭泉水,聂必红,等.三峡库区消落带狗牙根种群对水陆生境变化的响应[J].应用生态学报,2011,22(11):2829-2835.
    [160]胡乔木,杨舒茜,李韦,等.土壤养分梯度下黄河三角洲湿地植物的生态位[J]北京师范大学学报(自然科学版),2009,245(1)75-79.
    [161]黄利斌,杨静,何开跃,等.纳塔栎和南方红栎2年生苗耐水湿性实验[J].东北林业大学学报,2009,37(5):7-9.
    [162]黄颜梅,张健,罗承德.西藏柏木抗旱生理研究[J].四川林业科技,1998,19(4):31-36.
    [163]黄英姿.生态位理论研究中的数学方法[J].应用生态学报,1994,5(3):331-337.
    [164]霍仕平,宴庆九,宋光英等.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干旱地区农业研究,1995,13(3):67-73.
    [165]吉晶.干旱对苹果树叶水势变化的影响[J].山西农业科学,2007,35(1):48-50.
    [166]贾中民,魏虹,田晓峰,等.长期水淹对枫杨幼苗光合生理和叶绿素荧光特性的影响[J].西南大学学报,2009,31(5):124-129.
    [167]晋刚,蔡庆生,周兴元,宋刚.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率的影响[J].草业科学,2005,22(4):103-107.
    [168]康义.三峡库区消落带土壤理化性质和植被动态变化[B].北京:中国林业科学研究院,硕士学位论文,2010.
    [169]李保国.果树光合作用研究进展[J].河北林学院学报,1990,5(3):254-261.
    [170]李昌晓,钟章成,刘芸.模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响.生态学报[J].2005,25(8):1953-1959.
    [171]李昌晓,钟章成,陶建平.不同水分条件下池杉幼苗根系的苹果酸、莽草酸含量及生物量[J].林业科学[J].2008,44(10):1-7.
    [172]李昌晓,钟章成.不同水分条件对池杉幼苗实生土壤营养元素含量的影响[J].水生生物学报,2005,32(2):154-159.
    [173]李昌晓,钟章成.池杉幼苗对不同土壤水分水平的光合生理响应[J].林业科学研究,2006,19(1):54-60.
    [174]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较[J].林业比较[J].2005,41(6):28-34.
    [175]李昌晓,钟章成.模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应[J].北京林业大学学报,2007,29(3):23-28.
    [176]李昌晓,钟章成.三峡库区消落带土壤水分变化对落羽杉(Taxodium distichum)幼苗根部次生代谢物质含量及根生物量的影响[J].生态学报,2007,27(11):4394-4402.
    [177]李昌晓,钟章成.三峡库区消落带土壤水分变化条件下池杉幼苗光合生理响应的模拟研究[J].水生生物学报,2005,29(6):712-716.
    [178]李昌晓,钟章程.模拟三峡库区消落带土壤水分变化条件下水松幼苗的光合生理响应[J].北京林业大学学报,2007,29(3):23-28.
    [179]李春香,王玮,李德全.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响[J].西北植物学报,2001,21(5):924-930.
    [180]李娥,曾波,叶小齐,等.水淹对三峡库区岸生植物秋华柳存活和恢复生长的影响[J].生态学报,2008,28(5):1923-1930.
    [181]李峰,谢永宏,陈心胜,等.黄河二角洲湿地水生植物组成及生态位[J].生态学报,2009,11(29):6257-6265.
    [182]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003:260-261.
    [183]李继文,王进鑫,张慕黎,等.干旱及复水对刺槐叶水势的影响[J].西北林学院学报,2009,24(3):33-36.
    [184]李其林,黄昀,刘光德,等.三峡库区主要土壤类型重金属含量及特征[J].土壤学报,2004,41(2):301-304.
    [185]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报,1988,14(3):217-222.
    [186]李晓燕,李连国,等.葡萄叶片组织结构与抗旱性关系的研究[J].内蒙古农牧学院学报,1994,15(3):30-32.
    [187]李雪,尚忠海,孔维鹤,等.PEG模拟干旱条件下青竹复叶槭生理指标的变化[J].河南科学,2008,26(4):425-429.
    [188]李燕,孙明高,孔艳菊,等.皂角苗木对干旱胁迫的生理生化反应[J].华南农业大学学报,2006,27(3):66-69.
    [189]连洪燕,权伟,芦建国.水淹胁迫对石楠幼苗根系活力和光合作用影响[J].林业科技开发,2009,23(2):51-54.
    [190]梁士楚.云贵鹅耳枥群落乔木种群生态位初探[J].广西植物.1994.14(3).227-230.
    [191]梁玉,房用,刘月良,等.黄河三角洲湿地群落种群生态位研究[J].山东林业科技,2008,2:10-12.
    [192]廖光瑶.SPAC的水势热力学系统[J].四川林业科技,1991,12(1):47-52.
    [193]林开敏,郭玉硕.生态位理论及其应用研究进展[J].福建林学院学报,2001,21(3):283-287.
    [194]刘广全,赖亚飞,李文华,等.4种针叶树抗旱性研究[J].西北林学院学报,2004,19(1):22-26.
    [195]刘国志,王新建,崔俊昌,等.干旱胁迫对楸树嫁接苗部分生理生化指标的影响[J].安徽农业科学,2008,36(18):7546-7548.
    [196]刘建国,马世骏.扩展的生态位理论.现代生态学透视[M].北京:科学技术出版社,1990,72-89.
    [197]刘金福,洪伟.格氏拷群落生态学研究—格氏拷林土要种群生态位的研究[J].生态学报,1999,19(3):347-352.
    [198]刘蕾,刘丽艳,张峰.山西桑千河流域湿地植被优势种群生态位分析[J]山西大学学报(自然科学版).2006,29(2):215-218.
    [199]刘鹏,杨玉爱.铂、硼对大豆叶片膜脂过氧化及体内保护系统的影响[J].植物学,2000,42(5):461-466.
    [200]刘信安,柳志祥.三峡库区消落带流域的生态重建技术分析[J].重庆师范大学学报(自然科学版),2004,21(2):60-63.
    [201]刘秀珍,张金屯.天龙山植物群落优势种群生态位研究[J].山西大学学报(自然科学版),2004,27(4):418-423.
    [202]刘旭,程瑞梅,郭泉水,等.香附子对不同土壤水分梯度的适应性研究[J].长江流域资源与环境,2008,17(21):60-65.
    [203]刘云峰.三峡水库库岸生态环境治理对策[J].重庆工学院学报,2005,19(11):79-82.
    [204]刘振虎,李魁英.草坪草需水抗旱研究概述[J].中国草地,2001,23(4):66-68.
    [205]刘宗群.三峡水库水文涨落带的景观生态分析及其对策[J].重庆环境科学,1993,15(2):24-28.
    [206]卢琼琼,宋新山,严登华.干旱胁迫对大豆苗期光合生理特性的影响[J].中国农学通报,2012,28(09):42-47.
    [207]罗芳丽,曾波,陈婷,等.三峡库区岸生植物秋华柳对水淹的光合和生长响应[J].植物生态学报,2007,31(5)910-918.
    [208]罗芳丽,曾波,叶小齐,等.水淹对三峡库区两种岸生植物秋华柳(Salix variegate Franch)和野骨草(Arundinella anomala Steud)水下光合的影响[J].生态学报,2008,28(5):1964-1970.
    [209]罗芳丽,王玲,曾波,等.三峡库区岸生植物野古草光合作用对水淹的响应[J].生态学报,2006,260(1):3602-3609.
    [210]马利民,唐燕萍,张明,等.三峡库区消落区几种两栖植物的适生性评价[J].生态学报,2009,29(4):1885-1892.
    [211]马双艳,姜远茂,彭福田,等.干旱胁迫对苹果叶片中甜菜碱和丙二醛及脯氨酸含量的影响[J].落叶果树,2003(5):1-4.
    [212]马跃,王正荣.适宜消落带的八种植物[J].南方农业,2008,2(6)42-46.
    [213]莫镇华,丰震,尹海燕,等.3种槭树幼苗抗旱性研究[J].中国农学通报,2009,25(3):88-92.
    [214]穆建平.三峡库区消落带植被的生态学研究[B].重庆:重庆大学,硕士毕业论文.2012.
    [215]穆军,李占斌,李鹏,等.金沙江干热河谷水电站库区消落带的生态重建技术初探[J].水土保持通报,2008,28(6):172-176.
    [216]年海,黄鹤,严小龙,等.大豆对酸铝土壤的适应性研究大豆耐酸铝毒性材料的鉴定研究[J].大豆科学,1998,18(3):191-197.
    [217]潘瑞炽,王小葺,李娘辉.植物生理学.第五版.北京:高等教育出版社,2004,66-68.
    [218]潘向艳,季孔庶,方彦.水淹胁迫下杂交鹅掌楸无性系叶片内源激素含量的变化[J].南京林业大学学报:自然科学版,2008,32(1):29-32.
    [219]彭秀,李彬,耿养会,等.重庆市香根草引种实验初报[J].四川林业技,2009,30(4):65-67
    [220]秦洪文,刘云峰,王德炉,等.水淹对水芹生长的影响[J].山地农业生物学报,2009,28(3):193-197.
    [221]冉飞,包苏科,石丽娜,等.干旱胁迫和复水对锡金微孔草抗氧化酶系统的影响[J].草业学报,2008,17(5):156-160.
    [222]任雪梅,杨达源,徐永辉,等.三峡库区消落带的植被生态工程[J].水土保持通报,2006,26(1):42-43.
    [223]茹广欣,郝绍菊,茹桃勤,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性关系的研究[J].河南科技学院学报(自然科学版),2006,34(1):33-41.
    [224]阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究[J].林业科学研究,2002,15(l):47-53.
    [225]尚玉吕.现代生态学中的生态位理论.生态学进展[M],1988,5(2):77-84.
    [226]沈艳,兰剑.干旱胁迫下苜蓿抗旱性参数动态研究[J].农业科学研究,2006,27(3):21-23,30.
    [227]石孝洪.三峡水库消落区土壤磷素释放与富营养化[J].土壤肥料,2004,I:40-44.
    [228]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版),2002,21(2):140-145.
    [229]史胜青,孙晓光,王颖,等.水分胁迫对4树种幼苗叶水势和持水力的影响[J].河北农业大学学报,2009,32(6):24-28.
    [230]苏维词,杨华,赵纯勇,等.三峡库区(重庆段)涨落带土地资源的开发利用模式初探[J].自然资源学报,2005,20(3):327-334.
    [231]孙景宽,张文辉,陆兆华,等.沙枣(Elaeagnus angustifolia)和孩儿拳头(Grewia biloba G. Don var.parviflora)幼苗气体交换特征与保护酶对干旱胁迫的响应[J].生态学报,2009,29(3):1330-1340.
    [232]孙荣,袁兴中,刘红,等.三峡水库消落带植物群落组成及物种多样性[J].生态学杂志,2011,30(2):208-214.
    [233]谭淑端,王勇,张全发.三峡水库消落带生态环境问题及综合防治[J].长江流域资源与环境,2008(17):101-105.
    [234]谭淑端,张守君,张克荣,等.长期深淹对三峡库区三种草本植物的恢复及光合特性的影响[J].武汉植物学研究,2009,27(4):391-396.
    [235]谭淑端,朱明勇,张克荣,等.植物对水淹胁迫的响应与适应[J].生态学杂志,2009,28(9):1871-1877.
    [236]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984(1):15-21.
    [237]涂修亮,陈建,吴文华.三峡库区退化生态系统植被恢复与重建研究[J].湖北农业科学,2000,2:29-31.
    [238]汪建华,赵群芬,李旭光.南川金佛山甑子岩灌丛群落优势种群生态位特征[J].四川师范大学学报(自然科学版),2001,5(24):499-503.
    [239]王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠计测公式改进的研究[J].生态学报,1984,4(2):119-126.
    [240]王海锋,曾波,李娅,等.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响.植物生态学报[J].2008,32(5):977-984.
    [241]王建超,朱波,汪涛.三峡库区典型消落带水淹后草本植被的自然恢复特征[J].长江流域资源与环境,2011,20(5):603-610.
    [242]王炯.三峡库区消落地的利用与管理问题研究[J].西南农业大学学报:社会科学版,2003,1(1):35-38.
    [243]王强,刘红,袁兴中,等.三峡水库蓄水后澎溪河消落带植物群落格局及多样性[J].重庆师范大学学报,2009,26(4):48-54.
    [244]王强,袁兴中,刘红,等.三峡水库初期蓄水对消落带植被及物种多样性的影响[J].自然资源学报,2011,26(10):1680-1693.
    [245]王强,袁兴中,刘红,等.水淹对三峡水库消落带苍耳种子萌发的影响[J].湿地科学,2011,9(4):328-333.
    [246]王焘,郑国生,邹奇.干旱与正常供水条件下小麦光合午休及其机理的研究[J].华北农学报,1997,12(4):48-51.
    [247]王晓荣,周禾.高羊茅不同品种生长初期抗旱性的比较研究[J].四川草原,2001(4):25-29.
    [248]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:228-269.
    [249]王勇,李鹏,穆军,等.金沙江干热河谷水电站库区消落带生态修复对策研究[J].水土保持研究,2009,16(5):141-148.
    [250]王勇,刘义飞,刘松柏,等.三峡库区消涨带植被重建[J].植物学通报,2005,22(5):513-522.
    [251]王振夏,魏虹,李昌晓,等.土壤水分交替变化对湿地松幼苗光合特性的影响[J].西北植物学报,2012,32(5):980-987.
    [252]王正文,邢福,祝廷成,等.松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J].植物生态学学报,2002,26(6):708-716.
    [253]魏文超,何友均,邹大林.澜沧江上游森林珍稀草本植物生态位研究[J].北京林业大学学报,2004,26(3):7-12.
    [254]吴东丽,上官铁梁,张金屯,等.滤沱河流域湿地植被优势种群生态位研究[J].应用与环境生物学报,2006,12(6):772.
    [255]吴江涛,许文年,陈芳清,等.库区消落带植被生境构筑技术初探[J].中国水土保持,2007,27(1):27-30.
    [256]先旭东,冯义龙.重庆主城消落带石门段植物群落结构分析及演替预测[J].西南大学学报(自然科学版),2010,32(2):73-78.
    [257]谢德体,范小华,魏朝富.三峡水库消落带对库区水土环境的影响研究[J].西南大学学报:自然科学版,2007,29(1):39-47.
    [258]谢强,黄家林.元宝山冷杉群落主要木本种群的生态位分析[J].广西师范大学学报(自然科学版),1998.2(16):79-85.
    [259]徐德聪,吕芳德,潘晓杰.叶绿素荧光分析技术在果树研究中的应用[J].经济林研究,2003,21(3):88-91.
    [260]徐惠风,刘兴土,金研铭,等.向日葵叶片叶绿素和比叶重及其产量研究[J].农业系统工程与综合研究,2003,19(2):97-100.
    [261]徐亮.基于GIS的消落带土地利用变化及管理对策研究——以重庆市开县为例[D].重庆:重庆大学,2007:4-6.
    [262]徐世昌,戴俊英,沈秀英,等.水分胁迫对玉米光合性能及产量的影响[J].作物学报,1995,21(3):356-363.
    [263]徐治国,何岩,闫百兴.三江平原典型沼泽湿地植物种群的生态位[J].应用生态学报,2007,18(4):783-787.
    [264]颜廷芬,丛沛桐,祖元刚.环境因子对植物生态位宽度影响程度分析[J].东北林业大学学报.1999.1(27):35-38.
    [265]杨凤云.土壤水分胁迫对梨树生理特性的影响[J].安徽农业,2004(6):11-12.
    [266]杨敏生,费保华,朱之悌.白杨双杂交种无性系抗旱性鉴定指标分析[J].林业科学.2002,38(6):36-42.
    [267]杨敏生,黄选瑞,李彦慧.水分胁迫对白杨杂种无性系生理和生长的影响[J].林业科学,1998,13(2):99-102.
    [268]杨涛,宫辉力,胡金明,等.长期水分胁迫对典型湿地植物群落多样性特征的影响[J].草业学报.2010,19(6):9-17.
    [269]杨鑫光,傅华,张洪荣,等.水分胁迫对霸王苗期叶水势和生物量的影响[J].草业学报,2006,15(2):37-41.
    [270]叶功富,陈如凯,张水松,等.水分胁迫对木麻黄细胞膜稳定性和细胞保护酶影响的研究[J].福建林业科技,1999,26(增刊):6-8.
    [271]衣英华,樊大勇,谢宗强,等.模拟水淹对池杉和栓皮栎光合生理生态过程的影响[J].生态学报,2008,28(12):6025-6033.
    [272]衣英华,樊大勇,谢宗强,等.模拟水淹对枫杨和栓皮栋气体交换、叶绿素荧光和水势的影响[J].植物生态学报,2006,30(6):960-968.
    [273]余树全,李翠环.千岛湖水源涵养林优势树种生态位研究[J].北京林业大学学报,2003,25(2):18-23.
    [274]袁辉,王里奥,詹艳慧.三峡库区消落带健康评价指标体系[J].长江流域资源与环境,2006,15(2):249-253.
    [275]袁兴中,熊森,李波,等.三峡书库消落带湿地生态友好型利用探讨[J].重庆师范大学学报:自然科学版,2011,28(4):23-26.
    [276]岳勇丽,干旱胁迫下不同品种杨梅苗期生长和生理生化特性[D]:浙江:浙江农林大学,2012.
    [277]张甘霖,龚子同.水淹条件下土壤中元素迁移的地球化学特征[J].土壤学报,1993,30(4):355-365.
    [278]张光明,唐建维.西双版纳野芭蕉先锋群落优势种群的生态位动态[J].植物资源与环境学报,2000,9(1):22-26.
    [279]张光明,谢寿昌.生态位概念演变与展望[J].生态学杂志,1997,16(6):46-51.
    [280]张虹,朱平.基于RS与GIS的三峡重庆库区消落区分类系统研究——以重庆开县为例[J].国土资源遥感,2005,16(3):66-69.
    [281]张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(1):56-73.
    [282]张建春.河岸带功能及其管理[J].水土保持学报,2001,15(6):143-146.
    [283]张建军,任荣荣,朱金兆,等.长江三峡水库消落带桑树耐水淹实验[J].林业科学,2012,48(5):154-158.
    [284]张金洋,王定勇,石孝洪.三峡水库消落区水淹后土壤性质变化的模拟研究[J].水土保持学报,2004,18(6):120-123.
    [285]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学,2003,39(4):162-166.
    [286]张文辉,段宝利,周建云,等.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应[J].植物生态学报,2004,28(4):483-490.
    [287]张宪政,苏正淑.作物水分亏缺伤害生理研究概况[J].沈阳农业大学学报,1996,27(3):85-91.
    [288]张小萍,曾波,陈婷,等.三峡库区河岸植物野古草茎通气组织发生对水淹的响应[J].生态学报,2008,28(4):1864-1871.
    [289]张晓平,方炎明,陈永江.淹涝胁迫对鹅掌楸属植物叶片部分生理指标的影响.植物资源与环境学报,2006,15(1):41-44.
    [290]张晓平,王沁峰,方炎明,等.水淹胁迫对浙江种源鹅掌楸光合特征的影响[J].南京林业大学学报(自然科学版),2007,31(3):136-138.
    [291]赵纯勇,杨华,苏维词.三峡重庆库区消落区生态环境基本特征与开发利用对策探讨[J].中国发展,2004,(4):19-23.
    [292]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    [293]赵泽茹.钾增强烟草耐旱性的生理机制研究[D].陕西:西北农林科技大学,2009.
    [294]郑海金,杨洁,谢颂华.我国水库消落带研究概况究[J].中国水土保持,2010,(6):26-29.
    [295]钟章成.常绿阔叶林生态学研究.重庆:西南师范大学出版社,1998,53-89.
    [296]周珺,魏虹,吕茜,等.土壤水分对湿地松幼苗光合特征的影响[J].生态学杂志,2012,31(1):30-37.
    [297]朱春全.生态位态势理论与扩充假说[J].生态学报,1997,17(3):324-332.
    [298]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [299]邹奇.植物生理学实验指导[M].北京:中国农业出版社,2000:54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700