用户名: 密码: 验证码:
黄土丘陵区根际微生物对退耕地植被恢复的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根际是指根系周围、受根系生长影响的土体,由于其环境的特殊性,根际土壤的研究已经成为植物营养学、生态学及土壤学等学科的热点,鉴于我国在黄土高原植被恢复方面对根际环境尚未全面系统地开展研究工作,本研究选取黄土丘陵区坡耕地退耕后的不同植被恢复类型和撂荒演替初级阶段的主要植被群落为研究对象,采用磷脂脂肪酸图谱技术(PLFA)和碳素利用技术(BIOLOG)系统研究了根际微生物对植被恢复的响应过程,重点分析了不同植被类型对根际微生物量、酶活性、微生物群落结构和代谢功能特征的影响以及撂荒演替过程中根际微生物群落结构的演变特征,以期为深入认识该区植被恢复中土壤微生物的作用机理提供科学依据。主要结果如下:
     1.不同植被恢复类型根际微生物特征
     黄土丘陵区退耕地六种植被恢复类型中(年限均为8年),相对于人工灌木(柠条、沙棘)和人工草地(沙打旺、柳枝稷),自然形成的天然草地(阿尔泰狗娃花、茵陈蒿)具有较高的根际有机碳、全氮、微生物量碳、微生物量氮、酶活性、微生物群落结构多样性以及碳源代谢功能多样性。
     微生物指标中,代谢熵、脲酶、基础呼吸、水溶性碳及纤维素酶可作为评价黄土丘陵区根际土壤生物质量的关键指标。结合标准化模型,建立了根际土壤生物质量指标体系及评价方法,提出了根际微生物指数,结果表明,天然草地对根际土壤生物质量的改善效果最佳,其次是人工草地,最后是人工灌木。
     不同植被类型中,天然草地的根际效应(根际>非根际)较为广泛,主要体现在有机碳、全氮、微生物量碳、微生物量氮、基础呼吸、过氧化物酶、革兰氏阴性菌、细菌、真菌以及微生物总量。
     2.撂荒演替过程中根际微生物的演变特征
     黄土丘陵区退耕地撂荒演替过程中,有机碳、全氮、微生物量碳、微生物量氮、基础呼吸和酶活性具有较强的根际效应。
     群落优势种根际微生物指标并非都高于伴生种,其优势主要体现在有机碳、全氮、微生物量碳、微生物量氮以及糖类碳源利用效率,而在微生物群落结构、酶活性以及羧酸类碳源利用效率上并未表现出优势。
     演替前期的植物茵陈蒿群落根际微生物性质波动较为强烈,而中后期铁杆蒿变化规律性较强,总体随退耕年限呈增加趋势。
     3.人工模拟撂荒演替根际微生物群落结构特征
     黄土丘陵区撂荒演替中不同阶段的优势种植物茵陈蒿、铁杆蒿和长芒草革兰氏阴性菌、细菌含量和微生物总量根际效应显著,表现为距离根系越近,微生物含量越高。
     在相同条件下,演替中后期植物铁杆蒿和长芒草的细菌和微生物总量的根际效应大于前期植物茵陈蒿,而革兰氏阳性菌和真菌根际效应低于茵陈蒿。
     在植被竞争中,前期植物茵陈蒿和中后期植物铁杆蒿、长芒草的根际微生物群落对竞争的反应不同,表现为三者相互竞争时,茵陈蒿的根际微生物种类未发生变化,铁杆蒿和长芒草则显著降低;茵陈蒿的根际微生物含量显著高于铁杆蒿和长芒草。
     4.撂荒演替中不同群落优势种植物之间化感作用
     种子萌发试验表明,不同演替阶段的群落优势种茵陈蒿、铁杆蒿和长芒草相互之间其高浓度浸提液不仅对对方的种子萌发具有抑制作用,而且对自身种子萌发也具有一定自毒作用。黄土丘陵区退耕地撂荒演替过程中植物之间存在化感作用,这种群落间的化感作用可能是推动植被演替的原因之一。
Rhizosphere is commonly defned as the soils where the root activity signifcantlyaffects the biological properties of soil. Due to the special environment, the rhizospheremicro-zone has become one of hot topic for the plant nutrition, plant physiology, ecologyand soil science. Because the lack of the available and comprehensive work on therhizosphere soils in the hilly loess region, the present study chose the different revegetationtypes and the vegetation community in the natural succession on the abandoned croplandto analyze the response of rhizosphere soil microorganism to the revegetation usingphospholipid fatty acids and BIOLOG carbon utilization technology. The study mainlyinvestigated the effect of revegetation types on rhizosphere soil microbial biomass,enzymes activities, microbial community structure diversity and metabolic functionaldiversity as well as the dynamic of microbial community structure diversity during theabandoned cropland for natural succession. The results could provide scientific basis forthe understanding of microbial function during the vegetation restoration. The main resultsare as follows:
     1. The characteristic of rhizosphere microbial properties under differentrevegetation types
     Six vegetation types with8-year-old were evaluated: two artificial (i.e. planted byhumans) shrublands (Caragana korshinskii and Hippophae rhamnoides) species, twoartifcial grasslands (Astragalus adsurgens and Panicum virgatum) and two species fromcroplands that were abandoned for natural recovery (Artemisia capillaries andHeteropappus altaicus). The results showed the higher value of organic C, total N,available Mn, available Cu, available Zn, microbial biomass C, microbial biomass N,enzymes activities, microbial community structure diversity and carbon resource metabolicfunctional diversity was record for the natural grassland compared to the artificial shrublands and artificial grassland.
     Among the microbial properties, metabolic quotient (BR/MBC), BR, urease,water-soluble C and cellulase were found to be most important for assessing rhizospheresoil biological quality. Results of rhizosphere soil microbial index indicated that naturalgrasslands are most effective for the improvement of rhizosphere soil biological quality inthe hilly loess region, followed by the artificial grassland and artificial shrubland.
     A significant difference was found on the rhizosphere effect under the differentvegetation types. Natural grassland species have the significant rhizosphere effect than theartificial shrubland and artificial grassland.
     2. The dynamic of rhizosphere microbial properties during the abandonedcropland for natural succession.
     During the natural succession, the significant rhizosphere effect was only found inorganic C, total N, microbial biomass C, microbial biomass N, basal respiration, enzymesactivities and microbial community structure.
     Not all the microbial properties in the rhizosphere soil of dominant species werehigher than those of companion species. The higher value in the rhziosphere of dominantspecies was found in organic C, total N, microbial biomass C, microbial biomass N as wellas the metabolic on carbohydrate resources than that of companion species, while in theenzymes activities and the metabolic on carboxylic acids, the dominant species did notshowed the higher value.
     The successional stage of the ecosystem can significantly affect the microbialproperties in the plant rhizosphere. In the current study, the pioneer species, A. capillaries,exhibited significant fluctuations in the microbial properties, whereas the middle-latespecies, A. sacrorum, presented an increasing trend.
     3. The characteristics of rhizosphere microbial community structure in thenatural succession simulation
     Three community dominant species of the succession, A. capillaries, A. sacrorum andS. bungeana showed the significant microbial rhizosphere effect in G-negative bacterial,bacterial and total microbial biomass, their contents decreased with the increase of distancefrom root surface.
     At the same soil conditions, the middle-late successional species, A. sacrorum and S. bungeana had a higher rhizosphere effect of bacterial and total microbial biomass whilehad the lower G-positive bacterial and fungi rhizosphere effect than that of the pionnerspecies, A. capillaries,
     In the successional vegetation competition, the microbial community structurerhizosphere soil of A. capillaries and A. sacrorum and S. bungeana responded differentlyto the competition. In the competition between A. capillaries and A. sacrorum, as well asbetween A. capillaries and S. bungeana, the number of microbial PLFA of A. capillariesdid not change, while that of A. capillaries and S. bungeana decreased significantly.Furthmore, the microbial contents in the rhizopshere soil of A. capillaries was greatlyhigher than that of A. capillaries and S. bungeana.
     4. Allelopathic effect of dominant plants of vegetation commnutiy during theabandoned cropland for natural succession
     In the seed germination experiment, an inhibition was found on the seed germinationof A. capillaries, A. sacrorum and S. bungeana with each other in their high concentrationof aqueous extracts. Furthermore, a self-allelopathic effect was observed for the seedgermination of A. capillaries. In conclusion, there is a significant alleopathic effectbetween vegetation communities during the abandoned cropland for natural succession,this effect maybe the one of the reseaons for promoting the vegetation succession in theloess hilly region.
引文
[1]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001,598-599.
    [2]温继文,李道亮,白金.植被恢复与重建理论体系的构建[J].中国水土保持,2007(3):22-24.
    [3]彭少麟,赵平.跨越边界的生态恢复-第十三届国际恢复生态学大会综述[J].生态学报,2001,21(12):2173-2174.
    [4]杨才敏.晋西黄土丘陵区水土流失综合治理开发研究[M].北京:中国科学技术出版社,1995.
    [5]邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1): l-8.
    [6]任洪玉,温仲明,杨勤科.黄土沟壑区植被恢复及其物种多样性的变化—以吴旗县植被恢复为例[J].干旱区农业研究,2003,21(2):154-158.
    [7]朱志诚,郭爱莲,岳明.陕北黄土高原臭柏群落演替和逆行演替[J].西北大学学报(自然科学版),1996,26(4):325-330.
    [8]焦菊英,马祥华,白文娟,等.黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析[J].土壤学报,2005,42(5):744-752.
    [9]杜锋,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J].生态学报,2007,27(5):1673-1683.
    [10]胡相明,赵艳云,程积民,等.云雾山天然草地物种分布与环境因子的关系[J].生态学报,2008,28(7):3102-3107.
    [11]王云强.黄土高原地区土壤干层的空间分布与影响因素[D].北京:中国科学院研究生院.2010.
    [12]张超,刘国彬,薛萐,等.黄土丘陵区不同植被类型根际土壤微团聚体及颗粒分形特征[J].中国农业科学,2011,44(3):507-515.
    [13]周萍,刘国彬,侯喜禄.黄土丘陵区不同恢复年限草地土壤微团粒分形特征[J].草地学报,2008,16(4):396-402.
    [14]马祥华,焦菊英,白文娟.黄土丘陵沟壑区退耕植被恢复地土壤水稳性团聚体的变化特征[J].干旱地区农业研究,2005,23(3):69-74.
    [15]戴全厚,刘国彬,薛萐,等.侵蚀环境退耕撂荒地水稳性团聚体演变特征及土壤养分效应[J].水土保持学报,2007,21(2):61-64.
    [16]安韶山,黄懿梅,李壁成,等.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系[J].土壤通报,2006,37(1):23-28.
    [17]余凯,赵传燕,荐圣淇,等.黄土丘陵区典型植物种群下土壤大孔隙特征及其影响因素研究[J].干旱区资源与环境.2013,27(6):67-74.
    [18]吕海波.黄土高原退耕柠条林对土壤理化性质的影响研究[J].生态环境学报,2013,22(1):47-49
    [19]王凯博,时伟宇,上官周平.黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J].农业工程学报,2012,28(15):80-86.
    [20]马玉红,郭胜利,杨雨林,等.植被类型对黄土丘陵区流域土壤有机碳氮的影响[J].自然资源学报,2007,22(1):97-105.
    [21]陈涛,常庆瑞,刘京,等.黄土高原南麓县域耕地土壤速效养分时空变异[J].生态学报,2013,33(2):554-564.
    [22] Zhang C, Liu GB, Xue S. et al. Soil organic carbon and nitrogen storage as affected bythe land use in a small watershed on the Loess Plateau[J], China. European Journal ofSoil Biology,2013,54:16-24.
    [23]马昕昕,许明祥,杨凯.黄土丘陵区刺槐林深层土壤有机碳矿化特征初探[J].环境科学,2012,33(11):3893-3900.
    [24]薛萐,刘国彬,戴全厚,等.侵蚀环境生态恢复过程中人工刺槐林土壤微生物量演变特征[J].生态学报,2007,27(3):909-917.
    [25]薛萐,刘国彬,戴全厚,等.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J].应用生态学报,2008,19(3):517-523.
    [26]刘栋,黄懿梅,安韶山.黄土丘陵区人工刺槐林恢复过程中土壤氮素与微生物活性的变化[J].中国生态农业学报,2012,20(3):322-329.
    [27]张燕燕,曲来叶,陈利顶,等.黄土丘陵沟壑区不同植被类型土壤微生物特性[J].应用生态学报,2010,21(1):165-173.
    [28]从怀军,成毅,安韶山.黄土丘陵区不同植被恢复措施对土壤养分和微生物量C、N、P的影响[J].水土保持学报,2010,24(4):217-221.
    [29] Zhang HH, Tang M, Chen H. Communities of arbuscular mycorrhizal fungi and bacteriain the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggouwatershed[J]. Plant and Soil,2010,326:415-424.
    [30]许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究[J].应用生态学报,2005,16(10):1843-1848.
    [31]张莉丽.盐渍地不同株龄苜蓿根际氮素营养及离子变化特征(硕士学位论文).兰州:兰州大学.2008.
    [32]杨玉盛,何宗明,邹双全,等.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报,1998,18(2):20-23.
    [33] Lynch JM, Whipps JM. Substrate flow in rhizosphere[J]. Plant soil,1990,129(1):1-10.
    [34] Roviar AD. Biology of the soil root interface[M]. In the soil root interface, ed. byHkaleynars JL. Rassell. London: Academia Press.1979.
    [35] Tate LR. Soil microbiology[M]. John Wiley&Sons, Inc. New York.2000.
    [36]许光辉,李振高.微生物生态学[M].南京:东南大学出版社,1991.
    [37]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    [38]吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J],土壤,2003,(1):18-20.
    [39] Van veen JA, Ladd LN, Amato M. Turnover of carbon and nitrogen through themicrobial biomass in a sandy loam and a clay soil incubated with [14C] glucose [15N](NH4)2SO4under different moisture regimes[J]. Soil Biology&Biochemistry,1985,17(6):747-757.
    [40] Ross DJ, Sparling GP, Burkd CM. Microbial biomass C and N in litter and mineral soilunder Pinus radiate on a coastal stand: Influence of stand age and harvestmeasurement[J]. Plant and Soil,1995,175(2):167-177.
    [41] Bonde TA, Schnurer J, Rasswall T. Microbial biomass as a fraction of potentiallymineralizable nitrogen in soil from long-term field experiments[J]. Soil Biology&Biochemistry,1988,20(4):447-452.
    [42] Myrold DD. Relationship between microbial biomass nitrogen and a nitrogen availabilityindex[J]. Soil Science Society of America Journal, l987,51(4):1047-1049.
    [43]姚槐应,何振立,黄昌勇.红壤微生物量氮的周转期及其研究意义[J].土壤学报,1999,36(3):387-394.
    [44]张玉玲,张玉龙,虞娜,等.长期不同施肥措施水稻土可矿化氮与微生物量氮关系的研究[J].水土保持学报,2007,21(4):117-112.
    [45]高云超,朱文珊,陈文新.土壤微生物生物量周转的估算[J].生态学杂志,1993,12(6):6-10.
    [46]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111.
    [47] Wang Y, Hasbullah, Setia R, et al. Potential soil P mobilisation capacity–methoddevelopment and comparison of rhizosphere soil from different crops[J]. Plant and Soil,2012,354(1-2):259-267
    [48]叶协锋,张友杰,鲁喜梅,等.土壤微生物与土壤营养关系研究进展[J].土壤通报,2009,40(6):237-241.
    [49]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [50] Kucey RMN, Janzen HH. Microbially mediated increases in plant-availablephosphorus[J]. Advances in Agronomy.1989,42:199-288.
    [51]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005,42(2):286-294.
    [52] Tanner CC. Plants for constructed wetland treatment systems-a comparison of the growthand nutrient uptake of eight emergent species[J]. Ecological Engineering,1996,7(1):59-83.
    [53] Rani R, Juwarkar A. Biodegradation of phorate in soil and rhizosphere of Brassicajuncea(L.)(Indian Mustard) by a microbial consortium. International Biodeterioration&Biodegradation,2012,71:36-42.
    [54] Rentz AJ, Alvarez PJ, Sehndoor JL, et al. Benoz pyrene co-mebatolism in the presence ofplant root extracts and exudates: Implications for phytoremediation[J]. EnvironmentalPollution,2005,136(3):477-484.
    [55] Binet P, Portal M, Leyval C. Application of GC-MS to the study of anthracenedisappearance in the rhizosphere of rygrass[J]. Organic Geochemistry,2001,32(2):217-222.
    [56] Walton BT, Anderson. Engineering bacteria for bioremediation[J]. Current Opinion inBiotechnology,2000,11(3):262-270.
    [57] Wu SC, Luo YM, Cheung KC, et al. Influence of bacteria on Pb and Zn speciation,mobility and bioavailability in soil: a laboratory study [J]. Environmental Pollution,2006,144(3):765-773.
    [58] Wu QT, Deng JC, Long XX, et al. Selection of appropriate organic additives forenhancing Zn and Cd phytoextraction by hyperaccumulators[J]. Journal ofEnvironmental Sciences,2006,18(6):1113-1118.
    [59] Zhang WH, Huang Z, He LY, et al. Assessment of bacterial communities andcharacterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerantChenopodium ambrosioides grown on lead–zinc mine tailings. Chemosphere,2012,87(10):1171-1178
    [60] Citterio S, Prato N, Fumaggalli P, et al. The arbuscular mycorrhizal fungus Glomusmosseae induces growth and metal accumulation changes in Cannabis sativa L.[J].Chemosphere,2005,59(1):21-29.
    [61] Tiwari S, Kumari B, Singh NS. Microbe-induced changes in metal extractability from flyash[J]. Chemosphere,2008,71(7):1284-1294.
    [62] Zhang FS, Shen JB, Li L, Liu XJ. An overview of rhizosphere processes related withplant nutrition in major cropping systems in China[J]. Plant and Soil,2004,260(1-2):89-99.
    [63] Rosenvald K, Kuznetsova T, Ostonen I, et al. Rhizosphere effect and fne-rootmorphological adaptations in a chronosequence of silver birch stands on reclaimed oilshale post-mining areas[J]. Ecological Engineering,2011,37(7):1027-1034.
    [64] Zhang C, Liu GB, Xue S. et al. Rhizosphere soil microbial activity under differentvegetation types on the Loess Plateau, China[J]. Geoderma,2011,161(3-4):115-125.
    [65] Esperschütz J, Buegger F, Winkler JB. et al. Microbial response to exudates in therhizosphere of young beech trees (Fagus sylvatica L.) after dormancy[J]. Soil Biology&Biochemistry,2009,41(9):1976-1985.
    [66]李国辉,陈庆芳,黄懿酶,等.黄土高原典型植物根际对土壤微生物生物量碳、氮、磷和基础呼吸的影响[J].生态学报,2010,30(4):0976-0983.
    [67] Shillam L, Hopkins DW, Badalucco L, et al. Structural diversity and enzyme activity ofvolcanic soils at different stages of development and response to experimentaldisturbance[J]. Soil Biology&Biochemistry,2008,40(9):2182-2185.
    [68] Marschner P, Marhan S, Kandeler E. Microscale distribution and function of soilmicroorganisms in the interface between rhizosphere and detritusphere[J]. Soil Biology&Biochemistry,2012,49:174-183.
    [69] Singh B, Munro S, Potts JM, et al. Influence of grass species and soil type on rhizospheremicrobial community structure in grassland soils[J]. Applied Soil Ecology,2007,36(2-3):147-155.
    [70]张海涵,唐明,陈辉.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义[J].环境科学,2009,30(8):2432-2437.
    [71] Hartmann A, Schmid M, Wenzel W, Hinsinger Ph. Rhizosphere2004─Perspectivesand Challenges-A Tribute to Lorenz Hiltner[C]. Munich, Germany: GSF-NationalResearch Center for Environment and Health,2005.
    [72] Zancarini A, Mougel C, Voisin AS, et al. Soil nitrogen availability and plant genotypemodify the nutrition strategies of M. truncatula and the associated rhizosphere microbialcommunities[J]. PLoS One,2012,7(10): e47096. doi:10.1371/journal. pone.0047096.
    [73] Xu LH, Ravnskov S, Larsen J, et al. Linking fungal communities in roots, rhizosphere,and soil to the health status of Pisum sativum[J]. FEMS Microbiology Ecologu,2012,82(3):736-745.
    [74] Zhu B, Cheng WX. Nodulated soybean enhances rhizosphere priming effects on soilorganic matter decomposition more than non-nodulated soybean[J]. Soil Biology andBiochemistry,2012,51:56-65.
    [75]谷岩,邱强,王振民,等.连作大豆根际微生物群落结构及土壤酶活性[J].中国农业科学,2012,45(19):3955-3964.
    [76]邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005,25(2):27-30.
    [77] Wang Y, Zhang FS, Marschner P. Soil pH is the main factor influencing growth andrhizosphere properties of wheat following different pre-crops[J]. Plant and Soil,2012,360(1-2):271-286.
    [78] Ai C, Liang GQ, Sun JW, et al. Responses of extracellular enzyme activities andmicrobial community in both the rhizosphere and bulk soil to long-term fertilizationpractices in a fluvo-aquic soil[J]. Geoderma,2012,173-174:330-338.
    [79] Qiu MH, Zhang RF, Xue C, et al. Application of bio-organic fertilizer can controlFusarium wilt of cucumber plants by regulating microbial community of rhizospheresoil[J]. Biology and Fertility of Soils,2012,48(7):807-816.
    [80] Zhou XG, Yu GB, Wu FZ. Responses of soil microbial communities in the rhizosphereof cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid[J].Journal of Chemical Ecology,2012,38(8):975-983.
    [81] Zhang XL, Ma L, Gilliamc FS, et al, Effects of raised-bed planting for enhanced summermaize yield on rhizosphere soil microbial functional groups and enzyme activity inHenan Province, China[J]. Field Crops Research,2012,130(29):28-37.
    [82] Zhang C, Liu GB, Xue S. et al. Rhizosphere soil microbial properties on abandoned[J]. EuropeanJournal of Soil Biology,2012,50:127-136.
    [83] Kowalchuk GA, Buma DS, de Boer W, et al. Effects of above-ground plant speciescomposition and diversity on the diversity of soil-borne microorganisms[J]. Antonie vanLeeuwenhoek,2002,81(1-4):509-520.
    [84]林先贵.土壤微生物研究原理与方法[M].高等教育出版社,北京,2008.
    [85] Richard JE, BarryN, Marcus W, et al. The influence of metarn sodium on soilrespiration[J]. Journal of Environmental Science and Health, Part B,2000,35(4):455-465.
    [86] Kennydy AC, Smith KL. Soil microbial diversity and the sustainability of agriculturalsoils[J]. Plant and Soil,1995,170(1):75-86.
    [87]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:5-6.
    [88] Johnsen K, Nielsen P. Diversity of pseudomonas strains isolated with King’s B andGould’ S1agar determined by repetitive estrogenic palindrome Polymerase chainreaction,16S rDNA sequencing and Fourier transform infrared spectroscopycharacterization[J]. FEMS Microbiology Letters,1999,173(1):155-162.
    [89] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation[J]. Microbiology and Molecular BiologyReviews,1995,59(1):143-169.
    [90]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    [91]祁建军.地黄种质遗传关系及根际土壤微生物多样性研究[D].中国协和医科大学,2004.
    [92]杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20:23-25.
    [93] Chabrerie O, Laval K, Puget P, et al. Relationship between plant and soil microbialcommunities along a suecessional gradient in a chalk grassland in north-westernFrance[J]. Applied Soil Ecology,2003,24(1):43-56.
    [94]罗希茜,郝晓晖,陈涛,等.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2):740-748.
    [95] Rusznyák A,Vladár P, Molnár P, et al. Cultivable bacterial composition and BIOLOGcatabolic diversity of biofilm communities developed on Phragmites australis[J]. AquaticBotany,2008,88(3):211-218.
    [96] Haack SK, Garchow H, Klug MJ, et al. Analysis of factors affecting the accuracy,reproducibility, and interpretation of microbial community carbon source utilizationpatterns[J]. Applied and Environmental Microbiology,1995,61(4):1458-1468
    [97] McCaig AE, Grayston SJ, Prosser JI, et al. Impact of cultivation on characterization ofspecies composition of soil bacterial communities[J]. FEMS Microbiology Ecology,2001,35(1):37-48
    [98] Wells GB, Dickson RC, Lester LR. Isolation and composition ofinositolphosphorylceramide type sphingolipids of hyphal forms of Candida albicans[J].Journal of Bacteriology,1996,178(21):6223-6226.
    [99] Donegan KK, Palm CJ, Fieland VJ, et al. Changes in levels, species and DNA profiles ofsoil microorganisms associated with cotton expressing the Bacillust huringiensis var.kurstaki endotoxin[J]. Applied Soil Ecology,1995,2(2):111-124.
    [100] Vahjen W, Munch JC, Tebbe CC. Carbon source utilization of soil extractedmicroorganisms as a tool to detect the effect of soil supplemented with geneticallyengineered and non-engineered Corynebacterium glutamicum and a recombinantpeptide at the community level[J]. FEMS Microbiology Ecology,1995,18(4):317-328.
    [101] Heuer H, Smalla K. Evaluation of community level catabolic profiling using Biolog GNmicroplates to study microbial community changes in potato philosopher[J]. Journal ofMicrobiological Methods,1997,30(1):49-61.
    [102] Insam H. Development in soil microbiology since the mid1960s[J]. Geoderma,2001,100(3-4):389-402.
    [103] Pfender WF, Fieland VP, Ganio LM, et al. Microbial community structure and activityin wheat straw after inoculation with biological control organism[J]. Applied SoilEcology,1996,3(1):69-78.
    [104]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5):899-904.
    [105] Ponder F J, Tadros M. Phospholipid fatty acids in forest soil four years after organicmatter removal and soil compaction[J]. Applied Soil Ecology,2002,19(2):173-182.
    [106]颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851-859.
    [107] Wu YP, Yu XS, Wang HZ, et al. Does history matter? Temperature effects on soilmicrobial biomass and community structure based on the phospholipids fatty acid(PLFA) analysis[J]. Journal of Soils and Sediments,2010,10(2):223~230.
    [108] Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, et al. Rhizsophere bacterialcommunity composition in natural stands of Carex arenaria (sand sedge) is determinedby bulk soil community composition[J]. Soil Biology&Biochemistry,2005,37(2):349-357
    [109] Montealegre CM, van Kessel C, Russelle MP, et al. Changes in microbial activity andcomposition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide[J].Plant and Soil,2002,243(2):197-207.
    [110] Innes L, Hobbs PJ, Bardgett RD. The impacts of individual plant species on rhizospheremicrobial communities in soils of different fertility[J]. Biology and Fertility of Soils,2004,40(1):7-13.
    [111] Schloter M, Bach HJ, Metz S. et al. Influence of Precision farming on the microbialcommunity structure and functions in nitrogen turn over[J]. Agriculture, Ecosystem andEnvironment,2003,98(1):295-304.
    [112] Larkin RP. Characterization of soil microbial communities under different potatocropping systems by microbial population dynamics, substrate utilization, an fatty acidprofiles[J]. Soil Biology&Biochemistry,2003,35(11):1451-1466.
    [113] Pennanen T, Frostegard A, Fritze H. et al. Phospholipid acid composition and heavymetal tolerance of soil microbial communities along two heavy meta-polluted gradientsin coniferous forests[J]. Applied and Environmental Microbiology,1996,62(2):420-428.
    [114] Fierer N, Schimel JP, Holden PA. Variations in microbial composition thought two soildepth profiles[J]. Soil Biology&Biochemistry,2003,35(1):167-176.
    [115] Petersen SO, Debosz K, Schjonning P, et al. Phospholipid fatty acid profiles and Cavailability in wet-stable macroaggregates from conventionally and organically farmedsoils[J]. Geoderma,1998,78(3-4):181-196.
    [116]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版),2005,19(4):21-26.
    [117]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792.
    [118]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107.
    [119] Torsvik VL, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria[]J. Applied andEnvironmental Microbiology,1990,56(3):782-787
    [120] Torsvik VL. Isolation of bacterial DNA from soil[J]. Soil Biology&Biochemistry,1980,12(1):15-21
    [121] Ogram A. Soil molecular microbial ecology at age20: methodological challenges forthe future[J]. Soil Biology&Biochemistry,2000,32(11-12):1499-1504.
    [122] Torsvik V. Microbial diversity and function in soil: From genes to ecosystems[J].Current Opinion Microbiology,2002,5(3):240-245.
    [123] Sandaa RA, Torsvik V, Enger O, et al. Analysis of bacterial communities in heavy metalcontaminated soil at different levels of resolution[J]. FEMS Microbiology Ecology,1999,30(3):237-250.
    [124] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to thechemistry of unknown soil microbes: at new frontier for natural products[J]. Chemistryand Biology,1998,5(10):245-249.
    [125] Jenkinson DS, Ladd JN. Microbial biomass in soil: Measurement and turnover[M]. In:Paul EA, Ladd JN, Marcel Dekker. Soil Biochemistry. New York.1981,415-417.
    [126] Monz CA, DE Reuss,and ET Elliott. Soil microbial biomass carbon and nitrogenestimates using2450MHz microwave irradiation or chloroform fumigation followedby direct extraction[J]. Agriculture Ecosystems&Environment,1991,34(1-4):55-63.
    [127] Puri G, Barraclough D. Comparison of2450MHz microwave radiation and chloroformfumigation-extraction to estimate soil microbial biomass nitrogen using15N-Labelling[J]. Soil Biology&Biochemistry,1993,25:521-522.
    [128]陶水龙,林启美,赵小蓉.土壤微生物量研究方法进展[J].土壤肥料,1998,(5):15-18
    [129]陈国潮,何振立.红壤不同利用方式下的微生物量研究[J].土壤通报,1998,29(6):276-278.
    [130]薛萐,李占斌,李鹏,等.不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J].农业工程学报,2009,25(增刊1):69-72.
    [131]温仲明,焦峰,刘宝元.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报,2005,16(11):2025-2029.
    [132]安韶山,张扬,郑粉莉.黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应[J].中国水土保持科学,2008,6(2):66-70.
    [133]张成娥,陈小利.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997,5(3):195-200.
    [134]王兵,刘国彬,薛萐,等.黄土丘陵区撂荒对土壤酶活性的影响[J].草地学报,2009,17(3):282-287.
    [135] Vance ED, Brookes PC, Jenkinson D. An extraction method for measuring microbialbiomass carbon [J]. Soil Biology&Biochemistry,1987,19(6):703-707.
    [136] Jenkinson DS, Powlson DS. The effects of biocidal treatments on metabolism in soils-V:a method for measuring soil biomass [J]. Soil Biology&Biochemistry,1976,8(3):209-213.
    [137]关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.
    [138]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [139]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料,2002,(1):7-14.
    [140] John JB, Thomas BM, Douglas LK, et al. Identification of regional soil quality factorsand indicators: I. Central and southern high plains[J]. Soil Science Society of AmericaJournal,2000,64(6):2115–2124.
    [141] John JB, Thomas BM, Douglas, LK, et al. Identification of regional soil quality factorsand indicators: II. Northern Mississippi Loess Hills and Palouse Prairie[J]. Soil ScienceSociety of America Journal,2000,64(6):2125–2135.
    [142]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,2(2):174-179.
    [143] Bastida F, Moreno JL, Hernandez T, et al. Microbiological degradation index of soils ina semiarid climate[J]. Soil Biology&Biochemistry,2006,38(12):3463-3473.
    [144] Sinha S, Masto RE, Ram LC, et al. Rhizosphere soil microbial index of tree species in acoal mining ecosystem[J]. Soil Biology&Biochemistry,2009,41(9):1824-1832.
    [145] Masto RE, Chhonkar PK, Singh D, et al. Alternative soil quality indices for evaluatingthe effect of intensive cropping, fertilization and manuring for31years in the semi-aridsoils of India[J]. Environmental Monitoring and Assessment,2008,136(1-3):419-435.
    [146] Marschner H, Rǒmheld V, Zhang FS. Mobilization of mineral nutrients in therhizosphere by root exduates[C]. Transactions14th International Congress Soil Science,Kyoto, Japan, August1990. Volume II.1990, pp,158-163.
    [147] Arunachalam A, Pandey H. Ecosystem restoration of Jhum fallows in northeast India:microbial C and N along altitudinal and successional gradients[J]. Restoration Ecology,2003,11(2):168-173.
    [148] Garcia C, Roldan A, Hernandez T.2005. Ability of different plant species to promotemicrobiological processes in semiarid soil[J]. Geoderma,124(1-2):193-202.
    [149] Zeller V, Bardgett RD, Tappeiner U. Site and management effects on soil microbialproperties of subalpine meadows: A study of land abandonment along a north-southgradient in the European Alps[J]. Soil Biology&Biochemistry,2001,33(4-5):639-649.
    [150] Insam H, Domsch KH. Relationship between soil organic carbon and microbial biomasson chronosequences of the reclamation sites[J]. Microbial Ecology,1988,15(2):177-188.
    [151] Raich JW, Nadclhoffer KJ. Belowground carbon allocation in forest ecosystems: globaltrends[J]. Ecology,1989,70(5):1346-1354.
    [152] Anderson TH, Domsch KH. The metabolic quotient for CO2(qCO2) as a specificactivity parameter to assess the effects of environmental conditions, such as pH, on themicrobial biomass of forest soils[J]. Soil Biology&Biochemistry,1993,25(3):393-395.
    [153] Sparling GP, Ross DJ. Biochemical methods to estimate soil microbial biomass: currentdevelopments and applications. In: Mulongoy K, Merckx R (eds) Soil organic matterdynamics and sustainability of tropical agriculture[M]. Wiley-Sayce, Leuven, Belgium,1993, pp,17-21.
    [154] Richard TC, Peter Dalla-Bettab, Carole CK, Jeffrey MK. Controls on soil respiration insemiarid soils[J]. Soil Biology&Biochemistry,2004,36(6):945-951.
    [155] Odum E. Trends expected in stressed ecosystems[J]. Bioscience,1985,35(7):419-422.
    [156] Nadezhda DA, Eugeny AS, OlgaVC, et al. Microbial respiration activities of soils fromdifferent climatic regions of European Russia[J]. European Journal of Soil Biology,2008,44(2):147-157
    [157] Florgard C. Remaining original natural vegetation in towns and cities[J]. UrbanForestry&Urban Greening,2004,3(1):1-2.
    [158]詹媛媛,薛梓瑜,任伟,等.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J].生态学报,2009,29(1):59-66
    [159]厉婉华.栓皮栎,杉木和火炬松根际与非根际土壤氮素及pH值差异的研究[J].南京林业大学学报,1996,20(2):49-52
    [160]杨刚,何寻阳,王克林,等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报,2008,39(1):189-191
    [161]周国英,陈小艳,李倩茹,等.油茶林土壤微生物生态分布及土壤酶活性的研究[J].经济林研究,2001,19(1):9-12
    [162]吉艳芝,冯万忠,陈立新,等.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征[J].生态环境,2008,17(1):339-343
    [163]郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024.
    [164] Finzi AC, Breemen N, Canbarn CD. Canopy tree-soil interactions within temperateforests: Species effects on soil carbon and nitrogen[J]. Ecological Application,1998,8(2):440-446.
    [165]薛萐,刘国彬,张超.黄土丘陵区不同植被对根际土壤微生物特性[J].草地学报,2011,19(4):577-583.
    [166]陈闳竣,李传涵.杉木根际与非根际土壤酶活性比较[J].林业科学,1994,30(2):170–175.
    [167]张学利,杨树军,张百习,等.不同林龄樟子松根际与非根际土壤的对比[J].福建林学院学报,2005,25(1):80-85.
    [168] Buee M, De Boer W, Martin F, et al. The rhizosphere zoo: an overview ofplant-associated communities of microorganisms, including phages, bacteria, archaea,and fungi, and of some of their structuring factors[J]. Plant and Soil,2009,321(1):189-212.
    [169] Koranda M, Schnecker J, Kaiser C, et al. Microbial processes and communitycomposition in the rhizosphere of European beech-The influence of plant C exudates[J].Soil Biology&Biochemistry,2011,43(3):551-558.
    [170]叶功富,侯杰,张立华,等.不同年龄木麻黄林地根际土壤养分含量和酶活性动态[J].水土保持学报,2006,20(4):86-89.
    [171] Wang GL, Liu GB, Xu MX. Above and belowground dynamics of plant communitysuccession following abandonment of farmland on the Loess Plateau, China[J], Plantand Soil,2009,316(1-2):227-239.
    [172] Tscherko D, Ute H, Marie-Claude M, et al. Shifts in rhizosphere microbial communitiesand enzyme activity of Poa alpina across an alpine chronosequence[J]. Soil Biology&Biochemistry,2004,36(10):1685-1698.
    [173] Lechevalier MP. Lipids in bacterial taxonomy-a taxonomist review[J]. Critical Reviewsin Microbiology.1997,5(2):109-210.
    [174] Haack SK, Garchow H, Odelson DA, et al. Accuracy, reproducibility, and interpretationof fatty acid methyl ester profiles of model bacterial communities[J]. Applied andEnvironmental Microbiology.1994,60:2483-2493.
    [175]杨秀虹,李适宇.木焦油污染土壤中微生物特性的空间变异性研究[J].应用生态学报,2005,16(5):939-944.
    [176]杨秀虹,张颖,李慧,等.石油污染土壤水改旱田后污染物组份及微生物群落结构变化[J].应用生态学报,2007,18(5):1107-1112.
    [177]时亚南,张奇春,王光火,郭海超.不同施肥处理对水稻土微生物生态特性的影响[J].浙江大学学报(农业与生命科学版),2007,33(5):551-556.
    [178] Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J].Canadian Journal of Biochemistry Physiology,1959,37(8),911-917.
    [179] Frosteg rd A, B th E, Tunlid A.1993. Shifts in the structure of soil microbialcommunities in limed forests as revealed by phospholipid fatty acid analysis[J]. SoilBiology&Biochemistry,1993,25(6):723-730.
    [180] Federle TW. Microbial distribution in soil—new techniques[M]. In: Megusar F, GantarM (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana,1986, pp,493-498
    [181] Bardgett RD, Hobbs PJ, Frosteg rd A. Changes in soil fungal: bacterial biomass ratiosfollowing reductions in the intensity of management of an upland grassland[J]. Biologyand Fertility of Soils,1996,22(3):261-264.
    [182]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,1(4):21-27.
    [183]湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494.
    [184] Darrah PR. Models of the rhizosphere Ⅱ, a quasi three-dimensional simulation of themicrobial population dynamics around a growing root releasing soluble exudates[J].Plant and Soil,1991,138(2):147-158.
    [185]王敬国.微生物与根际中物质的循环[J].北京农业大学学报,1993,19(4):98-103.
    [186] Wendy M. Williamson A, David A. et al. The soil microbial community response whenplants are subjected to water stress and defoliation disturbance[J]. Applied Soil Ecology,2007,37(1):39-49.
    [187] Bartelt-Rysera J, Joshia J,, Schmid B, et al. Soil feedbacks of plant diversity on soilmicrobial communities and subsequent plant growth[J]. Perspectives in Plant Ecology,Evolution and Systematics,2005,7(1):27-49.
    [188] Schlegel HG. General Microbiology. Cambridge University Press, Cambridge.1992, pp,655.
    [189] Priha O, Grayston SJ, Pennanen T, et al. Microbial activities related to C and N cyclingand microbial community structure in the rhizospheres of Pinus sylvestris, Picea abiesand Betula pendula seedling in an organic and mineral soil[J]. FEMS MicrobiologyEcology,1999,30(2),187-199.
    [190] Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterizedby community structure, activity and opportunistic growth dynamics[J]. MicrobialEcology,2002,44(4):306–316.
    [191] Marilley L, Aragno M. Phylogenetic diversity of bacterial communities differing indegree of proximity of Lolium perenne and Trifolium repens roots[J]. Applied SoilEcology,1999,13(2):127-136.
    [192] Steer J, Harris JA. Shifts in the microbial community in the rhizosphere andnon-rhizosphere soils during the growth of Agrostis stolonifer[J]a. Soil Biology&Biochemistry,2000,32(6):869-878.
    [193] Ohtonen R, Fritze H, Pennanen T, et al. Ecosystem properties and microbial communitychanges in primary succession on a glacier forefront[J]. Oecologia.1999,119(2):239-246.
    [194] Mckinley VL, Peacock AD, White DC. Microbial community PLFA and PHB responseto ecosystem restoration in tallgrass prairie soils. Soil Biology&Biochemistry,2005,37(10):1946-1958
    [195] Zelles L, Bai QY, Beek T, et al. Signature fatty acids in phospholids andlipopolysaccharids as indicators of microbial biomass and community structure inagricultural soils[J]. Soil Biology&Biochemistry,1992,24(4),317-323.
    [196] Zogg G, Zak D, Ringelberg D, et al. Compositional and Functional shifts in microbialcommunities due to soil warming[J]. Soil Science Society of America Journal,1997,61(2):475-481.
    [197] Cookson WR, Abaye DA, Marschner PM, et al. The contribution of soil organic matterfractions to carbon and nitrogen mineralization and microbial community size andstructure[J]. Soil Biology and Radiochemistry,2005,37(9):1726-1737.
    [198] Petersen S, Klug M. Effect of sieving storage, and incubation temperature on thephospholipid fatty acid profile of a soil microbial community[J]. AppliedEnvironmental Microbiology,1994,60(7):2421-2430.
    [199] Garland JL, Mills AL. A community level physiological approach for studyingmicrobial communities[M]. In: Ritz K, Dighton J, Giller K E. eds. Beyond the Biomass:Composition and Functional Analysis of Soil Microbial Communities. London:Wiley-Sayce Publications,1994,77-83
    [200] Lawlor K, Knight BP. Comparison of methods to investigate microbial populations insoils under different agricultural management[J]. FEMS Microbiology Ecology,2000,33(2):129-137.
    [201]宋雪英,宋玉芳,孙铁晰,等.矿物油污染土壤中芳烃组分的生物降解与微生物生长动态[J].环境科学,2004,25(3):115-119.
    [202]滕应,黄昌勇,骆永明,等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119
    [203] Soderberg KH, OllsonL PA, Baath E. Structure and activity of the bacterial communityin the rhizosphere of different plant species and the effect of arbuscular mycorrhizalcolonization[J]. FEMS Microbiology Ecology,2002,40(3):223-231.
    [204] Engelen B, Mcinken K, Wintzingerode F, et a1. Monitoring impact of a pesticidetreatment on bacterial soil communities by metabolic and genetic fingerprinting inaddition to conventional testing procedures[J]. Applied and EnvironmentalMicrobiology,1998,64(8):2814-2821.
    [205]魏媛.退化喀斯特植被恢复过程中土壤生物学特性研究[D].南京:南京林业大学.2008.
    [206] Harch BD, Correll RL, Meech W, et al. Using the Gini coefficient with BIOLOGsubstrate utilization data to provide an alterative quantitative measure for comparingbacterial soil communities[J]. Journal of Microbiological Methods,1997,30(1):91-101.
    [207]徐华琴.稻草覆盖与三叶草间作茶园土壤微生物类群多样性及其活性研究[D].长沙:湖南农业大学.2007.
    [208] Garland JL, Mills AL. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level sole-carbon-sourceutilization[J]. Applied and Environmental Microbiology.1991,57(8):2351-2359.
    [209] Rillig MC, Scow KM, Klironomo JN, et al. Microbial carbon-substrate utilization in therhizosphere of Gutierrezia sarothrae grown in elevated atmospheric carbon dioxide[J].Soil Biology&Biochemistry,1997,29(9-10):1387-1394.
    [210] Mueller T, Joergensen RG, Meyer B. Estimation of soil microbial biomass C in thepresence of living roots by fumigation–extraction[J]. Soil Biology&Biochemistry,1992,24(1):179-181.
    [211] Clemensson-Lindell A, Persson H. Effects of freezing on rhizosphere and root nutrientcontent using two soil sampling methods[J]. Plant and Soil1992,139(1):39-45.
    [212]姚建华,牛德奎,李兆君,等.抗生素土霉素对小麦根际土壤酶活性和微生物生物量的影响[J].中国农业科学,2010,43(4):721-728.
    [213] Shen RF, Cai H, Gong WH. Transgenic Bt cotton has no apparent effect on enzymaticactivities or functional diversity of microbial communities in rhizosphere soil[J]. Plantand Soil,2006,285(1-2):149-159
    [214] He Y, Xu J M, Tang C X, Wu YP. Facilitation of pentachlorophenol degradation in therhizosphere of ryegrass (Lolium perenne L.)[J]. Soil Biology&Biochemistry,2005,37(11):2017-2024
    [215] Wang ZW, Shan XQ, Zhang SZ. Comparison between fractionation and bioavailabilityof trace elements in rhizosphere and bulk soils[J]. Chemosphere,2002,46(8):1163-1171.
    [216]马宏宇,孙奕,吕阿丽,等.茵陈蒿化学成分的分离与鉴定[J].中国药物化学杂志,2010,20(1):61-64.
    [217]师彦平,李喻,张会昌.铁杆蒿化学成分研究[J].高等学校化学学报,1992,13(10):1258-1261.
    [218]孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社,2001.
    [219]左胜鹏.不同基因型小麦化感作用研究[D].中国科学院研究生院博士论文,北京,2007.
    [220] Jackson JR, Willemsen RW. Allelopathy in the first stages of secondary succession onthe piedmont of New Jersey[J]. American Journal of Botany,1976,63(7):1015-1023.
    [221]曹凑贵.生态学概论[M].北京:高等教育出版社,2002:147-148.
    [222]邹厚远,程积民,周麟.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究,1998,5(1):126-138.
    [223]张超,董淑琦,刘国彬,等.黄土丘陵区植被演替中不同草本植物间的化感效应[J].草地学报,2012,20(5):848-854.
    [224]王辉,谢永生,杨亚利,等.云雾山铁杆蒿茎叶浸提液对封育草地四种优势植物的化感效应[J].生态学报,2011,31(20):6013-6021.
    [225] Bais HP, Vepachedu R, Gilroy S. Allelopathy and exotic plant invasion: from moleculesand genes to species interaction[J]. Science,2003,301(5638):1377-1380.
    [226] Perry LG, Thelen GC, Ridenour WM. Dual role for an alllochemical:(+/-) catechinfrom Centaurea maculosa root exudates regulates sonspecific seedling establishment[J].Journal of Ecology,2005,93(3):1125-1136.
    [227]孔垂华,胡飞.植物化学通讯研究进展[J].植物生态学报,2003,27(4):561-567.
    [228]步秀芹,徐学选,郭劲松.黄土丘陵区铁杆蒿光合蒸腾特性的研究[J].中国草地学报,2007,29(2):26-30.
    [229] Singh HP, Batish DR, Kohli RK. Autotoxicity: concept, organsim and ecologicalsignificance[J]. Critical Review in Plant Science,1999,18(6):757-772.
    [230]马瑞君,王明理,赵坤,等.高寒草场优势杂草黄帚橐吾水浸液对牧草的化感作用[J].应用生态学报,2006,17(5):845-850.
    [231] Oueslati O. Allelopathy in two durum wheat (Triticum durum L.) varieties[J].Agriculture, Ecosystems and Environment,2003,96(1/3):161-163.
    [232] Tukey HB. Leaching of metabolites from above-ground plant parts and itsimplications[J]. Bulletin of the Torrey Botanical Club,1966,93(6):385-401.
    [233]王慧,周淑清,黄祖杰.狼毒对草木樨、多年生黑麦草的化感作用[J].草地学报,2009,17(6):826-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700