用户名: 密码: 验证码:
西北太平洋两种鲐属鱼类的分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲐属(Scomber)为暖水性中上层鱼类,在海洋捕捞业中占有重要的地位,但其系统发育关系与分类、物种划分尚存争议。本研究基于形态学、线粒体DNA和核基因分析了鲐属鱼类的分类与系统发育关系,并探讨了鲐属鱼类的起源进化历史。同时我们以在西北太平洋分布的日本鲐(Scomber japonicus)和澳洲鲐(Scomber australasicus)为研究对象,分别采用形态学、线粒体DNA和微卫星三种标记来检测两种鲐属鱼类的群体遗传结构和系统地理格局,并探讨了其群体动态历史的演化过程,揭示历史因素、当前环境因素及鱼类自身的生态习性对海洋鱼类群体遗传结构和系统地理分布模式的综合作用。主要研究结果如下:
     1.鲐属鱼类系统发育关系与进化历史
     (1)采用传统形态和耳石形态两种研究方法,分析了三种鲐属鱼类(大西洋鲐、日本鲐和澳洲鲐)的系统发育关系,结果表明:在外观上大西洋鲐(Scomberscombrus)矢耳石与其他两种鲐鱼完全不同,日本鲐与澳洲鲐矢耳石形状相似;判别分析、主成分分析与聚类分析结果一致,均表明大西洋鲐与其他两种鲐鱼的形态差异明显,日本鲐和澳洲鲐的形态相似,亲缘关系紧密。
     (2)本文以线粒体DNA(COI、Cyt b和控制区)和核基因(5S rDNA)为分子标记,结合线粒体基因和核基因各自的优点,在每个基因片段独立分析的基础上,利用贝叶斯联合模型分析方法重建鲐属鱼类的系统发育关系。结果显示:所有的系统发育分析均解决和支持鲐属鱼类的单系性;不同分区策略的贝叶斯分析获得了拓扑结构一致且各节点后验概率均较高的系统发育树,日本鲐与澳洲鲐聚为姐妹群,再与圆鲐聚类,大西洋鲐位于基部位置。
     形态与分子数据均支持澳洲鲐的物种有效性及大西洋鲐与日本鲐和澳洲鲐存在较大差异。由于圆鲐整鱼样品的缺乏,未能从形态学角度对鲐属鱼类进行全面地分析。但本研究的分子证据强烈支持圆鲐的物种有效性,并将圆鲐置于日本鲐和澳洲鲐聚类分支的姐妹群位置上,进一步澄清了鲐属鱼类之间系统发育关系的疑问。此外,我们还将鲐属鱼类的地理分布与其系统关系相结合综合探讨了鲐属鱼类的起源进化历史,指出地理阻碍导致的分类阶元的隔离分化(vicariance)过程与各阶元在扩散分化的生态适应(adaption)过程相互补充交叉,促进了鲐属鱼类分化并逐渐形成现在的地理分布格局。
     2.日本鲐种群遗传结构与分子系统地理学研究
     (1)运用形态学方法分析了西北太平洋日本鲐群体之间的形态差异。结果显示,在传统形态和耳石形态上日本鲐各群体间均存在差异,但不同海域之间没有形成明显的分化。此外,对日本鲐不同体长组个体的耳石形态特征进行比较分析发现,日本鲐耳石形态特征随着鱼体生长而发生显著变化。
     (2)应用线粒体DNA控制区对西北太平洋14个日本鲐地理群体开展了分子系统地理学研究,结果显示在日本鲐种内检测到了2个明显分化的系统发育类群,但两个类群在空间上的分布频率并不存在显著差异,即不存在地理结构,未检测到显著的群体遗传结构。我们推测更新世冰期的隔离很可能是日本鲐产生系统分化的主要原因,而冰川消退后的群体间的重新混合可能消除先前因隔离而积累的遗传差异。此外,核苷酸不配对分布和中性检验分析的结果表明西北太平洋日本鲐经历了近期群体扩张事件。
     (3)应用微卫星分子标记开展了西北太平洋日本鲐的群体遗传结构分析。结果显示日本鲐在微卫星DNA上展现了较高的遗传多样性水平;通过检测8个微卫星多态位点差异,在日本鲐群体间存在显著的遗传分化,推测地理距离、海流以及日本鲐自身的生态特征很可能是导致群体间产生遗传差异的原因。
     3.澳洲鲐种群遗传结构与分子系统地理学研究
     (1)采用传统的形态度量与框架结构度量相结合的研究方法,分析了中日澳洲鲐群体之间的形态差异。多种多元统计方法结果基本一致,珠海群体与日本相模湾群体间存在形态差异。我们推测海流对澳洲鲐不同群体间的形态差异产生了重要影响。
     (2)基于线粒体DNA控制区的分子系统地理学研究结果表明,澳洲鲐种内无谱系结构,在所研究范围内没有检测到明显的系统地理分化,一方面可能是因为间冰期澳洲鲐群体发生栖息地大规模扩张所引起的;另一方面可能是由澳洲鲐本身的生活史特征造成的,澳洲鲐成鱼进行长距离洄游,扩散能力较强,补充大且存在较长的浮游生活期,从而在洋流的作用下使群体间存在较高频率的基因交流。
     (3)通过检测8个微卫星多态位点差异,在日本太平洋沿岸4个澳洲鲐地理群体中检测到微弱但显著的遗传结构,北太平洋中部群体与其他群体存在明显的遗传分化,距离隔离及勘察加寒流可能对澳洲鲐群体间基因交流产生了阻碍。同样,澳洲鲐在微卫星DNA上具有较高的遗传多样性水平。
Scomber species are epipelagic and pelagic fishes with gregarious behavior.Scomber mackerel fisheries are very important in many regions throughout theirdistributions. Despite its economic importance for international fisheries, thetaxonomy and phylogenetic relationships of Scomber have long been controversial. Inthe present study, phylogenetic analysis of Scomber was conducted usingmorphological, mitochondrial and nuclear DNA sequence data to clarify the currenttaxonomic classification, and to assess phylogenetic relationships and theevolutionary history of this genus. Additionally, we estimated the population structureand phylogeographic pattern of Scomber japonicus and Scomber australasicus inNorthwestern Pacific using morphological, mitochondrial DNA sequence andmicrosatellite DNA markers to infer the relative role of historical vicariant events,environmental factors and life history traits in shaping and maintaining the populationstructure pattern of these two species.
     1. The taxonomy, and phylogeny and evolution of Scomber
     (1) The phylogenetic relationships of three Scomber species was inferred byusing morphological and otolith shape analysis. The shape of Scomber scombrusotolith is totally different from those of S. japonicus and S. australasicus. The resultsof multivariate analysis consistently showed S. japonicus is morphologically similarto S. australasicus, whereas large difference was observed between S. scombrus andthe other two Scomber species based on morphological characters and otolith shapevariable.
     (2) A molecular phylogenetic analysis of Scomber was conducted based onmitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequencedata in multiple perspective. The present study produced a well-resolved phylogenythat strongly supported the monophyly of Scomber. We confirmed that S. japonicusand S. colias are genetically distinct. Although morphologically and ecologicallysimilar to S. colias, the molecular data showed that S. japonicus has a greatermolecular affinity with S. australasicus, which conflicts with the traditional taxonomy.This phylogenetic pattern was corroborated by the morphological data. Thepresent-day geographic range of each species was compared with the resultantphylogeny to evaluate possible hypotheses for its diversification and range expansion.In view of the unique geographic distributions of Scomber species, we hypothesizedthat speciation in the genus was primarily based on historical vicariance and adaption.
     2. Population genetic structure and molecular phylogeography of S. japonicus
     (1) Morphological characters and otolith shape variable were compared bymultivariate analysis for S. japonicus populations in Northwestern Pacific. Significantdifferences were found in many characters among eight S. japonicus populations.However, no geographical trend was observed. In addition, comparative analysis ofotolith shape variable from different length groups indicated that otolith shape of S.japonicus varied with growth rate.
     (2) Molecular phylogeography of S. japonicus in Northwestern Pacific wasinvestigated using mitochondrial control region sequences. Two significantly distinctlineages were detected, which might be isolated during glacial periods of Pleistocene.However, the relative frequency of individuals occupying the two major lineages didnot differ significantly among sample locations. It is supposed that the presentdistribution of haplotypes is indicative of secondary contact with subsequent highgene flow over the sampled range. Both mismatch distribution analyses and neutralitytests suggested a late Pleistocene population expansion for S. japonicus.
     (3) Genetic differentiation of S. japonicus in Northwestern Pacific was surveyedat eight microsatellite loci. Microsatellite analyses revealed relative high genetic diversity for S. japonicus due to high mutation rate of microsatellite DNA as well aslarge effective population size of this species. Significant population genetic structurewas detected among S. japonicus populations, which might be caused by thecomplicated interaction between marine currents and biological characteristics of S.japonicus.
     3. Population genetic structure and molecular phylogeography of S. australasicus
     (1) Morphological traits and truss network characters were measured toinvestigate morphological difference among S. australasicus populations.Multivariate analysis consistently found significant differences between China andJapan populations, which may be caused by marine currents in these two areas.
     (2) The first hypervariable region (HVR-1) of the mitochondrial DNA controlregion was analyzed for samples collected from five locations in Northwestern Pacific.NJ tree and median-joining network revealed no significant phylogeographic structure.No significant genetic structure was detected among populations of S. australasicusanalyzed. It is likely a consequence of extensive gene flow caused by passive larvaltransport and/or extremely high vagility in adult as well as population expansionduring late Pleistocene.
     (3) Weak but significant genetic structure was found in four S. australasicuspopulations in Japan’s Pacific coastal waters based on microsatellite analyses. Smallbut significant genetic differentiation between the middle of north Pacific populationand other populations might be attributed to the limited gene flow due to Kamchatka.In accordance with mtDNA result, microsatellite diversities were relatively high anddid not show any geographical trends.
引文
陈大刚。黄渤海渔业生态学。北京:海洋出版社,1991。
    陈卫忠,胡芬,严利平。用实际种群分析法评估东海鲐鱼现存资料量。水产学报,1998,22:334-339。
    程家骅,林龙山。东海区鲐鱼生物学特征及其渔业现状的分析。海洋渔业,2004,26:73-78。
    程起群,李思发。刀鲚和湖鲚种群的形态判别。海洋科学,2004,28:39-43。
    戴萍。台湾海峡鲐鱼食性的初步研究。海洋湖沼通报,1989,2:50-55。
    窦硕增,于鑫,曹亮。鱼类矢耳石形态分析及其在群体识别中的应用实例研究。海洋与湖沼,2012,43:702-712。
    方华华,高天翔。耳石形态在斑尾复鰕虎鱼群体鉴别中的研究。中国农学通报,2012,28:92-97。
    傅伯杰,吕一河,陈立顶,苏常红,姚雪玲,刘宇。国际景观生态学研究新进展。生态学报,2008,28:798-804。
    高天翔,任桂静,刘进贤,肖永双。海洋鱼类分子系统地理学研究进展。中国海洋大学学报,2009,39:897-902。
    郭明兰,苏永全,陈晓峰,丁少雄,王军。云纹石斑鱼与褐石斑鱼形态比较研究。海洋学报,2008,6:106-114。
    海萨,李家乐,冯建彬,木拉提。基于多变量形态度量学和线粒体Cyt b序列的鲈属鱼类分类探讨。动物学研究,2008,29:113-120。
    蒋玫,王云龙。东海夏季日本鲭(Scomber japonicus)和鳀鱼(Engraulis japonicus)鱼卵仔鱼分布特征。海洋与湖沼,2007,38:351-355。
    李建生,严利平,程家骅。2006年夏秋季东海群系澳洲鲐数量分布特征。海洋渔业,2008,30:49-55。
    林景祺。烟台、威海和青岛沿岸当年生鲐鱼幼鱼的摄食习性。海洋水产研究,1980,1:1-15。
    刘楚珠,严利平,李建生,吕振波,张壮丽,张辉,李圣法。基于框架法的东黄海日本鲭产卵群体形态差异分析。中国水产科学,2011,18:908-917。
    刘建勇,杨廷宝。我国沿海鲻鱼(Mugil cephalus)不同地理群体形态差异研究。海洋与湖沼,2009,40:572-576。
    刘进贤。西北太平洋四种海洋鱼类的分子系统地理学研究[博士学位论文]。青岛:中国海洋大学,2006。
    刘名,王艳君,高天翔,庄志猛,柳本卓,樱井泰宪。中日太平洋鲱形态学比较研究。中国海洋大学学报,2007,37:131-136。
    刘勇,严利平,胡芬,程家骅。东海北部和黄海南部鲐鱼年龄和生长的研究。海洋渔业,2005,27:133-138。
    孟立霞。5种(亚种)裂腹鱼类的形态学差异研究。凯里学院学报,2007,25:25-29。
    潘晓哲,高天翔。基于耳石形态的鱚属鱼类鉴别。动物分类学报,2010,35:799-805。
    彭林泽,曾献存,余智勇,申红,贾斌。动物遗传标记的研究进展及应用。畜牧兽医杂志,2007,26(2):32-34。
    邵锋,陈新军。东、黄海鲐鱼群体遗传差异的RAPD分析。广东海洋大学学报,2008,28:83-87。
    邵锋,陈新军,李纲,钱卫国。东黄海鲐鱼形态差异分析。上海水产大学学报,2008,17:204-209。
    苏锦祥。鱼类学与海水鱼类养殖。北京:中国农业出版社,1993。
    孙耀,张波,郭学武,王俊,唐启升。鲐鱼能量收支及其饵料种类的影响。海洋水产研究,1999,20:96-100。
    王崇云。进化生态学。北京:高等教育出版社,2008。
    王丹婷,陈健,姜涛,刘洪波,沈新强。不同水域刀鲚形态的比较分析。水产学报,2012,36:78-90。
    王英俊,叶振江,杨永恒,孟晓梦。耳石形态在黄海蓝点马鲛群体鉴别方面的应用。中国海洋大学学报,2007,37:155-158。
    文亚峰,内山憲太郎,韩文军,上野真義,谢伟东,徐刚标,津村義彦。微卫星标记中的无效等位基因。生物多样性,2013,21:117-126。
    肖武汉,张亚平。鱼类线粒体DNA的遗传与进化。水生生物学报,2000,24:648-661。
    熊立仲,王石平,刘克德,戴先凯,Saghai Maroof M.A.,胡锦国,张启发。微卫星和AFLP标记在水稻分子标记连锁图上的分布。植物学报,1998,40:605-614。
    徐晋麟,徐沁,陈淳。现代遗传学原理。北京:科学出版社,2001,678-724。
    颜尤明。福建近海鲐鱼的生物学。海洋渔业,1997,19:69-73。
    颜尤明,戴泉水,卢振彬。福建近海中北部鲐鱼生长和死亡的研究。福建水产,1986,2:1-7。
    叶振江,孟晓梦,高天翔,杨永恒,王英俊。两种花鲈耳石形态的地理变异。海洋与湖沼,2007,3:356-359。
    应一平。斑鰶和青鳞小沙丁鱼的种群遗传结构与分子系统地理学研究[博士学位论文]。青岛:中国海洋大学,2010。
    詹秉义。渔业资源评估。北京:中国农业出版社,1995。
    张俊彬,黄晖,蔡泽平,刘胜,许战洲。海洋动物群体遗传学的研究进展。海洋通报,2005,12:65-73。
    张丽艳,宋永全,王航俊,王军。台湾海峡鲐鱼种群遗传结构。生态学报,2011,31:7097-7103。
    周爱芬,徐春晖,向凤宁,夏光敏,陈惠民。应用5S rDNA间隔序列分析鉴定体细胞杂种。生物工程学报,1999,15:529-532。
    周延清。遗传标记的发展。生物学通报,2000,35:17-18。
    朱德山,王为祥,张国祥,李富国。黄海鲐鱼(Pneumatophorus japonicus Houttuyn)渔业生物学研究I黄、渤海鲐鱼洄游分布的研究。海洋水产研究,1982,4:17-31。
    朱建荣。长江口外上升流动力机制研究。华东师范大学研究报告,1997。
    朱建荣,丁平兴,胡敦欣。2000年8月长江口外海区冲淡水和羽状峰的观测。海洋与湖沼,2003,34:249-255。
    堀川博史,鄭元甲,孟田湘。東シナ海黄海産重要水産生物、生物特性。长崎:西海区水産研究所,2001,438-448。
    木村量,梨田一也,大関芳沖,本多仁。ゴマサバScomber australasicusに適した耳石による年齢査定法。水産海洋学会,2002,66:247-251。
    山田梅芳,田川勝,岸田周三,本城康至。東シナ海黄海のさかな。长崎:西海区水産研究所,1986。
    Abbott C.L., Double M.C. Genetic structure, conservation genetics and evidence of speciation byrange expansion in shy and white-capped albatrosses. Molecular Ecology,2003,12:2953-2962.
    Abe T., Takashima Y. Differences in the number and position of two kinds of fin-supports of thespinous dorsal in the Japanese mackerels of the genus Pneumatophorus. Japanese Journal ofIchthyology,1958,7:1-11.
    Allendorf F.W. Conservation biology of fishes. Conservation Biology,1988,2:145-148.
    André C., Larsson L.C., Laikre L., Bekkevold D., Brigham J., Carvalho G.R., Dahlgren T.G.,Hutchinson W.F., Mariani S., Mudde K., Ruzzante D.E., Ryman N. Detecting populationstructure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneousevaluation of neutral vs putatively selected loci. Heredity,2011,106:270-80.
    Appleyard S., Grewe P., Innes B., Ward R. Population structure of yellowfin tuna (Thunnusalbacares) in the western Pacific Ocean, inferred from microsatellite loci. Marine Biology,2001,139:383-393.
    Avise J.C. Molecular Markers, Natural History, and Evolution. Chapman&Hall, New York,1994.
    Avise J.C. Phylogeography: the History and Formation of Species. Harvard University Press,Cambridge, MA,2000.
    Avise J.C. Phylogeography: retrospect and prospect. Journal of Biogeography,2009,36:3-15.
    Avise J.C. The history and preview of phylogeography: a personal reflection. Molecular Ecology,1998,7:371-379.
    Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., Reed C.A., Saunders N.C.Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics andsystematics. Annual Review of Ecology and Systematics,1987,18:489-522.
    Avise J.C., Helfman G.S., Saunders N.C., Hales L.S. Mitochondrial DNA differentiation in NorthAtlantic eels: population genetic consequences of an unusual life history pattern. Proceedingsof the National Academy of Science USA,1986,83:4350-4354.
    Baker W.J., Hedderson T.A., Dransfield J. Molecular phylogenetics of Calamus (Palmae) andrelated rattan genera based on5S nrDNA spacer sequence data. Molecular Phylogenetics andEvolution,2000,14:218-231.
    Bandelt H.J., Macaulay V., Richards M. Median networks: speedy construction and greedyreduction, one simulation, and two case studies from human mtDNA. Molecular Phylogeneticsand Evolution,2000,16:8-28.
    Bassam B.J., Caetano-Anolles G., Gresshoff P.M. Fast and sensitive silver staining of DNA inpolyacrylamide gels. Analytical Biochemistry,1991,19:680-683
    Beheregaray L.B., Sunnucks P. Fine-sclae genetic structure, estuarine colonization and incipientspeciation in marine silverside fish Odontesthes argentinensis. Molecular Ecology,2001,10:2849-2866.
    Bekkevold D., Andre C., Dahlgren T.G., Clausen L.A.W., Torstensen E., Mosegaard H., CarvalhoG.R., Christensen T.B., Norlinder E., Ruzzante D.E. Environmental correlates of populationdifferentiation in Atlantic herring. Evolution,2005,59:2656-2668.
    Bentzen P., Taggart C.T., Cook D. Microsatellite polymorphism and the population structure ofAtlantic cod (Gadus morhua) in the northwest Atlantic. Canadian Journal of Fisheries andAquatic Sciences,1996,53:2706-2721.
    Bergenius M.A.J., Begg G.A., Mapstone B.D. The use of otolith morphology to indicate the stockstructure of common coral trout (Plectropomus leopardus) on the Great Barrier Reef, Australia.Fishery Bulletin,2006,104:498-511.
    Berggren W.A. Recent advances in Cenozoic planktonic foraminiferal biostratigraphy,biochronology, and biogeography: Atlantic Ocean. Micropaleontology,1978,24:337-370.
    Bermingham E.S., McCaVerty A., Martin P. Fish biogeography and molecular clocks:perspectives from the Panamanian Isthmus. In: Kocher T., Stepien C. eds. MolecularSystematics of Fishes, Academic Press, New York,1997,113-126pp.
    Birky C.W., Fuerst P., Maruyama T. Organelle gene diversity under migration, mutation and drift:equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells andcomparison to nuclear genes. Genetics,1989,121:613-627.
    Bohonak A.J. IBD (isolation by distance): a program for analyses of isolation by distance. Journalof Heredity,2002,93:153-154.
    Bond G., Shower W., Cheseby M., Lotti R., Almasi P., DeMenocal P., Priore P., Cullen H., HajdasI., Bonani G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacialclimates. Science,1997,278:1257-1266.
    Bookstein F.L. Foundations of morphometrics. Annual Review of Ecology and Systematics,1982,13:451-470.
    Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms. The American Journal of Human Genetics,1980,32:314-331.
    Bowen B.W., Bass A.L., Rocha L.A., Grant W.S., Robertson D.R. Phylogeography of thetrumpetfishes (Aulostomus): ring species complex on a global scale. Evolution,2001,55:1029-1039.
    Brandley M.C., Schmitz A., Reeder T.W. Partitioned Bayesian analyses, partition choice, and thephylogenetic relationships of scincid lizards. Systerm Biology,2005,54:373-390.
    Bremer J.R.A., Vinas J., Mejuto J., Ely B., Pla C. Comparative phylogeography of Atlantic bluefintuna and swordfish: the combined effects of vicariance, secondary contact, introgression, andpopulation expansion on the regional phylogenies of two highly migratory pelagic fishes.Molecular Phylogenetics and Evolution,2005,36:169-187.
    Brown J.H., Lomolino M.V. Biogeography (2nd edn), Sinauer Associates,1998.
    Brown W.M. Evolution of animal mitochondrial DNA. In: Nei M., Koehn R.K. eds. Evolution ofGenes and Proteins. Sinauer, Sunderland MA,1983,62-88pp.
    Buonnacorsi V.P., McDowell J.R., Graves J.E. Reconciling patterns of inter-ocean molecularvariance from four classes of molecular markers in blue marlin (Makaira nigricans).Molecular Ecology,2001,10:1179-1196.
    Caley M.J., Carr M.H., Hixon M.A., Hughes T.P., Jones G.P., Menge B.A. Recruitment and thelocal dynamics of open marine populations. Annual Review of Ecology and Systematics,1996,27:477-500.
    Campana S.E. How reliable are growth back-calculations based on otoliths? Canadian Journal ofFisheries and Aquatic Sciences,1990,47:2219-2227.
    Campana S.E. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. NRCResearch Press, Ottawa, Ontario,2004,284pp.
    Campana S.E., Casselman J.M. Stock discrimination using otolith shape analysis. CanadianJournal of Fisheries and Aquatic Sciences,1993,50:1062-1083.
    Cann R.L., Brown W.M., Wilson A.C. Polymorphic sites and the mechanism of evolution inhuman mitochondrial DNA. Genetics,1984,106:479-499.
    Cantatore P., Roberti M., Pesole G., Ludovico A., Milella F., Gadaleta M.N., Saccore G.Evolutionary analysis of cytochrome b sequence in some Perciformes: evidence for a slowerrate of evolution than in mammals. Journal of Molecular Evolution,1994,39:589-597.
    Cárdenas L., Silva A.X., Magoulas A., Cabezas J., Poulin E., Ojeda F.P. Genetic populationstructure in the Chilean jack mackerel, Trachurus murphyi (Nichols) across the South-easternPacific Ocean. Fisheries Research,2009,100:109-115.
    Carlsson J., McDowell J.R., Diaz-Jaimes P., Carlsson J.E., Boles S.B., Gold J.R., Graves J.E.Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnusthynnus) population structure in the Mediterranean Sea. Molecular Ecology,2004,13:3345-3356.
    Carvalho G.R., Hauser L. Molecular genetics and the stock concept in fisheries. Reviews in FishBiology and Fisheries,1994,4:326-350.
    Castonguay M., Simard P., Gagnon P. Usefulness of fourier analysis of otolith shape for Atlanticmackerel (Scomber scombrus) stock discrimination. Canadian Journal of Fisheries and AquaticSciences,1991,48:296-302.
    Catanese G., Manchado M., Infante C. Evolutionary relatedness of mackerels of the genusScomber based on complete mitochondrial genomes: strong support to the recognition ofAtlantic Scomber colias and Pacifc Scomber japonicus as distinct species. Gene,2010,452:35-43.
    Cavalcanti M.J., Monteiro L.R. Lopes P.R.D. Landmark-based morphometric analysis in selectedspecies of serranid fishes (Perciformes: Teleostei). Zoological Studies,1999,38:287-294.
    Chang K.H., Wang T.S. A preliminary report on studies of spotted mackerel resources. Studies onmaturity and fecundity of Scomber tapeiocephalus Bleeker.2. Fecundity and spawning. ChinaFishery Monthly,1970,211:8-13.
    Charrier G., Chenel T., Durand J.D., Girard M., Quiniou L., Laroche J. Discrepancies inphylogeographical patterns of two European anglerfishes (Lophius budegassa and Lophiuspiscatorius). Molecular Phylogenetics and Evolution,2006,38:742-754.
    Chino N., Yoshinaga T., Hirai A., Arai T. Life history patterns of silver eels Anguilla japonicacollected in the Sanriku Coast of Japan. Coastal Marine Science,2008,32:54-56.
    Collette B.B. Mackerels, molecules, and morphology. In: Séret B, Sire J Y ed. Proceedings of the5th Indo-Pacific Fish Conference, Nouméa1997. Société Fran aise d'Ichtyologie, Paris,1999,149-164pp.
    Collette B.B., Nauen C.E. Scombrids of the world: an annotated and illustrated catalogue of tunas,mackerels, bonitos and related species known to date. FAO species catalogue, vol.2. FAO Fish.Synop.,1983,125:1-137.
    Coope G.R. Late Cenozoic fossil Coleoptera: evolution, biogeography and ecology. AnnualReview of Ecology and Systematics,1979,10:247-267.
    Cronn R.C., Zhao X., Paterson A.H., Wendel J.F. Polymorphism and concerted evolution in atandemly repeated gene family:5S ribosomal DNA in diploid and allopolyploid cottons.Journal of Molecular Evology,1996,42:685-705.
    Cunningham K.M., Canino M.F., Spies I.B., Hauser L. Genetic isolation by distance and localizedfjord population structure in Pacific cod (Gadus macrocephalus): limited effective dispersal inthe northeastern Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences,2009,66:153-166.
    DeVries D.A., Grimes C.B., Prager M.H. Using otolith shape analysis to distinguish eastern Gulfof Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research,2002,57:51-62.
    De Woody J.A., Avise J.C. Microsatellite variation in marine, freshwater and anadromous fishescompared with other animals. Journal of Fish Biology,2000,56:461-473.
    Dieckmann U., O’Hara B., Weisser W. The evolutionary ecology of sispersal. Trends in Ecologyand Evolution,1999,14:88-90.
    Di Rienzo A., Peterson A.C., Garza J.C. Mutational processes of simple-sequence repeat loci inhuman populations. Proceedings of the National Academy of Science USA,1994,91:3166-3170.
    Dorenbosch M., Pollux B.J.A., Pustjens A.Z., Rajagopal S., Nagelkerken I., van der Velde G.,Moon-van der Staay S.Y. Population structure of the dory snapper, Lutjanus fulviflamma, inthe western Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia,2006,568:43-53.
    Dupanloup I., Schneider S., Excoffier L.A. simulated annealing approach to define the geneticstructure of populations. Molecular Ecology,2002,11:2571-2581.
    Durand J.D., Guinand B., Bouvet Y. Local and global multivariate analysis of geographicalmitochondrial DNA variation in Leuciscus cephalus L.1758(Pisces: Cyprinidae) in theBalkan Peninsula. Biological Journal of the Linnean Society,1999,67:19-42.
    Dynesius M., Jansson R. Evolutionary consequences of changes in species’ geographicaldistributions driven by Milankovitch climate oscillations. Proceedings of the NationalAcademy of Science USA,2000,97:9115-9120.
    Ellegren H. Microsatellite: simple sequences with complex evolution. Nature Reviews Genetics,2004,5:435-445.
    Elsdon T.S., Gillanders B.M. Reconstructing migratory patterns of fish based on environmentalinfluences on otolith chemistry. Review in Fish Biology and Fisheries,2003,13:219-235.
    Emerson B., Paradis E., Thebaud C. Revealing the demographic histories of species using DNAsequences. Trends in Ecology and Evolution,2001,16:707-716
    Erguden D., Ozturk B., Erdogan Z.A., Turan C. Morphologic structuring between populations ofchub mackerel Scomber japonicus in the Black, Marmara, Aegean, and northeasternMediterranean Seas. Fisheries Science,2009,75:129-135.
    Espi eira M., González-Lavín N., Vieites J.M., Santaclara F.J. Development of a method for theidentifcation of scombroid and common substitute species in seafood products by FINS. FoodChemistry,2009,117:698-704.
    Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using thesoftware STRUCTURE: a simulation study. Molecular Ecology,2005,14:2611-2620.
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model. Molecular Ecology,2004,13:853-864.
    Falk D.A., Holsinger K.E. Genetics and Conservation of Rare Plants. Oxford University Press,USA,1991.
    Farris J., Kallersjo M., Kluge A., Bult C. Testing significance of incongruence. Cladistics,1995,10:315-319.
    Felsenstein J. Confidence limits on a phylogenies: an approach using the bootstrap. Evolution,1985,39:783-791.
    Frankham R., Ballou J.D., Briscoe D.A. Introduction to Conservation Genetics. Combridge:Combridge University Press,2002.
    Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking andbackground selection. Genetics,1997,147:915-925.
    Garber A.F., Tringali M.D., Franks J.S. Population genetic and phylogeographic structure ofwahoo, Acanthocybium solandri, from the western central Atlantic and central Pacific Oceans.Marine Biology,2005,147:205-214.
    Glenn T.C., Schable N.A. Isolating microsatellite DNA loci. In: Zimmer E.A., Roalson E. eds.Molecular Evolution: Producing the Biochemical Data, Part B, Academic Press, San Diego,USA,2005,202-222pp.
    Gonzalez E.G., Zardoya R. Relative role of life-history traits and historical factors in shapinggenetic population structure of sardines (Sardina pilchardus). BMC Evolutionary Biology,2007,7:197.
    Goudet J. FSTAT V.2.9.3, a program to estimate and test gene diversities and fixation indices(Updated from Goudet1995). University of Lausanne, Switzerland,2001.http://www.unil.ch/izea/softwares/fstat.html.
    Grant W.S., Bowen B.W. Shallow population histories in deep evolutionary lineages of marinefishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity,1998,89:415-426.
    Graves J.E. Molecular insights into the population structures of cosmopolitan marine fishes.Journal of Heredity,1998,89:427-437.
    Graves J.E., McDowell J.R. Stock structure of the world's istiophorid billfishes: a geneticperspective. Marine and Freshwater Research,2003,54:287-298.
    Grewe P.M., Appleyard S.A., Ward R.D. Determining genetic stock structure of bigeye tuna in theIndian Ocean using mitochondrial DNA and DNA microsatellites. Report for the FisheriesResearch and Development Corporation FRDC No97/122Hobart:FRDC,2000.
    Guo X., Wang Y. Partitioned Bayesian analyses, dispersal-vicariance analysis, and thebiogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): A re-evaluation.Molecular Phylogenetics and Evolution,2007,45:643-662.
    Gwo J.C., Hsu T.H., Lin K.H., Chou Y.C. Genetic relationship among four subspecies of cherrysalmon (Oncorhynchus masou) inferred using AFLP. Molecular Phylogenetics and Evolution,2008,48:776-781.
    Han Z.Q., Gao T.X., Yanagimoto T., Sakurai Y. Deep phylogeographic break among Pennahiaargentata (Sciaenidae, Perciformes) populations in the Northwestern Pacific. Fisheries Science,2008a,74:770-780.
    Han Z.Q., Gao T.X., Yanagimoto T., Sakurai Y. Genetic population structure of Nibea albiflora inYellow Sea and East China Sea. Fisheries Science,2008b,74:544-552.
    Han Z.Q., Li Y.Z., Chen G.B, Gao T.X. Population genetic structure of coral reef speciesPlectorhinchus flavomaculatus in South China Sea. African Journal of Biotechnology,2008c,7:1774-1781.
    Han Z.Q., Yanagimoto T., Zhang Y.P., Gao T.X. Phylogeography study of Ammodytes personatusin Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondarycontact. PLoS ONE,2012, e37425. doi:10.1371/journal.pone.0037425.
    Piepho H.P., Koch G. Codomlnant analysis of banding data from a dominant marker system bynormal mixtures. Genetics,2000,155:1459-1468.
    Hardy O.J., Vekemans X. SPAGeDi: a versatile computer program to analyse spatial geneticstructure at the individual or population levels. Molecular Ecology Notes,2002,2:618-620.
    Hartl D.L. Principles of Population Genetics. Sinauer Associate, Sunderland,1980.
    Hasegawa M., Kishino H., Yano K. Dating of the human-ape splitting by a molecular clock ofmitochondrial DNA. Journal of Molecular Ecology,1985,22:160-174.
    Heads M. Towards a panbiogeography of the seas. Biological Journal of Linnean Society,2005,84:675-723.
    Heggenes J., Skaala., Borgstr m R., Igland O.T. Minimal gene flow from introduced browntrout (Salmo trutta L.) after30years of stocking. Journal of Applied Ichthyology,2006,22:119-124.
    Heist E.J., Musick J.A., Graves J.E. Genetic population structure of the shortfin mako (Isurusoxyrinchus) inferred from restriction fragment length polymorphism analysis of mitochondrialDNA. Canadian Journal of Fisheries and Aquatic Sciences,1996,53:583-588.
    Hewitt G.M. Some genetic consequences of ice ages, and their role in divergence and speciation.Biological Journal of Linnean Society,1996,58:247-276.
    Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913.
    Holder M., Lewis P.O. Phylogeny estimation: traditional and Bayesian approaches. Genetics,2003,4:275-284.
    Holderegger R., Wagner H. A brief guide to landscape genetics. Landscape Ecology,2006,21:793-796.
    Holzhauer S.I.J., Ekschmitt K., Sander A.C., Dauber J., Wolters V. Effect of historic landscapechange on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecology,2006,21:891-899.
    Hsueh Y., Wang J., Chern C.S. The intrusion of the Kuroshio across the continental shelf northeastof Taiwan. Journal of Geophysical Research,1992,97:14320-14323.
    Hubbs C.L., Lagler K.F. Fishes of the Great Lakes Region. University of Michigan press,Michigan,1947.
    Humphries J.M., Bookstein F.L., Chernoff B., Smith G.R., Elder R.L. Poss S.G. Multivariatediscrimination by shape in relation to sizes. Systematic Zoology,1981,30:291-308.
    Hunter J.R., Kimbrell C.A. Early life history of Pacific mackerel, Scomber japonicus. FisheryBullutin,1980,78:89-101.
    Hutchings J.A. Collapse and recovery of marine fishes. Nature,2000,406:882-885.
    Imbrie J., Boyle E.A., Clemens S.C., Duffy A., Howard W.R., Kukla G., Kutzbach J., MartinsonD.G., McIntyre A., Mix A.C., Molfino B., Morley J.J., Peterson L.C., Pisias N.G., Prell W.L.,Raymo M.E., Shackleton N.J., Toggweiler J.R. On the structure and origin of major glaciationcycles,1. Linear responses to Milankovitch forcing. Paleoceanography,1992,7:701-738.
    Infante C., Blanco E., Zuasti E., Crespo A., Manchado M. Phylogenetic differentiation betweenAtlantic Scomber colias and Pacific Scomber japonicus based on nuclear DNA sequences.Genetica,2007,130:1-8.
    Javor B., Lo N., Vetter R. Otolith morphometrics and population structure of Pacific sardine(Sardinops sagax) along the west coast of North America. Fishery Bullutin,2011,109:402-415.
    Jensen J.L., Bohonak A.J. Kelley S.T. Isolation by distance, web service. BMC Genetics,2005,6:13.
    J rgensen H.B., Hansen M.M., Bekkevold D., Ruzzante D.E., Loeschcke V. Marine landscapesand population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. MolecularEcology,2005,14:3219-34.
    Keeney D.B., Heupel M.R., Hueter R.E., Heist E.J. Microsatellite and mitochondrial DNAanalyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in thenorthwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology,2005,14:1911-1923.
    Ken J.T. The complex bingham distribution and shape analysis. Journal of the Royal StatisticalSociety, Series B,1994,56:285-299.
    Kennett J.P., Ingram B.L. A20,000-year record of ocean circulation and climate change from theSanta Barbara basin. Nature,1995,377:510-514.
    King T.L, Kalinowski S.T, Schill W.B., Spidle A.P., Lubinski B.A. Population structure of Atlanticsalmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation.Molecular Ecology,2001,10:807-821.
    Kitamura A., Takano O., Takata H., Omote H. Late Pliocene-early Pleistocene paleoceanographicevolution of the Japan Sea. Palaeogeography Palaeoclimatology Palaeoecology,2001,172:81-98.
    Klanten O.S., Choat J.H., Herwerden L. Extreme genetic diversity and temporal rather than spatialpartitioning in a widely distributed coral reef fish. Marine Biology,2007,150:659-670.
    Kocher T.D., Thomas W.K., Meyer A., Edwards S.V. Dynamic of mitochondrial DNA evolutionin animals: amplification and sequencing with conserved primers. Proceedings of the NationalAcademy of Science USA,1989,86:6196-6200.
    Kuhl F.P., Giardina C.R. Elliptic Fourier analysis of a closed contour. Computer Graphics andImage Processing,1982,18:259-278.
    Kumar S., Tamura K., Nei M. MEGA3: Integrated software for Molecular Evolutionary GeneticsAnalysis and sequence alignment. Briefings in Bioinformatics,2004,5:150-163.
    Lai Y., Sun F. The relationship between microsatellite slippage mutation rate and the number ofrepeat units. Molecular Biology and Evolution,2003,20:2123-2131.
    Lintas C., Hirano J., Archer S. Genetic variation in the European eel (Anguilla anguilla).Molecular Marine Biology and Biotechnology,1998,7:263-269.
    Liu M., Lin L.S., Gao T.X., Yanagimoto T., Sakurai Y., Grant W.S. What maintains the centralNorth Pacific genetic discontinuity in Pacific herring? PLoS ONE,2012,7: e50340.doi:10.1371/journal.pone.0050340.
    Liu J.X., Gao T.X., Yokogawa K., Zhang Y.P. Differential population structuring and demographichistory of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) andspotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogeneticsand Evolution,2006a,39:799-811.
    Liu J.X., Gao T.X., Zhuang Z.M., Jin X.S., Yokogawa K., Zhang Y.P. Late Pleistocene divergenceand subsequent population expansion of two closely related fish species, Japanese anchovy(Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogeneticsand Evolution,2006b,40:712-723.
    Liu J.X., Gao T.X., Wu S.F., Zhang Y.P. Pleistocene isolation in the Northwestern Pacific marginalseas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck&Schlegel,1845). Molecular Ecology,2007,16:275-288.
    Liu J.Y. Status of marine biodiversity of the China seas. PLoS ONE,2013,8: e50719.doi:10.1371/journal.pone.0050719.
    Liu J.Y., Lun Z.R., Zhang J.B., Yang T.B. Population genetic structure of striped mullet, Mugilcephalus, along the coast of China, inferred by AFLP fingerprinting. Biochemical Systematicsand Ecology,2009,37:266-274.
    Long E.O., David I.D. Repeated genes in eukaryotes. Annual Review of Biochemistry,1980,49:727-764.
    Longmore C., Fogarty K., Neat F., Brophy D., Trueman C., Milton A., Mariani S. A comparisonof otolith microchemistry and otolith shape analysis for the study of spatial variation in adeep-sea teleost, Coryphaenoides rupestris. Environmental Biology of Fishes,2010,89:591-605.
    Luikart G., Cornuet J-M., Empirical evaluation of a test for identifying recently bottleneckedpopulations from allele frequency data. Conservation Biology,1998,12:228-237.
    Lundy C.J., Moran P., Rico C., Milner R.S., Hewitt G.M. Macrogeographic populationdifferentiation in oceanic environments: a case study of European hake (Merlucciusmerluccius), a commercially important fish. Molecular Ecology,1999,8:1889-1898.
    Machado-Schiaffino G., Campo D., Garcia-Vazquez E. Strong genetic differentiation of theAustral hake (Merluccius australis) across the species range. Molecular Phylogenetics andEvolution,2009,53:351-35.
    Magoulas A., Castilho R., Caetano S., Marcato S., Patarnello T. Mitochondrial DNA reveals amosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations ofanchovy (Engraulis encrasicolus). Molecular Phylogenetics and Evolution,2006,39:734-746.
    Manel S., Schwartz M.K., Luikart G., Taberlet P. Landscape genetics: combining landscapeecology and population genetics. Trends in Ecology and Evolution,2003,18:189-197.
    Manni F., Guérard E., Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation:how barriers can be detected by using Monmonier’s algorithm. Human Biology,2004,76:173-190.
    Martínez P., Gonzalez E.G., Castilho R., Zardoya R. Genetic diversity and historical demographyof Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution,2006,39:404-416.
    Maruyama T., Fuerst P.A. Population bottlenecks and nonequilibrium models in populationgenetics. II. Number of alleles in a small population that was formed by a recent bottleneck.Genetics,1985,111:675-689.
    Matschiner M., Hanel R., Salzburger W. Gene flow by larval dispersal in the Antarcticnotothenioid fish Gobionotothen gibberifrons. Molecular Ecology,2009,18:2574-2587.
    Matsubara K. Fish Morphology and Hierarchy, part I. Ishizaki Shoten, Tokyo,1955.
    Matsui T. Review of the mackerel genera Scomber and Rastrelliger with description of a newspecies of Rastrelliger. Copeia,1967,1:71-83.
    McManus J.W. Marine speciation, tectonics and sealevel changes in southeast Asia. Proceedingsof the fifth International Coral Reef Congress, Tahiti,1985,4:133-138.
    Meyer A. Evolution of mitochondrial DNA in fishes. In: Hochachka P.W., Mommsen T.P. eds.Biochemistry and Molecular Biology of Fishes, Elsevier Science Publishers, Amsterdam,1993,1-38pp.
    Meyer A. Phylogenetic relationship and evolutionary processes in east African cichlid fishes.Trends in Ecology and Evolution,1993,8:279-284.
    Michel C., Hicks B.J., St lting K.N., Clarke A.C., Stevens M.I., Tana R., Meyer A., van denHeuvel M.R. Distinct migratory and non-migratory ecotypes of an endemic New Zealandeleotrid (Gobiomorphus cotidianus)-implications for incipient speciation in island freshwaterfish species. BMC Evolutionary Biology,2008,8:49.
    Minegishi Y., Aoyama J., Inoue J.G., Miya M., Nishida M., Tsukamoto K. Molecular phylogenyand evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genomesequences. Molecular Phylogenetics and Evolution,2005,34:134-146.
    Monmonier M.S. Maximum-difference barriers: an alternative numerical regionalization method.Geographical Analysis,1973,5:245-261.
    Monteiro A., Pierce N.E. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI,COII, and EF-l α gene sequences. Molecular Phylogenetics and Evolution,2001,18:264-281.
    Moore G.A. The cutaneous sense organs of barbeled minnows adapted to life in the waters of theGreat Plains region. Transactions of the American Microscopical Society,1950,519:69-95.
    Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York,1987.
    Nelson R.J., Beacham T.D., Small M.P. Microsatellite analysis of the population structure of aVancouver Island sockeye salmon (Oncorhynchus nerka) stock complex using nondenaturinggel electrophoresis. Molecular Marine Biology and Biotechnology,1998,7:312-319.
    Nesb C.L., Rueness E.K., Iversen S.A., Skagen D.W., Jakobsen K.S. Phylogeography andpopulation history of Atlantic mackerel (Scomber scombrus L.): a genealogical approachreveals genetic structuring among the eastern Atlantic stocks. Proceedings of the RoyalSociety B.,2000,267:281-292.
    Neville H.M., Dunham J B., Peacock M.M. Landscape attributes and life history variability shapegenetic structure of trout populations in a stream network. Landscape Ecology,2006,21:901-916.
    Normark B.B. Molecular systematic and evolution of the aphid family Lachnidae. MolecularPhylogenetics and Evolution,2000,14:131-140.
    Nylander J.A.A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre,Uppsala University, Uppsala,2004.
    Nylander J.A.A., Ronquist F., Huelsenbeck J. P., Nieves-Aldrey J. Bayesian phylogenetic analysisof combined data. Systematic Biology,2004,53:47-67.
    Ohdachi S., Masuda R., Abe H., Adachi J., Dokuchaev N.E., Haukisalmi V., Yoshida M.C.Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from themitochondrial cytochrome b gene sequences. Zoological Science,1997,14:527-532.
    Pagha G., Morgante M. PCR-based multiplex DNA fingerprinting techniques for the analysis ofconifer genomes. Molecular Breeding,1998,4:173-177.
    Palumbi S.R. Genetic divergence, reproductive isolation, and marine speciation. Annual Reviewof Ecology and Systematics,1994,25:547-572.
    Palumbi S.R. Population genetics, demographic connectivity, and the design of marine reserves.Ecological Applications,2003,13:146-158.
    Papetti C., Franco A.D., Zanel L., Guidetti P., Simone V.D., Spizzotin M., Zorica B., Ke V..,Mazzoldi C. Single population and common natal origin for Adriatic Scomber scombrusstocks: evidence from an integrated approach. ICES Journal of Marine Science,2013,doi:10.1093/icesjms/fss201.
    Peltonen H., Raitaniemi J., Parmanne R., Eklund J., Nyberg K., Halling F. Age determination ofBaltic herring from whole otoliths and from neutral red stained otolith cross sections. ICESJournal of Marine Science,2002,59:323-332.
    Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J.,Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C.,Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past420,000years from the Vostok ice core, Antarctica. Nature,1999,399:429-436.
    Petursdottir G., Begg G.A., Marteinsdottir G. Discrimination between Icelandic cod (Gadusmorhua L.) populations from adjacent spawning areas based on otolith growth and shape.Fisheries Research,2006,80:182-189.
    Piry S., Luikart G., Cornuet J-M. BOTTLENECK: a computer program for detecting recentreductions in the effective population size using allele frequency data. Journal of Heredity,1999,90:502-503.
    Ponton D. Is geometric morphometrics efficient for comparing otolith shape of different fishspecies? Journal of Morphology,2006,267:750-757.
    Posada D., Buckley T.R. Model selection and model averaging in phylogenetics: advantages ofAkaike information criterion and Bayesian approaches over likelihood ratio tests. SystematicBiology,2004,53:793-808.
    Posada D., Crandall K. Modeltest: testing the model of DNA substitution. Bioinformatics,1998,14:817-818.
    Primmer C.R., M ller A.P., Ellegren H. Resolving genetic relationships with microsatellitemarkers: a parentage testing system for the swallow Hirundo rustica. Molecular Ecology,1995,4:493-498.
    Pritchard J.K., Tephens M.S., Onnelly P.D. Inference of population structure using multilocusgenotype data. Genetics,2000,155:945-959.
    Ray N., Currat M., Excoffier L. Intra-deme molecular diversity in spatially expanding populations.Molecular Biology and Evolution,2003,20:76-86.
    Raymond M., Rousset F. GENEPOP (version1.2): population genetics software for exact tests andecumenicism. Journal of Heredity,1995,86:248-249.
    Reist J. An empirical evaluation of several univariate methods that adjust for size variation inmorphometric data. Canadian Journal of Zoology,1985,63:1429-1439.
    Repaci V., Stow A.J., Briscoe D.A. Fine-scale genetic structure, co-founding and multiple matingin the Australian allodapine bee (Ramphocinclus brachyurus). Journal of Zoology,2007,270:687-691.
    Riccioni G., Landi M., Ferrara G., Milano I., Cariani A., Zane L., Sella M., Barbujani G., Tinti F.Spatio-temporal population structuring and genetic diversity retention in depleted AtlanticBlue fin tuna of the Mediterranean Sea. Proceedings of the National Academy of Science USA,2010,107:2102-2107.
    Rice W.R. Analysing tables of statistical tests. Evolution,1989,43:223-225.
    Riginos C., Nachman M.W. Population subdivision in marine environments: the contributions ofbiogeography, geographical distance and discontinuous habitat to genetic differentiation in ablennioid fish, Axoclinus nigricaudus. Molecular Ecology,2001,10:1439-1453.
    Robards M.D., Willson M.F., Armstrong R.H., Piatt J.F. Sand lance: a review of biology andpredator relations and annotated bibliography. Exxon Valdez oil spill restoration project99346,1999.
    Robles F., de la Herran R., Ludwig A., Rejon C.R., Rejon M.R., Garrido-Ramos M.A. Genomicorganization and evolution of the5S ribosomal DNA in the ancient fish sturgeon. Genome,2005,48:18-28.
    Rocha L.A., Bass A.L., Robertson D.R., Bowen B.W. Adult habitat preferences, larval dispersal,and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae).Molecular Ecology,2002,11:243–252.
    Rodríguez-Trelles F., Tarrio R., Ayala F.J. A methodological bias toward overestimation ofmolecular evolutionary time scales. Proceedings of the National Academy of Science USA,2002,99:8112-8115.
    Rogers A.R. Genetic evidence for a Pleistocene population expansion. Evolution,1995,49:608-615.
    Rogers A.R. Harpending H. Population growth makes waves in the distribution of pairwise geneticdifferences. Molecular Biology and Evolution,1992,9:552-569.
    Rogers P.J., Ward T.M., McLeay L.J., Lowry M., Saunders R.J., Williams D. Reproductivebiology of blue mackerel, Scomber australasicus, off southern and eastern Australia:suitability of the daily egg production method for stock assessment. Marine and FreshwaterResearch,2009,60:187-202.
    R gl F. Mediterranean and Paratethys. Facts and hypothesis of an Oligocene to Miocenepaleogeography (short overview). Geological Carpathica,1999,50:339-349.
    Ronquist F., Huelsenbeck J.P. Mrbayes3: bayesian phylogenetic inferenceunder mixed models.Bioinformatics,2003,19:1572-1574.
    Ruiz-Campos G., Camarena-Rosales F., Varela-Romero A., Sánchez-González S., Rosa-VélezJ.D.L. Morphometric variation of wild trout populations from northwestern Mexico (Pisces:Salmonidae). Review in Fish Biology and Fisheries,2003,13:91-110.
    Ruzzante D.E., Taggart C.T., Cook D. A review of the evidence for genetic structure of cod(Gadus morhua) populations in the NW Atlantic and population affinities of larval cod offNewfoundland and the Gulf of St Lawrence. Fisheries Research,1999,43:79-97.
    Saitou N., Nei M. The neighbor-joining methods: a new method for reconstructing phylogenetictrees. Molecular Biology and Evolution,1987,4:406-425.
    Sbisà E., Tanzariello F., Reyes A., Pesole G., Saccone C. Mammalian mitochondrial D-loop regionstructure analysis: identification of new conserved sequences and their functional andevolutionary implications. Gene,1997,205:125-140.
    Schneider S., Excoffier L. Estimation of past demographic parameters from the distribution ofpairwise differences when the mutation rates vary among sites: application to humanmitochondrial DNA. Genetics,1999,152:1079-1089.
    Schneider S., Roessli D., Excoffier L. ARLEQUIN version2.0: a software for population geneticdata analysis. University of Geneva, Geneva, Switzerland,2000.
    Scoles D.R., Collette B.B, Graves J.E. Global phylogeography of mackerels of the genus Scomber.Fishery Bulletin,1998,96:823-842.
    Shen K.N., Jamandre B.W., Hsu C.C., Tzeng W.N., Durand J.D. Plio-Pleistocene sea level andtemperature fluctuations in the northwestern Pacific promoted speciation in theglobally-distributed flathead mullet Mugil cephalus. BMC Evolutionary Biology,2011,11:83.
    Shinde D., Lai Y., Sun F., Arnheim N. Taq DNA polymerase slippage mutation rates measured byPCR and quasi-likelihood analysis:(CA/GT)nand (A/T)nmicrosatellites. Nucleic AcidsResearch,2003,31:974-980.
    Shiraishi T., Okamoto K., Yoneda M., Sakai T., Ohshimo S., Onoe S., Yamaguchi A., MatsuyamaM. Age validation, growth and annual reproductive cycle of chub mackerel Scomber japonicusoff the waters of northern Kyushu and in the East China Sea. Fisheries Science,2008,74:947-954.
    Slatkin M.A. Measure of population subdivision based on microsatellite allele frequencies.Genetics,1995,130:457-462.
    Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution,1993,47:264-279.
    Smouse P.E., Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocusgenetic structure. Heredity,1999,82:561-573.
    Song N., Zhang X.M., Sun X.F., Yanagimoto T., Gao T.X. Population genetic structure and larvaldispersal potential of spottedtail goby Synechogobius ommaturus in the northwest Pacific.Journal of Fish Biology,2010,77:388-402.
    Spear S., Peterson C.R., Matocq M.D., Storfer A. Landscape genetics of the blotched tigersalamander (Ambystoma tigrinum melanostictum). Molecular Ecology,2005,14:2553-2564.
    Starks E.C. An inconsistency in taxonomy. Science,1921,54:222-223.
    Strathmann R.R., Hughes T.P., Kuris A.M., Lindeman K.C., Morgan S.G., Pandolfi J.M., WarnerR.R. Evolution of self-recruitment and its consequences for marine populations. Bulletin ofMarine Science,2002,70: S377-S396.
    Studholme A.L., Packer D.B., Berrien P.L., Johnson D.L., Zetlin C.A., Morse W.W. Essential fishhabitat source document: Atlantic mackerel, Scomber scombrus, life history and habitatcharacteristics. NOAA Technical Memorandum NMFS NE,1999,141:35.
    Sun X. Analysis of the surface path of the Kuroshio in the East China Sea. In: Sun X. eds. Essayson the Investigation of Kuroshio. Ocean Press, Beijing,1987,1-14pp.
    Swofford D.L. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version4.Sinauer Associates, Sunderland, Massachusetts,2002.
    Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics,1983,105:437-460.
    Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585-595.
    Takahashi R., Watanabe K., Nishida M., Hori M. Evolution of feeding specialization inTanganyikan scale-eating cichlids: a molecular phylogenetic approach. BMC EvolutionaryBiology,2007,7:195.
    Tamaki K., Honza E. Global tectonics and formation of marginal basins: role of the westernPacific. Episodes,1991,14:224-230.
    Tamra C.M., Kerry L.S. Genetic and behavioral components of the cryptic species boundarybetween Laupala cerasina and L. kobalensis (Orthoptera: Gryllidae). Genetica,2002,116:301-310.
    Tang C.Y., Tzeng C.H., Chen C.S., Chiu T.S. Microsatellite DNA markers for population geneticstudies of blue mackerel (Scomber australasicus) and cross-specific amplification in S.japonicus. Molecular Ecology Resource,2009,9:824-827.
    Torres G.J., Lombarte A., Morales-Nin B. Sagittal otolith size and shape variability to identifygeographical intraspecific differences in three species of the genus Merluccius. Journal ofMarine Biology Association of the United Kingdom,2000,80:333-342.
    Turan C. Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) usingmorphometric and meristic character. ICES Journal of Marine Science,2004,61:774-781.
    Turan C. The use of otolith shape and chemistry to determine stock structure of Mediterraneanhorse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology,2006,69:165-180.
    Tranah G.J., Bagley M., Agresti J.J., May B. Development of codominant markers for identifyingspecies hybrids. Conservation Genetics,2003,4:537-541.
    Tzeng T.D. Morphological variation between populations of spotted mackerel (Scomberaustralasicus) off Taiwan. Fisheries Research,2004,68:45-55.
    Tzeng T.D. Population structure and historical demography of the spotted mackerel (Scomberaustralasicus) off Taiwan inferred from mitochondrial control region sequencing. ZoologicalStudies,2007,46:656-663.
    Tzeng C.H., Chen C.S., Tang P.C., Chiu T.S. Microsatellite and mitochondrial haplotypedifferentiation in blue mackerel (Scomber australasicus) from the western North Pacifc. ICESJournal of Marine Science,2009,66:816-825.
    Tzeng T.D., Haung H.L., Wang D., Yeh S.Y. Genetic diversity and population expansion of thecommon mackerel (Scomber japonicus) off Taiwan. Journal of the Fisheries Society ofTaiwan,2007,34:237-245.
    Tzeng T.D., Yeh S.Y. Morphological variation in the common mackerel (Scomber japonicus) offTaiwan. Journal of the Fisheries Society of Taiwan,2007,34:197-205.
    Van de Putte A.P., Van Houdt J.K.J., Maes G.E., Hellemans B., Collins M.A., Volckaert F.A.M.High genetic diversity and connectivity in a common mesopelagic fish of the Southern Ocean:the myctophid Electrona antarctica. Deep-Sea Research II,2012,59-60:199-207.
    Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. MICRO-CHECKER: software foridentifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes,2004,4:535-538.
    Vasconcelos J., Dias M.A., Faria G. Age and growth of the Atlantic chub mackerel Scombercolias Gmelin,1789off Madeira Island. Life and Marine Sciences,2011,28:57-70.
    Veinott G., Porter R. Using otolith microchemistry to distinguish Atlantic salmon (Salmo salar)parr from different natal streams. Fisheries Research,2005,71:349-355.
    Vi as J., Bremer J.A., Pla C. Phylogeography of the Atlantic bonito (Sarda sarda) in the northernMediterranean: the combined effects of historical vicariance, population expansion, secondaryinvasion, and isolation by distance. Molecular Phylogenetics and Evolution,2004,33:32-42.
    Voris H.K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and timedurations. Journal of Biogeography,2000,27:1153-1167.
    Wang M.L, Zhang X.M., Yang T.Y., Han Z.Q., Yanagimoto T., Gao T.X. Genetic diversity in themtDNA control region and population structure in the Sardinella zunasi Bleeker. AfricanJournal of Biotechnology,2008,7:4384-4392.
    Wang P.X. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic andsedimentological features. Marine Geology,1999,156:5-39.
    Waples R.S. A multispecies approach to the analysis of gene flow in marine shore fishes.Evolution,1987,41:385-400.
    Waples R.S. Separating wheat from the chaff: patterns of genetic differentiation in high gene flowspecies. Journal of Heredity,1998,89:438-450.
    Ward R.D., Grewe P. M. Appraisal of molecular genetic techniques in fisheries. Review in FishBiology and Fisheries,1994,4:300-325.
    Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D.N. DNA barcoding Australia’sfshspecies. Philosophical Transactions of the Royal Society B,2005,360:1847-1857.
    Ware D.M., Lambert T.C. Early life history of Atlantic mackerel (Scomber scombrus) in thesouthern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences,1985,42:577-592.
    Wares J.P., Cunningham C.W. Phylogeography and historical ecology of the North Atlanticintertidal. Evolution,2001,55:2455-2469.
    Was A., Gosling E., McCrann K., Mork J. Evidence for population structuring of blue whiting(Micromesistius poutassou) in the Northeast Atlantic. ICES Journal of Marine Science,2008,65:216-225.
    Watson J.J., Priede I.G., Witthames P.R. Owori-Wadunde A. Batch fecundity of Atlantic mackerel,Scomber scombrus L. Journal of Fish Biology,1992,40:591-598.
    Wattier R., Engel C.R., Saumitou-Laprade P., Valero M. Short allele dominance as a source ofheterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locusGv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology,1998,7:1569-1573.
    Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure.Evolution,1984,38:1358-1370.
    Wimberger P.H. Plasticity of fish body shapedthe effects of diet, development, family and age intwo species of Geophagus (Pisces: Cichlidae). Biological Journal of Linnean Society,1992,45:197-218.
    Wirgin I., Waldman J. R. Use of nuclear of DNA in stock identification: single-copy and repetitivesequence markers. In: Cadrin S.X., Friedland K.D., Waldman J.R. Stock IdentificationMethods: Applications in Fishery Science, Elsevier Academic Press, Oxford, UK,2005,331-370pp.
    Wirth T., Bernatchez L. Genetic evidence against panmixia in the European eel. Nature,2001,409:1037-1040.
    Wu B. Some problems on circulation study in Taiwan Strait. Taiwan Strait,1982,1:1-7.
    Xia X., Xie Z. DAMBE: software package for data analysis in molecular biology and evolution.Journal of Heredity,2001,92:371-373.
    Xiao W.H., Zhang Y.P., Liu H.Z. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae):taxonomy, biogeography, and coevolution of a special group restricted in East Asia. MolecularPhylogenetics and Evolution,2001,18:163-173.
    Xiao Y.S., Gao T.X., Zhang Y., Yanagimoto T. Demographic history and population structure ofblackfin flounder (Glyptocephalus stelleri) in Japan revealed by mitochondrial control regionsequences. Biochemical Genetics,2010,48:402-17.
    Xie H., Bain O., Williams S.A. Molecular phylogenetic studies on filarial parasites based on5Sribosomal spacer sequences. Parasite,1994,1:141-151.
    Xu X., Oda M. Surface-water evolution of the eastern East China Sea during the last36,000years.Marine Geology,1999,156:285-304.
    Yagishita N., Kobayashi T. Isolation and characterization of nine microsatellite loci from the chubmackerel, Scomber japonicus (Perciformes, Scombridae). Molecular Ecology Resource,2008,8:302-304.
    Yeh F.C., Yang R., Boyle T.J., Ye Z., Xiyan J.M. POPGENE32: Microsoft Windows-basedfreeware for population genetic analysis. Molecular Biology and Biotechnology Centre,University of Alberta, Edmonton,2000.
    Zardi G.I., McQuaid C.D., Teske P.R., Barker N.P. Unexpected genetic structure of musselpopulations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis.Marine Ecology Progress Series,2007,337:135-144.
    Zardoya R., Castilho R., Grande C., Favre-Krey L., Caetano S., Marcato S., Krey G., Patarnello T.Differential population structuring of two closely related fish species, the mackerel (Scomberscombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. MolecularEcology,2004,13:1785-1798.
    Zeng L., Cheng Q., Chen X. Microsatellite analysis reveals the population structure and migrationpatterns of Scomber japonicus (Scombridae) with continuous distribution in the East andSouth China Seas. Biochemical Systematics and Ecology,2012,42:3-93.
    Zhan A., Hu J., Hu X., Zhou Z., Hui M., Wang S., Peng W., Wang M., Bao Z. Fine-scalepopulation genetic structure of Zhikong scallop (Chlamys farreri): do local marine currentsdrive geographical differentiation? Marine Biotechnology,2009,11:223-35.
    Zhou D., Liang Y.B., Tseng C.K. Oceanology of China Seas. Dordrecht; Boston: KluwerAcademic Publishers,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700