用户名: 密码: 验证码:
二硫键异构酶类蛋白在植物响应汞胁迫中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞(mercury, Hg),是人类食物链中毒性最强的重金属之一。汞矿的开采、含汞废弃物的排放、化肥和农药的不合理施用等,已造成环境汞污染日益严重,对动植物的生长发育和人类的健康造成了严重威胁。Hg易被植物吸收,其与巯基(-SH)有很强的亲和力,能与亲水蛋白中的半胱氨酸(Cys)残基结合,扰乱任何未受保护蛋白质的功能;抑或是作为二价阳离子,取代金属酶的辅基如Mg2+、Mn2+、Zn2+等,导致酶活性下降或丧失;此外汞诱导的活性氧自由基会引起巯基氧化和二硫键交联等损伤,从而抑制植物的生长发育。因此,如何保护巯基与二硫键,防止蛋白的变性与聚集,保证正常的代谢,亟待研究。
     蛋白质二硫键异构酶(protein disulfide isomerase, PDI; EC5.3.4.1)及其类蛋白(PDIL),是硫氧还蛋白超家族的一员,具有催化蛋白质二硫键氧化、还原及异构的功能;且具有分子伴侣活性,可促进蛋白质的折叠与装配,并可防止变性蛋白的聚集。但迄今为止PDI在植物响应汞胁迫中的作用还未见报道。本文首次研究了汞胁迫下水稻PDILs(OsPDILs)的表达变化,并证实过表达来自嗜热自养甲烷杆菌的PDIL (MTH1745)可提高植物对汞等胁迫的耐性,实现了深海基因资源的利用。具体结果如下:
     1)利用生物信息学方法分析了水稻自身二硫键异构酶类蛋白(OsPDILs)的基本信息、结构域、分类、定位及表达,结果表明12个OsPDILs氨基酸长度从148aa到563aa不等,具有1至2个Trx (CXXC)结构域,分布在9条染色体上,基因表达分析(UniGene数据库和MPSS数据)表明这12个OsPDI基因表达具有组织差异性与生长发育阶段差异性。
     2)以水稻‘日本晴’(Oryza sativa L., cv.Nipponbare)为材料,采用荧光定量PCR分析了12个OsPDILs基因在汞胁迫下的表达变化,结果表明,75μM HgCl2胁迫可诱导水稻幼苗根中OsPDIL1-1、OsPDIL1-3、OsPDIL5-1、OsPDIL5-2及OsPDIL5-3表达显著上调,OsPDIL1-2表达下调,而OsPDILs2-1、OsPDILs2-3釉OsPDILs5-4等无显著变化。
     3)将来源于嗜热自养甲烷杆菌杆菌(Methanothermobacter thermoautotrophicum)的PDIL蛋白编码基因(MTH1745),通过农杆菌介导的花序转化法导入拟南芥,获得含目的基因的纯合株系,逆境处理实验结果表明转基因拟南芥能提高对汞胁迫的耐性,且对高温和盐胁迫也具有较强的耐性
     4)将MTH1745通过农杆菌介导导入水稻‘日本晴’中,获得了MTH1745组成型高表达(CaMV35S启动子)的纯合株系。结果表明,在不同浓度HgCl2处理下转基因水稻生长优于野生型,具有更强的抗性。转基因植株的光合效率(净光合速率Pn、气孔导度Gs、蒸腾速率Tr)、抗氧化酶(SOD、POD等)活性、非蛋白硫醇(NPT)和还原态谷胱甘肽(GSH)含量均明显高于野生型,这意味着转基因植株有可能通过维持蛋白质的合成,提高含巯基(-SH)类物质和二硫键化合物活性,保护光合作用过程中关键酶等,防止膜脂过氧化损伤,从而起到缓解汞引起的毒害作用。
Mercury (Hg) is one of the most toxic heavy metals. It has become a major contaminant through mining and smelting, untreated industrial wastes, mercury by-products and other livelihood activities, and with significant impacts on growth and development of organisms even human health. Hg is easily taken up by plants and is biochemically toxic because it binds to sulfhydryl groups (-SH) of proteins, resulting in displacement of essential elements or disruption of structure. Further, Mg2+, Mn2+, or Zn2+can be replaced by Hg2+, so the activities of the enzymes with these metals may be disturbed. Anymore, Hg can trigger the generation of reactive oxygen species (ROS) and induce oxidation of-SH or cross-linking of disulfide bonds (-S-S). So it is important and urgent to find the ways for protection of-SH and-S-S, preventing the aggregation of denatured proteins and maintaining the metabolism in order.
     Protein disulfide isomerase (PDI, EC5.3.4.1) and disulfide isomerase-like protein (PDIL), one member of the thioredoxin super-family, can catalyze thiol-disulfide interchange, resulting in the formation, reduction, or isomerization of protein disulfide bonds in protein substrates. In addition, PDI or disulfide isomerase-like protein (PDIL) display chaperone activity that promote protein folding or prevent protein aggregation. But the relationship of PDIL and plant response under Hg toxicity has not been reported until now. The expression profile of OsPDILs was first investigated in this study, and the enhanced tolerance to mercury was observed in transgenic plants by over-expression of PDIL. The results in details are as follows:
     1) In silico identification and analysis, including basic information, structural domain, classify, chromosomal location, and expression, of the protein disulphide isomerases in rice were performed, and the results showed the amino acid length of the12OsPDILs was about148aa to563aa. They have one or two domain of the Trx (CXXC) and located in9chromosomals. And the expression analysis from UniGene database or the massively parrellel signature sequencing proved the differences in genes, tissues or stages of growth and development.
     2) The expression of OsPDILs under Hg treatment was determined by real time quantity-PCR with Oryza saliva L., cv. Nipponbare. The results showed that OsPDIL1-1, OsPDIL1-3, OsPD1L5-1, OsPDIL5-2and OsPDIL5-3were up-regulated in roots of rice seedlings under75μM HgCl2treatments, compared to normal condition, while OsPDIL1-2was down-regulated. And OsPDILs2-1, OsPDILs2-3and OsPDILs5-4showed no significant difference whenever the Hg2+treatment or not.
     3) MTH1745, a PDIL from Methanothermobacter thermoautotrophicum, was reconstructed and transformed into Arabidopsis thaliana by inflorescence. The homozygous lines were chosen and presented the resistance to Hg stress. They also displayed the tolerance to high-tempreture or salt stress.
     4) Transgenic rice lines were achieved by co-cultivation of rice calli derived from mature seed scutella with A. tumefaciens containing p1301-35S::MTH1745. The results of RT-PCR indicated a high level of MTH1745mRNA in leaves and roots of these transgenic plants. When treated with different concentration of HgCl2, the transgenic rice seedlings displayed Hg tolerance with obvious phenotypes and more effective photosynthesis (net photosynthetic rate Pn, stomatal conductance Gs and transpiration rate Tr) compared to wild-type plants. Furthermore, antioxidant enzyme activities of superoxide dismutase and peroxidase were notably higher and increased content of non-protein thiols and reduced glutathione (GSH) were also observed. All these may indicate that the transgenic plants could enhance the detoxification of Hg by promoting the synthesis of protein, increasing the activities of compounds with-SH or-S-S, protecting the enzymes in the process of photosynthesis and then proventing the oxidative damage of membrane caused by mercury stress.
引文
Aebi HE. Catalase. In Methods of Enzymatic Analysis[M]. Edited by Verlag Chemie, Weinheim.1983,273-285.
    Amin M, Elias SM, Hossain A, et al. Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.) [J]. Molecular Breeding,2012,30(1):345-354.
    Anita M, Choudhuri MA. Ameliorating effects of salicylic acid on lead and mercury-induced inhibition of germination and early seedling growth of two rice cultivars[J]. Seed Science and Technology,1997,25:263-270.
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology,2004,55:373-399.
    Bapu C, Purohit RC, Sood PP. Fluctuation of trace elements during methylmercury[J]. Toxication and Chelation Therapy,1994,13(12):112-113.
    Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J]. Aanalytical Biochemistry,1971,44:276-287.
    Bizily SP, Rugh CL, Meagher RB. Phytodetoxification of hazardous organomercurials by genetically engineered plants[J]. Nature Biotechnology,2000,18:213-217.
    Cai H, Wang CC, Tsou CL. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds[J]. The Journal of Biological Chemistry, 1994,269,24550-24552.
    Cai Y, Lin L, Cheng W, et al. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptakeand accumulation in rice seedlings (Oryza sativa) [J]. Plant, soil and Environment,2010,56(11):516-525.
    Cargnelutti D, Tabaldi LA, Spanevello RM, et al. Mercury toxicity induces oxidative stress in growing cucumber seedlings[J]. Chemosphere,2006,65(6):999-1006.
    Chen F, Wang F, Wu FB, et al. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance[J]. Plant Physiology and Biochemistry,2010,48(8):663.
    Chen J, Yang ZM, Su Y, et al. Phytoremediation of heavy metal/metalloid-contaminated soils, in:R.V. Steinberg (Ed.), Contaminated Soils:Environmental Impact, Disposal and Treatment, Nova Science Publishers, Inc, NY, U.S.A. [M].2009,1-19.
    Cho EK, Choi YJ. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance onplants[J]. Biotechnology Letters,2009,31:597-606.
    Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings[J]. Plant Science,2000, 156(1):1-9.
    Christos D, Maarten JC, Patrick HB. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots [J]. Plant Physiology,2000,124: 1349-1361.
    Ciaffi M, Paolacci AR, D'Aloisio E, et al. Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences[J]. Gene,2006,366: 209-218.
    d'Aloisio E, Paolacci AR, Dhanapal AP, et al. The protein disulfide isomerase gene family in bread wheat (T. aestivum L.) [J]. BMC Plant Biology,2010,10:101-129.
    Denisov AY, Maattanen P, Dabrowski C, et al. Solution structure of the bb'domains of human protein disulfide isomerase[J]. FEBS Journal,2009,276:1440-1449.
    Ding X, Lv ZM, Zhao Y, et al. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response[J]. Cell Stress and Chaperones,2008,13:239-246.
    Evers DC, Wiener JG, Basu N, et al. Mercury in the Great Lakes region:bioaccumulation, spatiotemporal patterns, ecological risks, and policy[J]. Ecotoxicology,2011,20: 1487-1499.
    Fanous A, Weiss W, Gorg A, et al. A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum[J]. Proteomics,2008,8:4976-4986.
    Feng LL, Wang K, Li Y, et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants[J]. Plant Cell Reports,2007,26(9): 1635-1646.
    Foyer CH, LopezDelgado H, Dat JF, et al. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiologia Plantarum, 1997,100:241-254
    Freedman RB, Hint TR, Tuite MF. Protein disulphide isomerase:building bridges in protein folding[J]. Trends in Biochemical Sciences,1994,19(8):331-336.
    Gao S, Ou-yang C, Tang L, et al. Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity[J]. Journal of Hazardous Materials,2010,182: 591-597.
    Gruber CW, Cemazar M, Clark RJ, et al. A novel plant protein disulfide isomerase involved in the oxidactive folding of cystine knot defense proteins[J]. Journal of Biological Chemistry,2007,22(14):20435-20446.
    Guo B, Liang YC, Zhu YG, et al. Role of salicylic acid in alleviating oxidative damage in rice roots(Oryza sativa) subjected to cadmium stress[J]. Environmental Pollution,2007,147: 743-749.
    Guthapfel R, Gueguen P, Quemeneur E. ATP binding and hydrolysis by the multifunctional protein disulfide isomerase[J]. Journal of Biological and Chemisty,1996,271: 2663-2666.
    Han FX, Su Y, Monts DL, et al. Plodinec, Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, U.S.A[J]. Science of the Total Environment,2006, 368:753-768.
    Han XH, Wang YH, Liu X, et al. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice[J]. Journal of Experimental Botany,2012,63:121-130.
    Hatahet F, Ruddock LW. Protein disulfide isomerase:a critical evaluation of its function in disulfide bond formation[J]. Antioxidant & Redox Signaling,2009,11:2807-2850.
    Hazama A, Kozono D, Guggino WB, et al. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation[J]. Journal of Biological Chemistry,2002, 277:29224-29230.
    He YK, Sun JG, Feng XZ, et al. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene[J]. Cell Research,2001,11(3):231-236.
    Heidenreich B, Mayer K, Sandermann JRH, et al. Mercury-induced genes in Arabidopsis thaliana:identification of induced genes upon long-term mercuric ion exposure [J]. Plant Cell and Environment,2001,24,1227-1234.
    Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant Journal, 1994,6:271-282.
    Hogg PJ. Disulfide bonds as switches for protein function[J]. Trends in Biochemical Sciences, 2003,28(4):210-214.
    Horvat M, Nolde N, Fajon V, et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China[J]. Science of the Total Environment,2003, 304:231-256.
    Houston NL, Fan C, Xiang JQ, et al. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins[J]. Plant Physiology,2005,137:762-778.
    Huang DJ, Chen HJ, Lin YH. Isolation and expression of protein disulfide isomerase cDNA from sweet potato (Ipomoea batatas [L.] Lam'Tainong 57') storage roots[J]. Plant science,2005,169:776-784.
    Israr M, Sahi SV. Antioxidative responses to mercury in the cell cultures of Sesbania drummondh[J]. Plant Physiology and Biochemisty,2006,44:590-595.
    Israr M, Sahi S, Datta R, et al. Bioaccumulation and physiological effects of mercury in Sesbania drummondii[J]. Chemosphere,2006,65:591-598.
    Jana SCM, Choudhuri MA. Glycolate metabolism of three submerged aquatic angiosperms during aging[J]. Aquatic Botany,1981,12:345-354.
    Jefferson RA. Assaying chimeric genes in plants:the GUS gene fusion system [J]. Plant Molecular Biology Reporter,1987,5:387-405.
    Johnson JC, Appels R, Bhave M. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice[J]. Functional & Integrative Genomics,2006,6:104-121.
    Kamauchi S, Wadahama H, Iwasaki K, et al. Molecular cloning and characterization of two soybean protein disulfide isomerases as molecular chaperones for seed storage proteins [J]. FEBS Journal,2008,275:2644-2658.
    Kaminaka H, Morita S, Yokoi H, et al. Molecular cloning and characterization of a cDNA for plastidic copper/zinc-superoxide dismutase in rice (Oryza saliva L.) [J]. Plant and Cell Physiology,1997,38:65-69.
    Katiyar-Agarwal S, Agarwal M, Grover A. Heat-tolerant basmati rice engineered by over-expression of hsp101[J]. Plant Molecular Biology,2003,51(5):677-686.
    Kemmink J, Darby NJ, Dijkstra K, et al. Structure determination of the N-terminal thioredoxin-like domain of protein disulfideisomerase using multidimensional heteronuclear C-13/N-15 NMR-spectroscopy[J]. Biochemistry,1996,35:7684-7691.
    Kieffer P, Schroder P, Dommes J, et al. Proteomic and enzymatic response of poplar to cadmium stress[J]. Journal of Proteomics,2009,72:379-396.
    Kim HS, Jung MC. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization[J]. Environmental Geochemisty and Health, 2012,34 Supplement 1:55-69.
    Kim YJ, Yeu SY, Park BS, et al. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice[J]. PLoS ONE,2012,7(9):e44493.
    Koivunen P, Salo KEH, Myllyharju J et al. Three binding sites in protein-disulfide isomerase cooperate in collagen prolyl 4-hydroxylase tetramer assembly [J]. Journal of Biological Chemistry,2005,280:5227-5235.
    Koizumi S, Yamada H. DNA microarray analysis of altered gene expression in cadmium-exposed human cells[J]. Journal of Occupational Health,2003,45:331-334.
    Kumar SP, Varman P AM, Kumari BDR. Identification of differentially expressed proteins in response to Pb response to Pb stress in Catharanthus roseus[J]. African Journal of Environmental Science and Technology,2011,5:689-699.
    Lemaire SD, Miginiac-Maslow M. The thioredoxin superfamily in Chlamydomonas reinhardtii[J]. Photosynth Res,2004,82:203-220.
    Levitan A, Trebitsh T, Kiss V, et al. Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences USA,2005,102:6225-6230.
    Li CP, Larkins BA. Expression of protein disulfide isomerase is elevated in the endospermof the maize βoury-2 mutant [J]. Plant Mol Biol,1996,30(5):873-882.
    Li L, Shimada T, Takahashi H, et al. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana[J]. Plant Cell,2006,18: 3535-3547.
    Liu Y H, Wang X T, Shi Y S, et al. Expression and characterization of a protein disulfide isomerases in Maize (Zea Mays L.) [J]. Chinese Journal of Biochemistry and Molecular Biology,2009,25(3):229-234.
    Lomonte C, Sgherri C, Baker AJM, Kolev SD, Navari-Izzo F. Antioxidative response of Atriplex codonocarpa to mercury[J]. Environmental and Experimental Botany,2010,69: 9-16.
    Lu DP, Christopher DA. Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis[J]. International Journal of Plant Sciences,2006,167:1-9.
    Lu DP, Christopher DA. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana[J]. Molecular Genetics and Genomics,2008,280:199-210.
    Lu KX, Cao BH, Feng XP, et al. Photosynthetic response of salt-tolerant and sensitive soybean varieties [J]. Photosynthetica,2009,47:381-387.
    May MJ, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants:implications for environmental sensing and plant development[J]. Journal of Experiment Botany,1998,49: 649-667.
    Meagher R. Phytoremediation of toxic elemental and organic pollutants [J]. Current Opinion in Plant Biology,2000,3 (2):153-162.
    Meiri E, Levitan A, Guo F, et al. Characterization of three PDI-like genes in Physcomitrella patens and construction of knock-out mutants [J]. Molecular Genetics and Genomics, 2002,267:231-240.
    Mendoza-Cozatl DG, Butko E, Springer F, et al. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation[J]. Plant Journal,2008,54:249-259.
    Meng D K, Chen J, Yang Z M. Enhancement of tolerance of Indian mustard(Brassica juncea) to mercury by carbon monoxide[J]. Journal of Hazardous Materials,2011,186: 1823-1929.
    Metha SK, Gaur JP. Heavy metal induced proline accumulation and its role in a meliorating metal toxicity in Chlorella vulgaris [J]. New Phytologist,1999,143:253-259.
    Mishra S, Srivastava S, Tripathi RD, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L[J]. Plant Physiology and Biochemistry,2006,44:25-37.
    Mishra SKSD, Singhal GS. Interrelationship between salt and light stress on the primary process of photosynthesis[J], Journal of Plant Physiology,1991,138:92-96.
    Mostafa M. Inhibition of the photosynthetic electron transport in the unicellular green alga Chlorella kessleri by mercury at multiplesites[J]. Cytobios,1999,98 (387):25-37.
    Munzuroglu O, Gur N. The effects of metals on the pollen germination and pollen tube growth ofapples(MaLUs sylvestrismiller CV. Golden)[J]. Turkish Journal of Biology,2000, 24:677-684.
    Murakami T, Matusuba S, Funatsuki H, et al. Overexpression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance of rice plants[J]. Molecular Breeding,2004,13:165-175.
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology,1981,22:867-880.
    Narindrasorasak S, Yao P, Sarkar B. Protein disulfide isomerase, a multifunctional protein chaperone, shows copper-binding activity[J]. Biochemical and Biophysical Research Communications,2003,311:405-414.
    Nguyen VD, Wallis K, Howard MJ, et al. Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate binding b'domain[J]. Journal of Molecular Biology,2008,383:1144-1155.
    Niu ZC, Zhang XS, Wang ZW, et al. Field controlled experiments of mercury accumulation in crops from air and soil[J]. Environmental Pollution,2011,159:2684-2689.
    Onda Y, Nagamine A, Sakurai M, et al. Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice[J]. The Plant Cell,2011,23:210-223.
    Ondzighi CA, Christopher DA, Cho EJ, et al. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds[J]. Plant Cell,2008,20:2205-2220.
    Ouyang S, Zhu W, Hamilton J, et al. The TIGR Rice Genome Annotation Resource: Improvements and new features. Nucleic Acids Research,2007,35 (Database issue): D883-D887.
    Pihlajaniemi T, Helaakoski T, Tasanen K, et al. Molecular cloning of the betasubunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene[J]. EMBO Journal,1987, (6):643-649.
    Pirneskoski A, Klappa P, Lobell M, et al. Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase[J]. Journal of Biological Chemistry,2004,279:10374-10381.
    Primm TP, Walker KW, Gilbert HF. Facilitated protein aggregation:effects of calcium on the chaperone and anti-chaperone activity of protein disulfide isomerase[J]. Journal of Biological Chemistry,1996,271:33664-33669.
    Puig A, Gilbert H F. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme[J]. Journal of Biological Chemistry,1994, 269:7764-7771.
    Ramos MA, Mares RE, Magana PD, et al. Entamoeba histolytica:Biochemical characterization of a protein disulfide isomerase[J]. Experimental Parasitology,2011,128, 76-81.
    Rao MV, Paliyath G, Ormrod DP, et al. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2[J]. Plant Physiology,1997,115:137-149.
    Rugh CL, Senecoff JF, Meagher RB, et al. Development of transgenic yellow poplar for mercury phytoremediation[J]. Nature Biotechnology,1998,16:925-928.
    Rugh CL, Wilde HD, Stack NM, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene[J]. Proceedings of the National Academy of Sciences USA,1996,93:3182-3187.
    Sahu GK US, Upadhyay S, Sahoo BB. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants[J]. Physiology and Molecular Biology of Plants, 2012,18(1):21-31.
    Sarry JE, Kuhn L, Ducruix C, et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses[J]. Proteomics 2006,6,2180-2198.
    Sato Y, Antonio BA, Namiki N, et al. RiceXPro:a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Research,2011, 39(Database issue):D1141-D1148.
    Satoh-Cruz M, Crofts AJ, Takemoto-Kuno Y, et al. Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm[J]. Plant and Cell Physiology,2010,51(9):1581-1593.
    Savenstrand H, Strid A. Six genes strongly regulated by mercury in Pisum sativum roots[J]. Plant Physiology and Biochemistry,2004,42,135-142.
    Schaedle M, Bassham JA. Chloroplast glutathione reductase[J]. Plant Physiology,1977,59: 1011-1012.
    Schauser L, Wieloch W, Stougaard J. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus[J]. Journal of Molecular Evolution,2005,60:229-237.
    Selles B, Jacquot JP, Rouhier N. Comparative genomic study of protein disulfide isomerases from photosynthetic organisms[J]. Genomics,2011,97:37-50.
    Shen Q, Jiang M, Li H, et al. Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicitypce[J]. Plant, Cell and Environment,2011,34:752-763.
    Shimoni Y, Segal G, Zhu X, et al. Nucleotide sequence of a wheat cDNA encoding protein disulfide isomerase[J]. Plant Physiological,1995,107(1):281.
    Shiyab S, Chen J, Han FXX, et al. Mercury-induced oxidative stress in Indian Mustard (Brassica juncea L.) [J]. Environmental Toxicology,2009,24(5):462-471.
    Song HM, Wang HZ, Xu XB. Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress[J]. Biologia Plantarum,2012,56 (1):197-199.
    Takemoto Y, Coughlan SJ, Okita TW, et al. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase[J]. Plant Physiology,2002, 128:1212-1222.
    Trebitsh T, Meiri E, Ostersetzer O, et al. The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts[J]. Journal of Biological Chemistry,2001,276:4564-4569.
    Tsibris JC, Hunt LT, Ballejo G, et al. Selective inhibition of protein disulfide isomerase by estrogens[J]. Journal of Biological Chemistry,1989,264:13967-13970.
    Tiirkan I, Demiral T. Recent developments in understanding salinity tolerance[J]. Environment and Experimental Botany,2009,67:2-9.
    Ushimaru T, Nakagawaa T, Fujiokaa Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J]. Journal of Plant Physiology,2006,163:1179-1184.
    Valko M, Morris H, Cronim MT. Metals, toxicity and oxidative stress[J]. Current Medicinal Chemistry,2005,12:1161-1208.
    Vandepoele K, Simillion C, Van de Peer Y. Evidence that rice and other cereals are ancient aneuploids[J]. Plant Cell,2003,15:2192-2202.
    Villiers F, Ducruix C, Hugouvieux V, et al. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches[J]. Proteomics,2011,11: 1650-1663.
    Wadahama H, Kamauchi S, Ishimoto M, et al. Protein disulfide isomerase family proteins involved in soybean protein biogenesis[J]. FEBS Journal,2007,274:687-703.
    Wang CC, Tsou CL. Protein disulfide isomerase is both an enzyme and a chaperone. The FASEB Journal,1993,7(15):1515-1517.
    Wang FJ, Zeng B, Sun ZX, Zhu C. Relationship between proline and Hg2+ -induced oxidative stress in a tolerant rice mutant[J]. Archives of Environmental Contamination and Toxicology,2009,56:723-731.
    Wei YY, Zheng Q, Liu ZP, et al. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide [J]. Plant and Cell Physiology,2011,52:1665-1675.
    Wetterau JR, Combs KA, Spinner SN, et al. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex[J]. Journal of Biological Chemistry, 1990,265:9801-9807.
    Wheatley B, Wheatley MA. Methylmercury and the health of indigenous people:a risk management challenge for physical and social sciences and for public health policy [J]. Science of the Total Environment,2000,259:23-29.
    Wilkinson B, Gilbert HE. Protein disulfide isomerase[J]. BBA,2004,1699(1-2):35-44.
    Xu ZJ, Ueda KJ, Masuda K, et al. Molecular characterization of a novel protein disulfide isomerase in carrot[J]. Gene,2002,284:225-231.
    Yang QS, Wang YQ, Zhang JJ, et al. Identification of aluminum-responsive proteins in rice roots by a proteomic approach:cysteine synthase as a key player in Al response [J]. Proteomics,2007,7:737-749.
    Yoshida S, Forno DA, Cock JH, et al. Laboratory manual for physiological studies of rice[M]. International Rice Research Institute, Los Banos, The Philippines.1976.
    Yu D, Shen ZG, Zhang HZ, et al. Effects on some physiological characters of seedling and germination of radish seeds after treated with Hg2+[J]. Acta Bot Boreal-Occident Sin, 2004,24 (2):2312236.
    Zhou ZS, Huang SQ, Guo K, et al. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L[J]. Journal of Inorganic Biochemistry,2007,101:1-9.
    Zhou ZS, Wang SJ, Yang ZM. Biological detection and analysis of mercury toxicity to alfalfa (Medicago saliva) plants[J]. Chemosphere,2008,70:1500-1509.
    Zhou ZS, Guo K, Elbaz AA, et al. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago saliva. Environmental and Experimental Botany, 2009,65:27-34.
    曾斌,王飞娟,朱诚,等AsA-GSH循环对水稻突变体耐汞性的作用[J].作物学报,2008,34(5):823-830.
    曾晓敏,施国新,徐楠,等.汞对慈姑活性氧代谢和染色体的影响[J].植物生理与分子生物学学报,2003,29(3):227-232.
    常福辰,施围新,吴国荣,等.汞、镉复合污染对金鱼藻的影响及其抗性机制的探讨[J].广西植物,2002,22(5):453-457.
    杜兰芳,沈宗根,郁达,等.汞胁迫对豌豆种子的毒害效应[J].西北植物学报,2004,24(12):2266-2271.
    高扬,李学玲,辛树权.汞对洋葱根尖细胞有丝分裂的影响[J].吉林师范大学(自然科学版),2003,32(2):55-57.
    葛才林,络剑峰,刘冲,等.重金属对水稻呼吸速率及相关同功酶影响的研究[J].农业环境科学学报,2005,24(2):222-226.
    谷巍,施国新,巢建国,等.汞、镉、铜污染对鱼草细胞膜系统的毒害作用[J].应用生态学报,2008,19(5):1138-1148.
    郝怀庆.Hg2+对水鳖叶片生理生化及超微结构的毒害效应[J].湖泊科学,2001,13(2):163-168.
    胡月红.国内外汞污染分布状况研究综述[J].环境保护科学,2008,34(1):38-41.
    姜成,申晓慧.H2+对萝卜和油菜叶绿素含量和过氧化物酶活性的影响[J].中国农学通报,2009,25(20):79-81.
    解凯彬,施国新,陈国祥,等.汞污染对芡实、菱根部过氧化物酶活性的影响[J].武汉植物学研究,2000,18(1):70-72.
    解凯彬,施国新,杜开和,等.Hg2+胁迫下芡实叶超微结构的变化[J].南京师范大学报(自然科学版),2000,23(3):100-108.
    李大辉,施国新.Cd2+或Hg2+水污染对菱体细胞的细胞核及叶绿体超微结构的影响[J].植物资源与环境,1999,8(2):43-48.
    李静,梁嘉琳.我国汞污染防治面临巨大挑战.经济参考报,2011,10/24(7).
    李伟强,毛任钊,刘小京.胁迫时间与非毒性离子对重金属抑制拟南芥种子发芽及幼苗生长的影响[J].应用生态学报,2005,16:1943-1947.
    刘双,陈国祥,王娜.Hg2+对菠菜离体类囊体膜光化学活性和多肽组分的影响[J].植物 资源与环境学报2000,9(3):30-33.
    刘颖慧,王秀堂,石云素,等.玉米蛋白质二硫键异构酶(PDI)基因的特征和表达[J].中国生物化学与分子生物学报,2009,25(3):229-234.
    马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探[J].植物生态学报,1998,22:373-378.
    牟文,熊丽,胡芹芹,等HgCl2对斜生栅藻(Scenedesmus obliquus)生理生化特性的影响.生态毒理学报,2009,4(6):854-859.
    母波,韩善华,张英慧,等.汞胁迫对植物细胞结构与功能的影响.中国微生态学杂志,2007 a,19(1):112-113.
    母波,韩善华,张英慧,等.汞对植物生理生化的影响.中国微生态学杂志,2007b,19(6):582-583.
    沙莎,吴国荣,徐勤松,等.镧对汞胁迫下豌豆(Pisum sativum L)幼苗生长及汞积累的影响[J].稀有金属,2004,28(2):397-401.
    施国新,杜开和,解凯彬,等.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
    陶玲,任瑁,祝广华,等.重金属对植物种子萌发的影响研究进展[J].农业环境科学学报,2007,26:52-57.
    田吉林,沈瑞娟,何玉科merB基因的序列修饰及转基因烟草对有机汞的高抗作用[J].科学通报,2002,47(23):1815-1819.
    王会峰.分子伴侣及其在蛋白质折叠中的作用研究进展.现代生物医学进展,2009,9(4):746-748.
    王立新,张海芸,郁建锋,等.硒对汞、镐复合污染下豌豆幼苗生长的影响[J].常熟理工学院学报(自然科学),2009,23(4):71-74.
    王维岗,亚库甫江·吐尔逊.环境的重金属污染物来源和毒理作用[J].生态环保,2004(2):39-40.
    王秀堂,黄亚群,李会勇,等.玉米PDI基因cDNA的克隆及生物信息学分析.河北农业大学学报,2008,31(1):16-19.
    王秀堂.玉米花期水分胁迫诱导基因PDI的克隆与功能分析[D].河北农业大学,2007.
    王学,徐恒戬.精胺对荇菜抗氧化酶系汞毒害的缓解作用[J].生态杂志,2008,27(10): 1744-1748.
    吴金华.海岛地区内外环境汞暴露现状及其对新生儿神经行为发育影响的研究[D].浙江大学,2008.9.
    武永军,曹让,应旭霞,等.Hg胁迫对两种基因型小麦生长及其过氧化物酶活性的影响[J].西北农业学报,2009,18(4):171-174.
    谢寅峰,黄晗,汤玉香,等.镧对汞胁迫下矢竹叶片生理反应的调节[J].林业科学,2007,43(12):39-44.
    徐勤松,施围新,顾龚平,等.不同浓度Hg2+对睡莲的毒害影响研究[J].西北植物学报,2000,20(5):784-789.
    许成钢,范晓军,付月君,等.二硫键的形成与蛋白质的氧化折叠[J].中国生物工程杂志,2008,28(6s):259-264.
    严重玲,付舜珍,方重华,等Hg、Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响[J].植物生态学报,1997,21(5):468-473.
    郁达,沈宗根,张恒择,等.汞对萝卜种子发芽及幼苗某些生理特征的影响[J].西北植物学报,2004,24:231-236.
    张磊,王起超,李志博,等.中国城市汞污染及防治对策[J].生态环境,2004,13(3):410-413.
    张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    张义贤.重金属对大麦毒性的研究[J].环境科学学报,1997,17(2):199-205.
    赵娟,施国新,徐勤松,等.外源谷胱甘肽(GSH)对水鳖Zn2+毒害的缓解作用[J].热带亚热带植物学报,2006,14(3):213-217.
    朱雪梅,邵继荣,杨文钰,等.温度对不同穗型重型水稻叶片保护酶活性及同工酶表达的影响[J].核农学报,2005,19(4):260-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700