用户名: 密码: 验证码:
基于可调谐手征结构负折射率材料的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负折射率材料(Negative refractive materials, NRM)是21世纪国际电磁学研究的一个新的热点,在微波、光学、电磁隐身以及通信等领域具有广阔的应用前景。传统的负折射率材料即为左手材料需要等效介电常数ε和等效磁导率μ同时为负值。然而,利用手征结构设计也可以实现左手材料的负折射特性,我们称之为手征结构或手征性负折射率材料。手征性是指物体经过平移、旋转等任意空间操作均不能与其镜像完全重合的特性,手征性的强弱主要由微结构手征参数大小决定。手征性负折射率材料不需要同时存在负的等效介电常数和负的等效磁导率。手征结构负折射率材料不仅符合左手材料具有负折射率的特性,它还可以产生旋光性等其它电磁特性。最近几年,大量左手材料的工作频率都是在微波段。最近,研究者正在把工作频率向太赫兹波段和光波段推进。构造低损耗、多/宽频段、易加工的手征结构负折射率材料,提高负折射率材料的性能,一直是这个领域的一个研究重点。为此,本文致力于寻求性能良好的手征结构负折射率材料,提出了横跨微波、太赫兹波和光波段的多通带手征结构负折射率材料的设计方案。本文主要从以下几个方面对手征结构负折射率材料进行研究:
     (1)介绍了传统负折射率材料的研究进展及现状,负折射率材料的主要研究内容及发展趋势;介绍了手征性负折射率材料的基本概念、研究方法以及手征性负折射率材料的最新研究进展。
     (2)描述了手征结构负折射率材料的电磁理论基础、手征负折射理论及其反演方法,研究了手征结构负折射率材料需要表征的电磁参数,包含LCP/RCP波透射谱、旋光角、椭偏度、圆二色性、LCP/RCP波折射率、传统折射率、手征参数、等效介电常数、等效磁导率,探讨了手征结构负折射率材料微结构的设计方法与设计原则。
     (3)基于巴比涅原理设计了微波段互补“十字型”手征性负折射率材料,对其进行数值模拟验证,反演计算了结构的圆二色性、旋光角、手征参数、等效磁导率、等效介电常数和折射率等。结果表明:该结构在微波段具有极强的旋光性和负折射率特性。进一步通过模拟微结构表面电流和磁场的分布,研究了其负折射率特性和旋光性产生的原理;然后基于该原理设计微波段互补“十字型”手征结构,在此基础上,重新设计了具有多频带负折射率特性和较大光学活性的互补“十字型”手征结构,并对其数值模拟验证。
     (4)设计了太赫兹波段互补“十字型”手征性负折射率材料,通过数值模拟仿真研究了其太赫兹波电磁特性,并对旋转角、介质层厚度、开缝宽度以及开缝长度这四项关键参数进行了优化,使该结构在太赫兹波段具有最大旋光性和负折射率特性。
     (5)设计了一种交叉折线型手征结构红外负折射率材料,通过数值模拟研究了其在红外波段的电磁特性。在此基础上设计了互补交叉折线型手征结构红外波段负折射率材料。数值模拟结果表明:该互补结构具有更高的LCP/RCP波透过率和光学活性以及多频带负折射特性。进一步详细分析、讨论了可调谐的结构参数(包括介质层厚度,线宽,金属层厚度)对红外波段电磁特性的影响。这种新颖的交叉折线型手征结构有望在实现紧凑和宽带光学器件方面获得应用。
Negative refractive material, also known as left-handed material, is a new hot spot in the international electromagnetics research in the21st Century. It has broad application prospects in the field of microwave, optics, electromagnetic stealth and communication. Traditional negative refractive materials are the left-handed materials of which permittivity and permeability are simultaneously negative. However, negative refractive characteristics of left-handed materials can also be achieved by designing the chiral structure, which is called the chiral structure materials or chiral negative refractive materials. Chirality refers to the object's attribute of not completely overlapping its mirror after the operation of the translation, rotation, and any change in space, and its strength is mainly determined by the size of the micro-structure chiral parameters. Chiral negative refractive materials do not need negative permittivity and negative permeability simultaneously. The chiral structure negative refractive materials are not only in line with the characteristics of left-handed materials with negative refractive index, it can also produce other electromagnetic properties like optical rotation, etc. In recent years, the operating frequencies of a large number of left-handed materials are in the microwave band. More recently, researchers are trying to obtain frequency of terahertz wavelengths and optical band. Constructing chiral structure and improving the properties of negative refractive materials which has low-loss, more/broadband segment, are the focusing research in this area. In order to seek the chiral structure negative refractive materials with good performance, we put forward the multipass appliance design scheme of chiral structure negative refractive materials across the microwave, terahertz wave and lightwave band.
     In this paper, we study the chiral structure negative refractive materials in the following aspects:
     (1) The research progress and present situation of traditional negative refractive materials, the main research contents and development of the negative refractive materials are described; the basic concepts, research methods and the latest progress of chiral negative refractive materials are presented.
     (2) The electromagnetic theory foundation, the theory of chirality negative refraction and its inversion method are described. The electromagnetic parameters of negative refractive index materials that need to characterized are analyzed, including transmission spectrum of LCP/RCP wave, rotation angle, the elliptic partial degrees, circular dichroism, refractive index of LCP/RCP wave, traditional, chirality parameters, relative dielectric constant and relative magnetic permeability. The design method and principle of negative refractive index materials microstructure are discussed.
     (3) Based on the Babinet principle, the complementary "cross-shaped" chiral negative refractive materials in microwave band are designed. The numerical simulation by the inversion calculation of the structure are presented for circular dichroism, rotation angle, chirality parameters, relative permeability, relative dielectric constants and refractive index, etc. The results show that the structure has a strong optical activity and negative refractive index properties in the microwave band. By simulating the surface current and magnetic field distributions of the micro-structure, the negative refractive index characteristics and the optically active principle are examined. Then a new design of complementary cross-shaped chiral structure with multi-band negative refractive index properties and a large optical activity is proposed based on the principle aforementioned.
     (4) Complementary cross-type chiral negative refractive materials are designed in terahertz band, and the electromagnetic properties are examined through numerical simulation. Four key parameters, such as rotation angle, the thickness of the dielectric layer, the width and the length of the slit open seam, are optimized so that the structure has the stronger optical activity and negative refractive index characteristics in terahertz band.
     (5) A negative refractive index material with crossed fold-line chiral structure is designed in the infrared, its electromagnetic properties are analyzed by numerical simulation in the infrared. Furthermore, a complementary crossed fold-line chiral structure is designed for infrared bands of negative refractive index materials. The numerical results show that the complementary structure has higher LCP/RCP wave transmittance and optical activity as well as multi-band negative refraction characteristics. Further detailed discussion on the structure parameters (including tunable dielectric layer thickness, width, thickness of the metal layer) is presented fot the electromagnetic characteristics of the infrared band. This novel crossed fold-line chiral structure is expected to be applied in a compact and broadband optics.
引文
[1]吕建宏.电磁超材料的电磁特性及其基于光学变换理论的应用[D].华中科技大学博士学位论文,2010,1-5.
    [2]V. G. Veselago. The electrodynamics of substances with simultaneously negative electrical and magnetic properties [J]. Sov. Phys. USPEKHI,1968,10(4):509-517.
    [3]J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructure[J]. Phys. Rev. Lett.,1996,76(25):4773-4776.
    [4]J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in thin-wire structures[J]. J.Phys.:Condens.Matter,1998,10:4785-4808.
    [5]J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans. Micr. Theory. Tech.,1999,47(11):2075-2084.
    [6]J. B. Pendry, Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., Vol.85, No.18, 2000, pp.3966-3969.
    [7]P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative-index media:Always positive and very inhomogeneous[J]. Phys. Rev. Lett.,2002,88(18): 187401-1-187401-4.
    [8]D. R. Smith, N. Kroll. Negative refractive index in left-handed materials[J]. Phys. Rev. Lett., 2000,85(14):2933-2936.
    [9]V. Kuzmiak, A. A. Maradudin. Scattering Properties of a cylinder fabricated from a left-handed material[J]. Phys. Rev. B,2002,64(4):045116-1-045116-7.
    [10]G. M. Zhang, J. C. Peng, Z. J. Jian, et al. Transmission Loss due to Modes Conversion Caused by Random Surface Imperfections in Left-Handed-Material Slab Waveguides[J]. Chinese Phys. Lett.,2006,23(7):1826-1829.
    [11]N. Gareia, M. Nieto-VesPerinas. Left-handed materials do not make a perfect lens[J]. Phys. Rev. Lett.,2002,88(20):207403-1-207403-4.
    [12]R. W. Ziolkowski, E. Heyman. Wave propagation in media having negative permittivity and permeability[J]. Phys. Rev. E,2001,64(5):056625-1-056625-15.
    [13]Z. Ye. Optical transmission and reflection of perfect lenses by left-handed materials[J]. Phys. Rev. B,2003,67:193106-1-193106-4.
    [14]D. R. Smith, J. Padilla Willie, D. C. Vier, et al. Composite medium with simultancously negative permeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184-4187.
    [15]R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraetion[J]. Seience,2001,292:77-79.
    [16]J. F. Zhou, J. F. Dong, B. N.Wang, et al. Negative refractive index due to chirality[J]. Phys. Rev. B,2009,79(12):121104.
    [17]J. F. Dong, J. F. Zhou, T. Koschny, et al. Bilayer cross chiral structure with strong optical activity and negative refractive index [J]. Opt. Express,2009,17(16):14172.
    [18]杨方清,李杰,董建峰.手征超常介质结构及其强旋光性和负折射率[J].材料导报,2011,25(8):36-40.
    [19]E. Plum, J. F. Zhou, J. F. Dong, et al. Metamaterial with negative index due to chirality[J]. Phys. Rev. B,2009,79(3):035407.
    [20]A. V. Rogacheva, A. V. Fedotov, A. S. Schwanecke, et al. Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure[J]. Phys. Rev. Lett,.2006, 97(17):177401.
    [21]M. Decker, M. Ruther, C. E. Kriegler, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Opt. Lett,2009,34(16):2501.
    [22]李素萍.电磁波在左手材料平面波导中的传播[D].上海大学博士学位论文,2009,4-5.
    [23]T. S. Retyakov, A. Sihvola, L. Jylh. Backward wave regime and negative refraction in chiral composites[J]. Photonics Nanostruct,2005,3(2-3):107.
    [24]刘战存.多普勒和多普勒效应的起源[J].物理,2003,32(7):455-491.
    [25]A. B. Kozyrev, D. W. Weide. Explanation of the inverse doppler effect observed in nonlinear transmission lines[J]. Phys. Rev. Lett.,2005,94:203902-1-203902-4.
    [26]张世鸿,陈良,徐彬彬.左手材料研究进展及应用前景[J].功能材料,2006,37(1):1-5.
    [27]N. Seddon, T. Bearpark. Observation of the inverse doppler effect[J]. Seience,2003,302: 1537.
    [28]M. C. K. Wiltshire, J. B.Pendry, I. R.Young, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging[J]. Seienee,2001,291(5505):849-851.
    [29]N. Fang, X. Zhang. Imaging properties of a metamaterial superlens[J]. Appl. Phys. Lett., 2003,82(2):161-163.
    [30]J. T. Shen, P. M. Platzman. Near field imaging with negative dielectric constant lenses[J]. Appl. Phys. Lett.,2002,80(18):3286-3288.
    [31]G. Gomez-Santos. Universal features of the time evolution of evanescent modes in a left-handed perfect lens[J]. Phys. Rev. Lett.,2003,90(7):077401:1-4.
    [32]马中团,鲁拥华,王沛,等.左手性材料研究进展[J].物理,2004,33(7):497-502.
    [33]N. Gareia, M. Nieto-Vesperinas. Left-handed materials do not make a perfect lens [J]. Phys. Rev. Lett.,2002,88(20):207403-1-207403-4.
    [34]J. B. Pendry. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett.,2000,85(18): 3966-3969.
    [35]D. R. Smith, S. Schultz, P. Markos, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Phy. Rev. B,2002,65(10):195104-1-195104-5.
    [36]N. Fang, X. Zhang. Imaging properties of a metamaterial superlens[J]. Appl. Phys. Lett., 2003,82(2):161-163.
    [37]郭硕鸿.电动力学[M].北京:高等教育出版社,1979.
    [38]C. Luo, M. Ibanescu, S. G. Johnson et al. Cerenkov radiation in photonic crystals[J]. Science,2003,299(5605):368-371.
    [39]V. Leonid, Gibiansky, O. Sigmund. Multiphase composite with extremal bulk modulus [J]. J Mech Phys Solids,1967,48:461.
    [40]D. Fujii, B. C. Chen, N. Kikuchi. Composite material design of two-dimensional structures using the homogenization design method[J]. Int J Numerical Methods in Eng.,2001, 50:2031.
    [41]H. R. E. M. Hoenlein, R. Werner. Material optimization bridging the gap between conceptual and preliminary design[J]. Aerosp Sci Techn,2001,5:541.
    [42]P. Baccarelli, P. Burghignoli, et al. IEEE Antennas and Wireless Propagation Lett.,2003,2: 269
    [43]Wang Liangsheng, K. Prodyot Basu. Automobile body reinforcement by finite element optimization[J]. Finite Elements in Analysis and Design,2004,40:879.
    [44]F. L.Zhang, Q. Zhao, Y.H. Liu, et al. Chin. Phy. Lett.,2004,21(7):1330.
    [45]赵乾,赵晓鹏,康雷,等.微波左手材料的反射率和相位随频率的变化特性.物理学报,2004,53(7):2206.
    [46]康雷,赵乾,赵晓鹏,等.非均匀缺陷环对微波左手材料的影响.物理学报,2004,53(10):3379.
    [47]胡晶磊,汪蓉,周东山,等.左手材料与负折射[J].化学进展,2007,19(5):813-817.
    [48]史鹏飞.新型左手材料结构设计及电磁特性研究[D].大连理工大学硕士学位论文,2010,5-9.
    [49]D. R. Smith, D. C. Vier, Th. Koschny, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Phys. Lett. A,2008,372:4667-4670.
    [50]S. Lei, Z. Dong, M. Xu, et al. Lamellar model of the left-handed meatmaterials composed of metallic split-ring resonators and wires[J]. Phys. Rev. E,2005,71:03367.
    [51]Y. Dong, W. Xu, S. Liu. Numerical studies for relative bandwidth of left-handed metamaterials with split-ring resonators[C]. IEEE 3rd. Microw. Antenna Prop. EMC Tech. wireless Commun.,2009:841-845.
    [52]B. I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk and J. A. Kong, a study of using metamaterials as antenna substrate to enhance gain[J]. Progress in Electromagnetics Research, PIER 51:295-328,2005.
    [53]刘岳萍,张弘.S型左手材料平板透镜对喇叭天线性能影响研究[J].中国西部科技,2009,08(11):05-07.
    [54]Z. G. Dong, M. X. Xu, S. Y. Lei, et al. Non-left-handed transmission and Bianisotropic effect in a π-shaped metallic metamaterial. Phys. Rev. B,2007,75(7):075117(5).
    [55]Z. G. Dong, H. Liu, Z. H. Zhu, et al. Three dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling[J]. Opt. Express,2008, 1620974.
    [56]W. R. Zhu, X. P. Zhao, J. Q. Guo. Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects. Appl. Phys. Lett.,2007,90(1): 011911.
    [57]孙明昭、张淳民、宋晓平,等.基于矩形谐振环的新型复合周期结构左手材料研究[J].物理学报,2009,09:6179.
    [58]M. Kafesaki, I. Tsiapa, N. Katsarakis, et al. Left-handed metamaterials:the fishnet Structure and its variations. Phys. Rev. B,2007,75(23):235114(9).
    [59]S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck. Demonstration of Near-Infrared Negative-Index Materials [J]. Phys. Rev. Lett.,2005, 95(13):7404-7407.
    [60]S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N.C. Panoiu, and R. M. Osgood. Near-infrared double negative metamaterials[J]. Opt. Express,2005,13(13):4922-4930.
    [61]R. Ruppin. Surface Polaritons of a left-handed materials lab[J]. J. Phys. Condensed Matter, 2001,13:1811-1819.
    [62]A. A. Zharov, I. V. Shadrivov, et al. Noulinear properties of left-handed metamaterial[J]. Phys. Rev. Lett.,2003,91(3):037401(4).
    [63]I. S. Nefedov, S. A. Tretyakov. On potential applieations of metamaterials for the design of broadband phases hifters[J]. Microwave Opt.Technol. Lett.,2005,45(2):98-102.
    [64]I. V. Shadrivov, A. A. Sukhorukov. Y. S. Kivshar., et al. Nonlinear surface waves in left-handed materials[J]. Phys. Rev. E,2004,69(1),016617-1-016617-9.
    [65]L. B. Hu, Z. F. Lin. Imaging properties of uniaxially anisotropic negative refractive index materials[J]. Phys. Lett. A,2003,313:316-324.
    [66]X. Xiong, W. H. Sun, Y. J. Bao, et al. Construction of a chiral metamaterials with a U-shape resonator assembly[J]. Phys. Rev. B,2010(81):075119.
    [67]M. Decker, R. Zhao, C. M. Soukoulis, et al. Twisted splitting resonator photonic metamaterial with huge optical activity[J]. Opt. Lett,2010,35(10):1593.
    [68]Z. Li, R. Zhao, T. Koschny, et al. Chiral metamaterials with negative refractive index based on four split ring resonators[J]. Appl. Phys. Lett,2010(97):081901.
    [69]J. F. Dong, C. Xu, J. Xu. Research progress in chiral negative refraction[J]. Chin. J. Quant. Electr.,2009,26(4):385. (in Chinese)
    [70]J. F. Dong, C. Xu, J. Xu. Research progress in planar chiral metamaterials[J]. Mater, Rev., 2009,23(1):84-89. (in Chinese)
    [71]A. Papakostas, A. Potts, D. M. Bagnall, et al. Optical manifestations of planar chirality [J]. Phys. Rev. Lett,2003,90(10):107404.
    [72]M. Decker, R. Zhao, C. M. Soukoulis, et al. Twisted split-ring-resonator photonic metamaterial with huge optical activity[J]. Opt. Lett,2010,35(10):1593.
    [73]Z. Li, R. Zhao, T. Koschny, et al. Chiral metamaterials with negative refractive index based on four U split ring resonators[J]. Appl. Phys. Lett,2010(97):081901.
    [74]N. Liu, H. Giessen. Three-dimensional optical metamaterials as modelsy stems for longitudinal and transverse magnetic coupling[J]. Opt Ex press,2008(16):21233.
    [75]E. Plum, V. A. Fedotov, A. S. Schwanecke, et al. Giant opticalgy rotropy due to electromagnetic coupling[J]. Appl. Phys. Lett,2007,90(22):223113.
    [76]S. Zhang, Y. S. Park, J. S. Li, et al. Negative refractive index in chiral metamaterials[J]. Phys. Rev. Lett,2009,102(2):023901.
    [77]C. D. Moss, T. M. Grzegorczyk, Y. Zhang, et al. Numerical studies of left-handed metamaterials[J]. Progress in Electromagnetic Research,2002,35:315-334.
    [78]R. W. Ziolkowski, E. Heyman. Wave propagation in media having negative permittivity and permeability[J]. Phys. Rev. E,2001,64(5):056625(15).
    [79]隋强.微波异向介质的实验研究及理论研究[D].中国科学院电子研究所博士学位论 文,2004,15-23.
    [80]P. Markos, I. Rousochatzakis, C. M. Soukoulis. Transmission losses in left-handed materials[J]. Phys. Rev. E,2002,66(4):045601(4).
    [81]D. R. Smith, Z. S. Sehult, P. Markos, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffieients[J]. Phys. Rev. B,2002,65(19):195104(5).
    [82]D. R. Smith, D. C. Vier, Th. Koschny, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Phys. Rev. E,2005,71(3):036617(11).
    [83]X. Chen, T. M. Grzegoczyk, B. I. WU, et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Phys. Rev. E,2004,70(1):016608(7).
    [84]P. Kolinko. D. R. Smith. Numerieal study of electromagnetic waves interacting with negative index materials[J]. Opt. Express,2003,11(7):640-648.
    [85]Z. Dong, S. Zhu, H. Liu, et al. Numerieal simulations of negative-index refraction in wedge-shaped metamaterials[J]. Phys. Rev. E,2005,72(1):016607(4).
    [86]Yu-bin Ding, Guo-ping Zhang,Yong-zhi Cheng. Giant optical activity and negative refractive index in the terahertz region using complementary chiral metamaterials[J]. Physica Scripta,2012,85(6):065405.
    [87]Yu-bin Ding, Guo-ping Zhang. Advances in Research on Left-Handed Met Materials. Applied Mechanics and Materials[J].2012,130:1016-1019.
    [88]姚纪欢,冯晓霞,乔灵爱.用时域有限差分方法计算电磁散射[J].山西大学学报(自然科学版).1999(02):140-143.
    [89]G. Dolling, C. Ellkrich, M. Wegener, et al. Low-loss negative-index metamaterial at telecommunication wavelengths[J]. Optics Letters,2006,31:1800-1802.
    [90]J. H. Lv, B. R. Yan, et al. Numerical studies of a low-loss and broad-pass-band single-sided-structure left-handed metamaterial[J]. Physical Review E,2009,79(1): 017601.
    [91]J. B. Sun, L. Kang, et al. Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays[J]. New Journal of Physics,2010,12,083020.
    [92]Y. Z. Cheng, H. L. Yang, et al. Perfect metamaterial absorber based on a split-ring-cross resonator[J]. Applied Physics a-Materials Science & Processing,2011,102(1):99-103.
    [93]Y. Z. Cheng, Y. Nie, and R. Z. Gong. Broadband 3D isotropic egative-index metamaterial basedon fishnet structure[J]. Eur. Phys. J. B,2012,85 (62).
    [94]S. Tretyakov, I. Nefedov, A. Sihvola, et al. Waves and energy in chiral nihility[J]. Electromagnetic Waves Applications,2003,17:695-706.
    [95]刘盛纲.太赫兹科学技术的新发展[J].科学前沿,2006,1:7-12.
    [96]C. Monzon, D. W. Forester, Negative refraction and focusing of circularly polarize waves in optically active media[J]. Physical Review Letters,2005,95:123904.
    [97]杜世刚.等离子体物理[M].北京:原子能出版社,1998.
    [98]张忠祥.左手微带导波结构及其应用研究[D].中国科技大学博士学位论文,2007,9-11.
    [99]J. B. Pendry. A chiral route to negative refraction[J]. Science,2004,306(5700):1353.
    [100]S. Tretyakov, A. Sihvola, L. Jylh. Backward wave regime and negative refraction in chiral composites[J]. Photonics Nanostruct,2005,3(2-3):107.
    [101]李杰,杨方清,王战.基于折线型结构负折射介质结构的设计与方针[J].物理学报,2011,60(11):114101.
    [102]杨方清,李杰,王战.旋转共轭希腊十字型手征结构特性研究[J].光学学报,2011,31(10):1016002-1-1016002-5.
    [103]李杰,杨方清,董建峰.双层金属线平面手征结构的强旋光性和负折射率研究[J].物理学报,2011,60(12):124202-1-124202-8.
    [104]L. V. Lindell, A. H. Sihvola, S. A. Tretyakov et al. Electromagnetic Waves in Chiral and Bi-Isotropic Media[M]. Boston, Artech House:1994.
    [105]D. H. Kwon, P. L. Werner, D. H. Werner. Optical plannar chiral metamaterial designs for strong circular dichroism and polarization rotation[J]. Opt. Express,2008,16(16): 11802-11807.
    [106]D. H. Kwon, D. H. Werner, V. K. Alexander et al. Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design[J]. Opt, Express,2008, 16(16):11822-11829.
    [107]H. Chen, L. Ran, J. Huangfu, et at Left-handed materials composed of only S-shaped resonators[J]. Phys. Rev. E,2004,70:057605.
    [108]J. Huangfu, L. Ran, H. Chen, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns[J]. Appl. Phys. Lett.,2004, 84:1537.
    [109]H. T. Chen, W. J. Padilla, J. M. O. Zide, et al. Active terahertz metamaterial devices[J]. Nature,2006,444:597-600.
    [110]B. Bai, Y. Svirko, J. Turunen, T. Vallius, Optical activity in planar chiral metamaterials: Theoretical study[J]. Physical Review A (Atomic, Molecular, and Optical Physics),2007, 76:023811.
    [111]范滇元,戴方,凌文.太赫兹超常材料及应用[J].激光与光电子学进展,2010,47,051601.
    [112]J. F. Lampin, T. Crwin, M. Penin et al. Analysis of right- and left-handed dispersive transmission lines at terahertz frequencies [C]. Novel Devices and Components, IEEE, 2004.
    [113]T. J. Yen, W. J. Padilla, N. Fang et al. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496.
    [114]J. Q Gu, J. G. Han, et al. A close-ring pair terahertz metamaterial resonating at normal incidence[J]. Optics Express,2009,17(22):20307-20312.
    [115]Q. J. Du, J. S. Liu, K. J. Wang, X. N. Yi, H. W. Yang. Dual-band terahertz left-handed metamaterial with fishnet structure[J]. Chin. Phys. Lett.,2011,28:014201-1-014201-4.
    [116]S. X. Wang, F. Garet, et al. Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz[J]. Applied Physics Letters, 2010,97(18):181902.
    [117]M. Giloan, S. Astilean. Designing polarization insensitive negative index metamaterial for operation in near infrared[J]. Optics Communications,2012,285(8):2195-2200.
    [118]S. Zhang, Y. S. Park, et al. Negative Refractive Index in Chiral Metamaterials[J]. Physical. Review. Letters.,2009,102(2):023901.
    [119]He Mingxia, Hana Jiaguang, Z. T. Jianqiang Gua, Xing Qirong. Negative refractive index in chiral spiral metamaterials at terahertz frequencies[J]. Optik,2011,122(4):1676-1679.
    [120]J. Zhou, D. R. Chowdhury, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B,2012,86(3):035448.
    [121]S. Zhang, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. Phys. Rev. Lett.,2005,95:137404.
    [122]C. M. Soukoulis, M. Kafesaki, et al. Negative-Index Materials:New Frontiers in Optics[J]. Advanced Materials,2006,18(15):1941-1952.
    [123]A. Alu, A. Salandrino. Negative effective permeability and left-handed materials at optical frequencies[J]. Optics Express,2006,14(4):1557-1567.
    [124]V. M. Shalaev. Optical negative-index metamaterials[J]. Nature Photonics,2007,1(1): 41-48.
    [125]J. S. Valentine, Zhang, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-380.
    [126]P. Y. Chen, M. Farhat, et al. Bistable and Self-Tunable Negative-Index Metamaterial at Optical Frequencies[J]. Physical Review Letters,2011,106(10):105503.
    [127]赵延,相建凯,李飒,赵晓鹏,基于双鱼网结构的可见光波段超材料[J],物理学报,2011,60(5):054211.
    [128]M. Giloan, Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms[J]. Optics Communications,2012,285:1533-1541.
    [129]M. A. Guney. Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum[J]. Opt. Soc. Am. B.,2012,29(10):2839.
    [130]Anan Fang, Z. H. Thomas Koschny, M. Costas. Loss compensated negative index material at optical wavelengths[J]. Photonics and Nanostructures-Fundamentals and Applications,2012,10:276-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700