用户名: 密码: 验证码:
基于表面等离子体的超衍射光传输、成像原理和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衍射特性是光波重要物理属性之一。受衍射影响,传统光学方法难以在亚波长尺度下操控光波的传输、聚焦和成像。随着现代科学技术发展,光电子器件、显微、光学光刻、光存储等领域不断向更小尺寸、更高分辨力、更高密度方向发展。然而,传统光学系统分辨力的衍射受限问题,成为现代光学系统空间分辨力提升的原理性障碍。近年来,一系列新奇光学现象研究表明,表面等离子体(Surfaceplasmon,SP)具有短波长传输、倏逝波耦合放大等独特光学特性,为超衍射光传输和成像研究提供了重要契机。
     本论文从亚波长结构下SP激发、耦合等行为规律研究出发,系统开展了基于SP的超衍射光波传输、超分辨成像原理方法、相关数理模型、材料和器件设计、制备和实验等方面研究工作。主要研究成果有:
     1、在基尔霍夫衍射理论框架的基础上,通过研究亚波长狭缝-沟槽结构的SP模式激发行为,建立了突破狭缝口径限制的超衍射光辐射改进数理模型,模型准确性得到了数值计算和实验结果的验证。在此基础上,研究得到狭缝-沟槽结构对异常衍射行为的影响机理和规律。
     2、理论和实验研究分析了光波在金属介质膜层材料中的超衍射传输行为规律,实验验证了材料中光场能量的定向耦合传输特性。对比分析了等效介质理论、RCWA分析、有限元等不同电磁计算分析方法的差异,为研究超分辨成像提供了超衍射材料和分析方法基础。
     3、研究分析了金属介质膜层材料的SP激发共振和倏逝波放大特性,推导得到其模式色散公式。在此基础上,将超透镜(Superlens)拓展到各向异性结构形式,建立了更具普适性的超透镜成像模型。
     4、基于光波在金属介质膜层材料中定向耦合传输特性,建立了SP定向传输成像理论模型,将SP透镜成像条件拓展到非匹配材料情形,推导了成像传函解析公式,对比分析了五类基于金属介质薄膜材料的超分辨成像方法优劣。
     5、利用金属光栅薄膜结构激发和倏逝波放大特性,提出了一种可实现大视场的远场超分辨成像方法,通过简化的数理模型分析和计算,获得了最小线宽45nm(约1/8波长)的成像分辨力。6、提出了反射共振型超透镜成像光刻结构,研究分析了反射sp透镜对成像光场对比度和焦深增强特性。在i线汞灯光源照明条件下(中心波长365nm),获得验证性纳米图形光刻实验结果,其中密集线条光刻图形最小线宽达到约30nm(约1/12波长)。
Diffraction is one important physical and inherent property associated with light.Suffering from the light diffraction feature, it is hard for conventional optics tomanipulate light propagation, focusing and imaging in spaces with dimensions farbeyond the wavelength. With the fast development of modern science and technology,optics&electronics devices, microscope, lithography and optical storage usuallyrequire much smaller dimensions, higher density and higher resolution. The diffractionlimit, however, imposes an obstacle for improving spatial resolution of modern optics.In recent years, a great deal of investigations showed that surface plasmon (SP)possesses some abnormal characteristics, like propagation with short wavelength,evanescent waves coupling and amplification etc, delivering one access to break thediffraction limit.
     Presented in the Dissertation are our investigation of methods for light propagationand imaging beyond the diffraction limit by using of surface plasmon, including themechanism of surface Plasmon excitation and its influence for light emission behaviors,formalism and model of light propagation inside metamaterial, principles and methodsfor designing optical devices with subwavelength resolution and lithographyexperiments. The main achievements are listed below.
     1. Within the framework of Kirchoff’s diffraction theory, refined model ispresented for surface plasmon excitation and light beaming from sub-wavelength slitflanked by periodic grooves structures. The accuracy of the formalism is demonstratedwith numerical and experiment results. Deep insights of the influences of groovesstructure for the beaming behaviors are given as well.
     2. Theoretical and experimental investigations are performed for light propagationinside metamaterial composed by alternatively stacked metal and dielectric films,directive propagation of light behaviors are first experimentally observed in the far field. And comparisons are given for calculation results by variant methods, like EMT, RCWAand FEM.
     3. Surface plasmon resonance and amplification of evanescent waves for multimetal and dielectric films system are investigated. The formalism of super lens is thengeneralized into anisotropic structure.
     4. By employing the effective medium theory and metamaterial, subwavelengthimaging formalisms with multi metal and dielectric films are investigated withanalytical optical transfer functions and comparison for five types of sub-wavelengthimaging with metal and dielectric films.
     5. A method for super resolution imaging in the far field is proposed with the helpof metallic grating structures. Simplified formalism and numerical simulations show theminimum resolving power of about45nm half pitch (about1/8wavelength) asdemonstrated by numerical simulations.
     6. Reflective plasmonic lens lithography method is proposed and investigated forits improvement of imaging contrast and elongated depth inside photo resist layer.Experiment demonstrations are presented with i-line mercury lamp with365nmwavelength and the available minimum half pitch resolution is about30nm (~1/12wavelength).
引文
[1] Francesco Maria Grimaldi. Physico mathesis de lumine, coloribus, et iride,aliisque annexis libri duo. Bologna (“Bonomia”), Italy: Vittorio Bonati.1665.
    [2] Max Born and Emil Wolf, Principles of Optics,Cambridge University Press,Cambridge,7thexpanded edition.
    [3] N. I. Zheludev, What diffraction limit, Nature Materials7,420(2008).
    [4] X. Luo, L.S. Yan, Surface Plasmon Polaritons and its applications, IEEEPhotonics Journal4,590-595(2012).
    [5] William L. Barnes, Alain Dereux&Thomas W. Ebbesen, Surface Plasmonsubwavelength optics, Nature424,824(2003).
    [6] Ozbay, E.“Plasmonics: Merging photonics and electronics at nanoscaledimensions.” Science311,189-193(2006).
    [7] H. Raether, Surface Plasmons, Berlin, Springer,1988.
    [8] Drude, P. On the electron theory of metals. Annalen Der Physik1,566-613(1900).
    [9] Anatoly V. Zayats et al., Nano-optics of surface plasmon polaritons, PhysicsReports408,131–314(2005)
    [10] Wood, R. W. On a remarkable case of uneven distribution of light in adiffraction grating spectrum. Philosophical Magazine4,396-402(1902)
    [11] Fano, U. The theory of anomalous diffraction gratings and of quasi-stationarywaves on metallic surfaces (Sommerfeld's waves). Journal of the Optical Societyof America31,213-222(1941).
    [12] Hessel, A. and A. A. Oliner, A New Theory of Woods Anomalies on OpticalGratings. Applied Optics4,1275(1965).
    [13] Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by Methodof Frustrated Total Reflection. Zeitschrift Fur Physik216,398(1968).
    [14] Kretschm.E and H. Raether, Radiative Decay of Non Radiative SurfacePlasmons Excited by Light. Zeitschrift Fur Naturforschung Part a-AstrophysikPhysik Und Physikalische Chemie A23,2135(1968).
    [15] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings,(Springer, Heidelberg,1988).
    [16] Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan,Ramachandra R. Dasari, and Michael S. Feld, Single Molecule Detection UsingSurface-Enhanced Raman Scattering (SERS), Phys. Rev. Lett.,78,1667(1997).
    [17] Homola, S. S. Yee, and G. Gauglitz,A surface plasmon resonance system for themeasurement of glucose in aqueous solution, Sensors Actuat. B,54,3(1999).
    [18] Ebbesen, T. W., H. J. Lezec, et al. Extraordinary optical transmission throughsub-wavelength hole arrays. Nature391,667-669(1998).
    [19] Bethe H A, Theory of Diffraction by Small Holes, Phys. Rev.,66,163(1944).
    [20] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B.Pendry, and T.W. Ebbesen, Theory of Extraordinary Optical Transmissionthrough Subwavelength Hole Arrays, Phys. Rev. Lett.86,1114(2001).
    [21] Kim T J, Thio T, Ebbesen T W, Grupp D E, and Lezec H J, Contral of opticaltransmission through metals perforated with subwavelength hole arrays, Opt.Lett.24,256(1999).
    [22] Qing Cao and Philippe Lalanne, Negative Role of Surface Plasmons in theTransmission of Metallic Gratings with Very Narrow Slits, Phys. Rev. Lett.88,057403(2002).
    [23] G. Gay, O. Alloschery, B. Viaris De Lesegno, C. Odwter, J. Weiner and H. J.Lezec, The optical response of nanostructured surfaces and the compositediffracted evanescent wave model, Nature,2,262(2003).
    [24] Haitao Liu, Philippe Lalanne, Microscopic theory of the extraordinary opticaltransmission, Nature,452,728(2008).
    [25] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J.García-Vidal, and T. W. Ebbesen,“Beaming light from a subwavelengthaperture,” Science,297,820(2002).
    [26] L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen,Theory of highly directional emission from a single subwavelength aperturesurrounded by surface corrugations, Phys. Rev. Lett.90,167401(2003).
    [27] F. J. Garcia-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martin-Moreno, MultiplePaths to Enhance Optical Transmission through a Single Subwavelength Slit,Phys. Rev. Lett.90,213901(2003).
    [28] Liang-Bin Yu, Ding-Zheng Lin et al., Physical origin of directional beamingemitted from a subwavelength slit, Phys. Rev. B71,041405(2005).
    [29] Hanmin Yao; Yu Guobin; Peiying Yan; Chen Xianzhong; Xiangang Luo,Patterning sub100nm isolated patterns with436nm lithography,Microprocesses and Nanotechnology Conference,2003. Digest of Papers.2003International, Page(s):130Digital Object Identifier10.1109/IMNC.2003.1268610
    [30] Luo XG and Ishihara, T., Sub100nm lithography based on plasmon polaritonresonance, Microprocesses and Nanotechnology Conference,2003. Digest ofPapers.2003International, page(s):138-139, Digital Object Identifier:10.1109/IMNC.2003.1268614.
    [31] Luo XG and Ishihara T, Subwavelength photolithography based onsurface-plasmon polariton resonance, Opt. Express12,3055-3065(2004).
    [32] Luo XG and Ishihara T, Surface plasmon resonant interference nanolithographytechnique, Appl. Phys. Lett.,84,4780-4782(2004).
    [33] Luo XG and Lv YG, Du CL, et al. Nanoscopy of near-field distribution onplasmonic nanostructures, Jounal of Vaccum Science&Technology B24,L1-L5(2006)
    [34] N. fang et al., Experimental study of transmission enhancement of evanescentwaves through silver films assisted by surface plasmon excitation, Appl. Phys. A80,1315–1325(2005)
    [35] V. G. Veselago, The electrodynamics of substances with simultaneously negativevalues of ε and μ Soviet Physics Usp.,10,509(1968)
    [36] V. G. Veselago, The electrodynamics of substances with simultaneously negativevalues of ε and μ (in Russian). Usp Fiz Nauk,92,517(1967).
    [37] D. R. Smith N. Krill, Negative refractive index in left-handed materials. Phys.Rev. Lett,85,2933(2000).
    [38] N. Seddon T. Bearpark, Observation of the inverse Doppler effect. Science,302,1537(2003).
    [39] J. Lu T. Grzegorczyk Y. Zhang J. Pacheco Jr B-I Wu J. A. Kong M. Chen,Cerenkov radiation in materials with negative permittivity and permeability. Opt.Express,11,723(2003).
    [40] A. Grbic G. V. Eleftheriades, Experimental verification of backward-waveradiation from a negative refractive index metamaterial. Jouranl of AppliedPhysics,92,5930(2002).
    [41] J. B. Pendry A. J. Holden W. J. S I. Youngs, Extremely low frequency plasmonsin metallic mesostructures. Phys. Rev. Lett,76,4773(1996).
    [42] J. B. Pendry A. J. Holden D. J. Robbins W. J. Stewart. Low frequency plasmonsin thin-wire structures. J. Phys Condensed Matter,10,4785(1998)
    [43] J.B. Pendry A. J. Holden D. J. Robbins W. J. Stewart. Magnetism fromconductors and enhanced nonlinear phenomena. IEEE Transactions onMicrowave Theory and Techniques,47,2075(1999).
    [44] R. A. Shelby D. R. Smith S. C. Nemat-Nasser S. Schulz. Microwavetransmission through a two-dimensional, isotropic, left-handed metamaterial.Appl. Phys. Lett,78,489(2001).
    [45] J. B. Pendry, Negative refraction makes a Perfect Lens, Phys. Rev. Lett.,85,3966-3969(2000).
    [46] P. M. ValanjuR. M. Walser A.P. Valanju. Wave refraction in negative-indexmedia: always positive and very inhomogeneous. Phys. Rev. Lett.,88,187401(2002).
    [47] N. Garcia M. Nieto-Vesperinas. Is there an experimental verification of anegative index of refraction yet? Opt. Lett.,27,885(2002).
    [48] R. Ziolkowski. Pulsed and CW Gaussian beam interactions with double negativemetamaterial slabs. Optics Express,11,662(2003).
    [49] J. Pacheco T. M. Grzegorczyk B-I Wu Y. Zhang J. A. Kong. Power propagationin homogeneous isotropic frequency dispersive left-handed media. Phys. Rev.Lett.,89,257401(2002).
    [50] J. B. Pendry D. R. Smith. Comment on “wave refraction in negative-index mediaalways positive and very inhomogeneous”. Phys. Rev. Lett,90,029703(2003).
    [51] S. Foteinopoulou E. N. Economou C. M. Soukoulis. Refraction in media with anegative refractive index. Phys. Rev. Lett,90,107402(2003).
    [52] N. Garcia M. Nieto-Vesperinas. Left-handed materials do not make a perfect lens.Phys. Rev. Lett,88,207403(2003).
    [53] L. Shen S. He. Studies of imaging characteristics for a slab of a lossy left-handedmaterial. Phys. Rev. A,309,298(2003).
    [54] M. W. Feise Y. S. Kivshar. Sub-wavelength imaging with a left-handed materialflat lens. Phys. Rev. A,334,326(2005).
    [55] Fang N, Lee H, Sun C, et al.Sub-diffraction-limited optical imaging with a silversuperlens Science308,534-537(2005).
    [56] D. O. S. Melville and R. J. Blaikie, Super-resolution imaging through a planarsilver layer, Opt. Express13,2127(2005).
    [57] S.Anantha Ramakrishna, J.B. Pendry, A spherical perfect lens,arXiv:cond-mat/0311203v110Nov(2003).
    [58] Z. Jacob et al., Optical hyperlens: far-field imaging beyond the diffraction limit,Opt. Express14,8247(2006).
    [59] W. Wang et al., Far-field imaging device: planar hyperlens with magnificationusing multi-layer metamaterial, Opt. Express16,21142(2008).
    [60] Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang,“Far-fieldoptical hyperlens magnifying sub-diffraction-limited objects,” Science315,1686(2007).
    [61] Igor I. Smolyaninov et al., Far-Field Optical Microscopy with a Nanometer-ScaleResolution Based on the In-Plane Image Magnification by Surface PlasmonPolaritons, Phys. Rev. Lett.94,057401(2005).
    [62] Igor I. Smolyaninov, et al. Magnifying Superlens in the Visible Frequency RangeScience315,1699(2007).
    [1] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martín-Moreno, L.J.García-Vidal, and T.W. Ebbesen, Beaming light from a subwavelength aperture,Science297,820(2002).
    [2] J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, Mimicking Surface Plasmonswith Structured Surfaces, Science,305,847(2004).
    [3] Liang-Bin Yu, Ding-Zheng Lin et al., Physical origin of directional beamingemitted from a subwavelength slit, Phys. Rev. B71,041405(2005).
    [4] L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, and T.W. Ebbesen,Theory of highly directional emission from a single subwavelength aperturesurrounded by surface corrugations, Phys. Rev. Lett.90,167401(2003).
    [5] Max Born and Emil Wolf, Principles of Optics,Cambridge University Press,Cambridge,7thexpanded edition.
    [6] P. Kramper, M. Agio, C.M. Soukoulis, A. Birner, F. Müller, R. B.Wehrspohn, U.G sele, and V. Sandoghdar, Highly directional emission from photonic crystalwaveguides of subwavelength width, Phys. Rev. Lett.92,113903(2004).
    [7] Esteban Moreno, F. J. García-Vidal, L. Martín-Moreno, Enhanced transmissionand beaming of light via photonic crystal surface modes, Phys. Rev. B.69,121402,(2004).
    [8] L. A. Blanco and F. J. García de Abajo, Control of spontaneous emission bycomplex nanostructures, Opt. Lett.29,1494(2004).
    [1] D. R. Smith and D. Schurig, Electromagnetic Wave Propagation in Media withIndefinite Permittivity and Permeability Tensors, Phys. Rev. Lett.90,077405(2003).
    [2] B. Wood, J. B. Pendry and D. P. Tsai, Directed subwavelength imaging using alayered metal-dielectric system, Phys. Rev. B74,115116(2006).
    [3] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, Imagingthe near field, J. Mod. Opt.50,1419-1430(2003).
    [4] A. Salandrino and N. Engheta, Far-field subdiffraction optical microscopy usingmetamaterial crystals: Theory and simulations, Phys. Rev. B74,075103(2006).
    [5] A. Sihvola, Electromagnetic mixing formulas and applications, Institute ofElectrical Engineers, London,1999
    [6] E. D. Palik, Handbook of optical constants.
    [1] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett.85,3966-3969(2000).
    [2] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire and W. J. Stewart, Imagingthe near field, J. Mod. Opt.50,1419-1430(2003).
    [3] Z. Jacob, L. V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imagingbeyond the diffraction limit, Opt. Express14,8247(2006)
    [4] Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, Far-fieldoptical hyperlens magnifying sub-diffraction-limited objects, Science315,1686(2007).
    [5] A. Salandrino and N. Engheta, Far-field subdiffraction optical microscopy usingmetamaterial crystals: Theory and simulations, Phys. Rev. B74,075103(2006).
    [6] D. R. Smith and D. Schurig,“Electromagnetic Wave Propagation in Media withIndefinite Permittivity and Permeability Tensors”, Phys. Rev. Lett.90,077405(2003).
    [7] P. A. Belov and Y. Hao, Subwavelength imaging at optical frequencies using atransmission device formed by a periodic layered metal-dielectric structureoperating in the canalization regime, Phys. Rev. B73,113110(2006).
    [8] B. Wood, J. B. Pendry and D. P. Tsai, Directed subwavelength imaging using alayered metal-dielectric system, Phys. Rev. B74,115116(2006).
    [9] P. B. Johnson, and R. W. Christy, Optical constants of the noble metals, Phys.Rev. B6,4370(1972).
    [1] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett.85,3966-3969(2000).
    [2] Changtao Wang, Yanhui Zhao,et al., Subwavelength imaging with anisotropicstructure comprising alternately layered metal and dielectric films, Opt. Express,16,4217(2008).
    [3] Changtao Wang et al., Surface plasmon resonance and super-resolution imagingby anisotropic superlens, Journal of Applied Physics,106,064314-064317(2009).
    [4] Z. Jacob, L. V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imagingbeyond the diffraction limit, Opt. Express14,8247(2006)
    [5] Liu Zhaowei, Hyesog Lee, Yi Xiong, Cheng Sun, Xiang Zhang, Far-fieldoptical hyperlens magnifying sub-diffraction-limited objects, Science315,1686(2007).
    [6] Stéphane Durant, Zhaowei Liu, Jennifer M. Steele, and Xiang Zhang, Theory ofthe transmission properties of an optical far-field superlens for imaging beyondthe diffraction limit, J. Opt. Soc. Am. B23,2383-2392(2006).
    [7] Zhaowei Liu, Ste′phane Durant, Hyesog Lee, Yuri Pikus, Nicolas Fang, YiXiong, Cheng Sun, and Xiang Zhang, Far-Field Optical Superlens, Nano Lett.7,403(2007).
    [8] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings,(Springer, Heidelberg,1988).
    [9] Joseph W. Goodman, Introduction to Fourier optics, third edition,(Roberts,2005).
    [1] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett.85,3966-3969(2000).
    [2] Blaikie, R.J., Alkaisi, M.M., McNab, S.J, Cumming, D.R.S., Cheung, R. andHasko, D.G. Nanolithography using optical contact exposure in the evanescentnear field. Microelectronic Engineering46,85-88(1999).
    [3] Alkaisi, M.M., et al., Sub-diffraction-limited patterning using evanescentnear-field optical lithography. Appl. Phys. Lett.,753560(1999).
    [4] X. Luo and T. Ishihara, Surface plasmon resonant interferencenanolithography technique, Appl. Phys. Lett.84,4780-4782(2004).
    [5] Liu, Z., Wei, Q., and Zhang, X., Surface plasmon interference nanolithography,Nano Lett.,5,957(2005).
    [6] N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging witha silver superlens, Science308,534-537(2005).
    [7] D. O. S. Melville and R. J. Blaikie, Super-resolution imaging through a planarsilver layer, Opt. Express13,2127-2134(2005).
    [8] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenband, Near-field microscopy through a SiC superlens, Science313,1595–1595(2006).
    [9] Arnold, M. D.; Blaikie, R. J., Subwavelength optical imaging of evanescentfields using reflections from plasmonic slabs, Opt. Express15,11542(2007).
    [10] Xu, T.; Fang, L.; Ma, J.; Zeng, B.; Liu, Y.; Cui, J.; Wang, C.; Feng, Q.; Luo, X.,Localizing surface plasmons with a metal-cladding superlens for projectingdeep-subwavelength patterns, Appl Phys B97,175–179(2009).
    [11] P. B. Johnson and R. W. Christy,“Optical constants of the noble metal," Phys.Rev. B6,4370-4379(1972).
    [12] Intaraprasonk, V., Yu, Z.; Fan, S. Image transfer with subwavelength resolutionto metal–dielectric interface, J. Opt. Soc. Am. B,28,1335(2011).
    [13] Guo, X.; Du, J.; Guo, Y. Large-area surface-plasmon polariton interferencelithography, Opt. Lett.,31,2613-2615(2006).
    [14] Zeng, B. B.; Pan, L.; Liu, L. et al. Improved near field lithography by surfaceplasmon resonance in groove-patterned masks, Journal of Optics A: Pure andApplied Optics,11,125003(2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700