用户名: 密码: 验证码:
氢在钢中的扩散与氢渗透传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产中产生的氢对设备的破坏非常严重,为了预防重大恶性事故的发生,研究氢渗透传感器用来监/检测腐蚀反应产生的氢含量及对钢体设备的氢腐蚀程度,采取有效的防护措施来解决腐蚀问题,指导生产实践,实现生产安全与长周期运行,意义重大。国内外有不同类型的电化学氢传感器的研究报道,但是,不同类型传感器的测量能否得到一致的结果值得深入研究。通过设计氢渗透传感器来检测设备氢渗透速率,评估设备的安全运行状态,避免产生巨大的经济损失和严重的社会后果,具有重要的社会经济效益。
     本文采用Devanathan—Stachurski渗氢电池检测原子氢的渗透速率,并设计了工程中能应用的氢渗透传感器,研究了被测设备的表面催化镀层,对电流型与电势型氢渗透传感器性能的影响,研究了胶状电解质的双电解质氢渗透传感器的性能。研究结果表明:
     (1)被检测的工件表面无催化镀层时,传感器对原子氢电化学氧化没有活性,通过镀镍或镀钯层来提高对氢原子的催化氧化活性。镀层的致密性直接影响其氢原子的催化活性和传感器的灵敏度。采用我们开发的镀钯和镀镍电解液,在0.333A-dm~(-2)的阴极电流密度镀钯8~10min时,或在1.00A-dm~(-2)的电流密度下镀镍5min,都能获得良好的催化镀层。催化镀层不仅能够有效地降低背景电流,同时能提高氢原子氧化的催化活性。
     (2)传感器中镍镀层与钯镀层的氧化原子氢的安全电势区间分别为+0.3~+0.4V_(Ni)和+0.2~-+0.5V_(Ni)。在较低的氧化电势下,钯的催化活性比镍高,但通过提供合适的氧化电势,使镍镀层达到和钯镀层一样高的催化活性,镍镀层的最适宜氧化电势为0.35V_(Ni)。
     (3)电流型氢渗透传感器和电势型氢渗透传感器都能够应用于氢渗透测量。在相同温度条件下,随着充氢电流密度增大,稳态电势相应增加,在相同的充氢电流密度时,两者测量结果相近,最小相对偏差仅为3.0%。
     (4)电流型氢渗透传感器响应比电势型传感器快,灵敏度高。两种类型氢渗透传感都具有良好的重现性。
     (5)采用由胶状电解质和KOH溶液组成的双电解质电流型氢传感器,检测钢体因氢腐蚀产生的氢原子渗透速率。该氢渗透传感器有适宜的粘性和较高的导电率,可以有效地防止传感器在安装时的漏液现象,同时具有良好可靠性。
     (6)现场监测试验表明设计的腐蚀监测系统能够反映设备壁氢渗透的信息,能实时、在线、无损地检测设备中原子氢浓度,为设备的安全运行提供了可靠的保证。
     本论文在如下方面有创新性研究成果:(i)确定了原子氢氧化的最佳催化镀层和施镀的工艺;(ii)揭示了电流型和电势型两类电化学氢渗透传感器的性能,确定了电流型氢渗透传感器更适合于氢渗透速率的检测;(iii)采用双电解质系统解决传感器安装漏液的问题,并证实了该传感器对测量信号相应的正确性。(iv)现场检测结果显示设计的氢渗透传感器组成电化学腐蚀监测系统,可以实时、在线、无损检/监测正在运行的设备中原子氢的浓度,并对氢致裂开危险性进行评估。
The steel equipment was destroyed seriously by hydrogen, which was generated inindustrial production. In order to prevent the occurrence of malignant accidents, thesensor was developed to detect/monitor hydrogen content produced by corrosionreactions and to evaluate the hydrogen corrosion degree of steel equipment. It is ofgreat significance that effective safeguard procedures are taken to solve the corrosionproblem, to guide the production practice and finally to realize safety production andlong period running. The researches about different types of electrochemicalhydrogen sensors have been reported at home and abroad. However, it was worth tostudy in-depth whether the consistent measure results were obtained or not throughthe measurement with different type sensors. It had vital socioeconomic benefits thatthe sensor was developed to monitor the hydrogen permeation rate of equipment inreal-time and nondestructively, to evaluate the safety operation state of equipment,and to prevent occurrence of enormous loss in economy and servant socialconsequence in production operation.
     The atomic hydrogen permeation rate was detected by the Devanathan-Stachurskicell. The sensor for detecting hydrogen permeation rate was developed in thedissertation. The influence of the catalytic coatings on the measured equipment on theperformance of amperometric-type and potentiometric-type hydrogen permeationsensors was studied. The performance of the sensor composed of double electrolyteswith gelatiniform electrolyte was investigated. The results were shown as follow:
     (1)The sensor could not oxidize the atom hydrogen when the detected workpiecesurface did not plate catalytic coating, but the catalytic activity of oxidizing hydrogenatoms was improved by the coating of nickel or palladium. The catalytic activity ofoxidizing hydrogen atom, or the sensor sensitivity, directly depended on thecompactness of coating. When the electroplating was conducted for8~10min by0.333A-dm~(-2)cathode current density, the compact palladium plating on the steelcould be obtained in our developed palladium electrolyte. When the cathode currentdensity of1.00A-dm~(-2)was applied to electroplate nickel for over5min, the compactnickel plating on the detected surface of equipment was obtained. Therefore, not onlythe background current could be reduced effectually via plating nickel or palladium,but also the catalytic activity for oxidizing the hydrogen atoms could be improved.
     (2) The safe potential interval of hydrogen oxidation on nickel and palladiumcoating was+0.3~+0.4V_(Ni)and+0.2~+0.5V_(Ni), separately. Under the lower oxidationpotential, the catalytic activity of palladium coating was slightly higher than that ofnickel coating. We can raise the oxidization potential to reach the same catalyticactivity on palladium coating. The optimum oxidation potential on nickel coating was0.35V_(Ni).
     (3) Both of the amperometric-type and potentiometric-type hydrogen permeationsensors could be applied to the detection of hydrogen permeation rate. Under the sametemperature conditions, the steady state potential was increased with the rise ofcharging current density. The nearly agreeable results were obtained on the two typesensors under the same density of charging current. The minimum relative deviationwas only3.0%between them.
     (4) The response time of amperometric hydrogen permeation sensor was shorterand the sensitivity was higher relatively. The two types of the sensors had goodreproducibility.
     (5) An amperometric hydrogen sensor with double electrolytes composed of agelatiniform electrolyte and KOH solution were developed to detect the permeationrate of hydrogen atoms in steel equipment. The hydrogen permeation sensor hadsuitable viscosity and high electrical conductivity, which could prevent effectively theleakage when it was fixed and it had good reliability.
     (6) The field monitoring tests showed that the designed corrosion monitoringsystem could accurately display the hydrogen permeation information of the equip-ment. It was applied in the real-time, on situ and nondestructive detecting atomichydrogen concentration in the steels. It could provide the reliability for the safeoperation of the equipment.
     The innovative points of our researches were shown as follows:(i)The optimumcatalytic coatings for oxidization of atomic hydrogen and plating processes wereascertained.(ii)The performances of the amperometric-type and potentiometric-typehydrogen sensors were studied and it was found out that the amperometric hydrogenpermeation sensor was more suitable to detect the hydrogen permeation rate.(iii)The leakage problem was solved using double electrolytes system when the sensorwas fixed. The correctness of measuring signal was verified by experiments.(iv)Theresult of field monitoring showed that the developed electrochemical monitoringsystem could realize the real-time, online and nondestructive detection of atomichydrogen concentration and the estimation of the susceptibility of hydrogen induced cracking.
引文
[1] Rajan N I, Howard W P. Mechanism and kinetics of electrochemical hydrogenentry and degradation of metallic systems. Annu.Rev.Mater.Sci,1990,20(1):299-338.
    [2] Staehle R W. Fundamental aspects of stress corrosion cracking: proceedings ofconference. National Association of Corrosion Engineers,1969,32-50.
    [3] Tadeus K, Zakroczymski S. An electrochemical method for hydrogendetermination in steel. Corrosion,1982,38(4):218-223.
    [4] Tom M. Monitoring internal corrosion in oil and gas production operations withhydrogen probes. Materials Performance,1984,23(6):49-55.
    [5] Devanathan M A V, Stachurski Z. Proceedings of the royal society,1962, A270:90-102.
    [6] Devanathan M A V, Stachurski Z, Beck W. A technique for the evaluation ofhydrogen embrittlement characteristics of electroplating baths. Journal of TheElectrochemical Society,1963,8(110):886-889.
    [7] Fincher D R, Nestle A C. New developments in monitoring corrosion control.Material Performance,1973,12(7):17-22.
    [8] Deluccia J J, Bermn D A. Electrochemical Corrosion Testing, ASTM STP727,Florian Mansfld and Ugo Bertocci Eds,1981:256.
    [9] Hay M G, Dautovich D P, Dobson W P. Electrochemical monitoring of carbonsteel corrosion in heavy water production. Materials performances,1977,7:30-36.
    [10] Manolatos P, Jerome M, Duret T C et al. The electrochemical permeation ofhydrogen in steels without palladium coating. Part I: interpretation difficulties.Corrosion Science,1995,37(11):1773-1783.
    [11] Manolatos P, Duret-Thual C, Coze J L, et al. The electrochemical permeation ofhydrogen in steels without palladium coating. Part II: Study of the influence ofmicrostructure on hydrogen diffusion. Corrosion Science,1995,37(11):1785-1796.
    [12] Yamakawa K, Nishimura R. Hydrogen permeation of carbon steel in weakalkaline solution containing hydrogen sulphide and cyanide ion. Corrosion,55(1):1230-1237.
    [13] Yamakawa K, Tsubakino H, et al. A new electrochemical hydrogen probe.ASTM,Philadelphia,1986:221-236.
    [14] Tan Y, Tan T C. Characteristics and modeling of a solid state hydrogen sensor.Journal Electrochemical society,1995,142(6):1923-1929.
    [15]杜元龙,原子氢渗透速率测量传感器.中国专利.90106448,1992-06-10.
    [16]杜元龙,海洋平台节点氢致裂危险性探测仪.中国专利.89105157,1993-05-27.
    [17]杜元龙,管线钢硫化物应力腐蚀开裂敏感性探测仪.中国专利.90106449,1994-04-15.
    [18] Kumar R V, Fray D J. A electrochemical hydrogen sensor for detecting molecularhydrogen. Sensors and Actutors,1988,15:185-190.
    [19] Lyon S B, Fray D J. Electrochemical detection of hydrogen using a solid-stateprobe. Solid state ionics,1983,9:1295-1300.
    [20] Morris D R, d Wan L. A solid-state potentiometric sensor for Monitoringhydrogen in commercial pipeline steel. Corrosion,1995,51(4):301-311.
    [21] Morris D R, Sastri V S, Elboujdani M, et al. Electrochemical sensors formonitoring hydrogen in steel. Corrosion,1994,50(8):641-647.
    [22] Hunter G W. A survey and analysis of commercially available hydrogen sensors.NASA STI/Recon Technical Report N,1992,93:17777.
    [23] Hunter G W, Makel D B, Jansa E D, et al. A Hydrogen Leak Detection System forAerospace and Commercial Applications. NASA Technical Memorandum1070363,1995,1:10-12.
    [24] Weiller B H, Barrie J D, Aitchison K A, et al. Chemical microsensors for satelliteapplications.Mater. Res. Soc. Symp. Proc,1995,360(1),535-540.
    [25] Balaramachandran V, Srinivasan K N, Kapali V. Studies on the potential ofionisation of diffused heavy hydrogen at Pd/alkaline solution interface.Corrosion science,1991,32(2):185-191.
    [26] Morris D R, Wan L. A solidstate potentialmetric sensor for monitoring hydrogenin commercial pipeline steel. Corrosion,1995,51(4):301-311.
    [27] Nishimura R, Toba K, Yamakawa K. The development of a ceramic sensor for theprediction of hydrogen attack. Corrosion science,1996,38(4):611-621.
    [28] Glass R S, Milliken J, Howden K, et al. Sensor needs and requirements forproton-exchange membrane fuel cell systems and direct-injection engines.Lawrence Livermore National Laboratory, Applied Energy TechnologiesProgram,2000:11.
    [29] Arnason B, Sigfusson T. Iceland—a future hydrogen economy. I. Int. J.Hydrogen Energy.2000,25(5),389-394.
    [30] Kordesch K, Simader G, Wiley J. Fuel Cells and their Applicati-ons.Weinheim:VCH Publishers, Inc.New York,1996.
    [31] Yu G, Zhang X Y, Du Y L. Research surveys of electrochemical sensors forin-situ determining hydrogen in steels. J.Mater.Sci.Technol,2000,16(3):305-310.
    [32] Yu G, Zhang X Y, Du Y L. Mobile Hydrogen Monitoring in the Wall of Hydrogen-ation Reactor,Corrosion,2001,57(1):71-77.
    [33]余刚,赵亮,叶立元,等.三镍电极氢传感器.化学通报,2003,66:1-8
    [34] Ando M. Recent advances in optochemical sensors for the detection of H2, O2, O3,CO, CO2and H2O in air. TrAC Trends Anal. Chem,2006,25,937-948.
    [35] Wilson D M, Hoyt S, Janata J, et al. Chemical Sensors for Portable. HandheldField Instruments IEEE Sensors J,2001,1,256-274.
    [36] Janata J, Josowicz M, Vanysek P, et al. Chemical sensors. Analytical Chemistry,1998,70(12):179-208.
    [37] Ishihara T, Matsubara S. Capacitive Type Gas Sensors. J.Electroceram.1998,2(4):215-228.
    [38] Lundstrom I, Sundgren H, Winquist F, et al. Twenty-five years of field effect gassensor research in Link ping. Lloyd-Spetz, A. Sens. Actuators, B,2007,121,247-262.
    [39] Aroutiounian V. Based on YSZ Solid Electrolyte sensors for hydrogen setups andcells. Int. J. Hydrogen Energy.2007,32,1145-1158.
    [40] Christofides C, Mandelis A. Solid—state sensors for trace hydrogen gasdetection. Journal of applied physics,1990,68(6):1-30.
    [41] Limoges B, Degrand C, Brossier P. Redox cationic or procationic labeled drugsdetected at a perfluorosulfonated ionomer film-coated electrode. Journal ofElectroanalytical Chemistry,1996,402(1):175-187.
    [42] Shi M, Anson F C. Effects of hydration on the resistances and electrochemicalresponses of nafioncoatings on electrodes. J. Electroanal. Chem,1996,415(1):41-46.
    [43] Brett C. Electrochemical sensors for environmental monitoring. Strategy andexamples. Pure and applied chemistry,2001,73(12):1969-1977.
    [44] Stetter J R, Li J. Amperometric gas sensorss a review. Chem. ReV,2008,108(2):352-366.
    [45] Janata J. Electrochemical microsensors. Proceedings of the IEEE,2003,91(6):864-869.
    [46] Mari C M, Terzaghi G, Bertolini M, et al. A chlorine gas potentiometric sensor.Sensors and Actuators B: Chemical,1992,8(1):41-45.
    [47] Weppner W. Solid-state electrochemical gas sensors.Sens. Actuators,1987,12(2):107-119.
    [48] Hübert T, Boon-Brett L, Black G, et al. Hydrogen sensors–a review. Sensors andActuators B: Chemical,2011,157(2):329-352.
    [49] Knake R, Jacquinot P, Hodgson A W E, et al. Amperometric sensing in thegas-phase. Anal.Chim. Acta,2005,549(1):1-9.
    [50] Cao Z, Buttner W J, Stetter J R. The properties and applications of amperometricgas sensors. Electroanalysis,1992,4(3):253-266.
    [51] Korotcenkov G, Han S D, Stetter J R. Review of electrochemical hydrogensensors[J]. Chemical reviews,2009,109(3):1402-1433.
    [52] Alber K S, Cox J A, Kulesza P. Solid-state amperometric sensors for gas phaseanalytes: A review of recent advances. J.Electroanalysis,1997,9(2):97-101.
    [53] Opekar F, Stul k K. Electrochemical sensors with solid polymer electrolytes.Anal. Chim. Acta,1999,385(1):151-162.
    [54] Opekar F, Stul k K, Crit. ReV. Amperometric Solid-State Gas Sensors: Materialsfor Their Active Components. Anal. Chem,2002,32(3):253-259.
    [55] Bobacka J, Ivaska A, Lewenstam. Potentiometric Ion Sensors. A. Chem. ReV,2008,108(1):329-351.
    [56] Bakker E, Buhlmann P, Pretsch E. Carrier-Based Ion-Selective Electrodes andBulk Optodes.1.General Characteristics. Chem. ReV,1997,97(8):3083-3132.
    [57] Buhlmann P, Pretsch E, Bakker E. Carrier-Based Ion-Selective Electrodes andBulk Optodes.2. Ionophores for Potentiometric and Optical Sensors. Chem. ReV,1998,98(4):1593-1688.
    [58] Reinhardt G, Mayer R, Rosch M. Sensing small molecules with amperometricsensors. Solid State Ionics,2002,150(1):79-92.
    [59] Hodgson A W E, Jacquinot P, Jordan L R, et al. Amperometric Gas Sensors ofHigh Sensitivity. Electroanalysis,1999,11(10-11):782-787.
    [60] Holzinger M, Maier J, Sitte W. Potentiometric detection of complex gases:Application to CO2. Solid State Ionics,1997,94(1):217-225。
    [61] Kulesza P J, Cox J A. Solid-State Voltammetry Analytical Prospects. Electroana-lysis,1998,10(2):73-80。
    [62] Ishihara T, Fukuyama M, Dutta A, et al. Solid State Amperometric HydrocarbonSensor for Monitoring Exhaust Gas Using Oxygen Pumping Current.Electrochem. Soc,2003,150(10):241-245.
    [63] Lu X, Wu S, Wang L, et al. Solid-state amperometric hydrogen sensor based onpolymer electrolyte membrane fuel cell. Sens. Actuators B,2005,107(2):812-817.
    [64] Sakthivel M, Weppner W. Development of a hydrogen sensor based on solidpolymer electrolyte membranes. Sens Actuators B,2006,113(2):998-1004.
    [65] Nikolova V, Nikolov I, Andreev P, et al. Tungsten carbide-based electrochemi-cal sensors for hydrogen determination in gas Mixtures. Electrochem,2000,30(6),705-710.
    [66] Barsan N, Stetter J R, Findlay M, et al. High-Performance Gas Sensing of CO:Comparative Tests for Semiconducting (SnO2-Based) and for Amperometric GasSensors. Anal. Chem,1999,71(13):2512-2517.
    [67] Ramesh C, Velayutham G, Murugesan N, et al. An improved polymer electrolyte-based amperometric hydrogen sensor. Journal of solid state electrochemistry,2003,7(8):511-516.
    [68] Sakthivel M, Weppner W. Development of a hydrogen sensor based on solidpolymer electrolyte membranes. Sensors and Actuators B: Chemical,2006,113(2):998-1004.
    [69] Blurton K F, Stetter J R. Sensitive electrochemical detector for gas chromato-graphy. J. Chromatogr,1978,155(1):35-45.
    [70] Ollison W M, Penrose W M, Stetter J R. Sensitive measurement of ozone usingamperometric gas sensors. Anal. Chim. Acta,1995,313(3):209-219.
    [71] Sakthivel M, Weppner W. Response Behaviour of a Hydrogen Sensor Based onIonic Conducting Polymer-metal Interfaces Prepared by the Chemical ReductionMethod. Sensors,2006,6(4):284-297.
    [72] Stetter J R, Penrose W R, Yao S. Sensors, chemical sensors, electrochemicalsensors, and ECS. Journal of The Electrochemical Society,2003,150(2):11-16.
    [73] Alberti G, Palombari R, Pierri F. Use of NiO, anodically doped with Ni(III), asreference electrode for gas sensors based on proton conductors. Solid StateIonics,1997,97(1):359-364.
    [74] Inaba T, Saji K, Takahashi H. Limiting current-type gas sensor using a hightemperature-type proton conductor thin film. Electrochemistry,1999,67(1):458-462.
    [75] Bonanos N. Oxide-based protonic conductors: point defects and transport proper-ties. Solid State Ionics,2001,145(1):65-274.
    [76] Sundmacher K, Rihko-Struckmann L K, Galvita V. Solid electrolyte membranereactors: Status and trends. Catal. Today,2005,104(2):185-199.
    [77] Liu Y C, Hwang B J, Tzeng I J. Solid-State Amperometric Hydrogen SensorUsing Pt C Nafion Composite Electrodes Prepared by a Hot-Pressed Method. J.Electrochem. Soc,2002,149(11):173-178.
    [78] Samec Z,Opekar F, Gjef C. Solid-state Hydrogen Sensor Based on a Solid-Polymer Electrolyte. Electroanalysis,1995,7(11),1054-1058.
    [79] Opekar F, Stulik K. Electrochemical sensors with solid polymer electrolytes.Anal. Chim. Acta,1999,385(1),151-162.
    [80] Bobacka J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes.Electroanal ysis,2006,18(1):7-18.
    [81] Zawodzinski T A, Springer T E, Uribe F, et al. Characterization of polymerelectrolytes for fuel cell applications. Solid State Ionics,1993,60(1):199-211.
    [82] Opekar F. An Amperometric Solid-state Sensor for Nitrogen Dioxide Based on aSolid Polymer Electrolyte. Electroanalysis,1992,4(2):133-137.
    [83] Yan H, Liu C. Humidity effects on the stability of a solid polymer electrolyteoxygen sensor. Sens. Actuators B,1993,10(2):133-136.
    [84] Alberti G, Casciola M. Solid state protonic conductors, present main applicationsand future prospects. Solid State Ionics,2001,145(1):3-16.
    [85] Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole. SolidState Ionics,1999,118(3):287-299.
    [86] Bouchet R, Siebert E, Vitter G. Polybenzimidazole-Based Hydrogen Sensors I.Mechanism of Response with an E-TEK Gas Diffusion Electrode. J. Electrochem.Soc,2000,147(8):3125-3130.
    [87] Bouchet R,Rosini S, Vitter G, et al. A Solid-State Potentiometric Sensor Based onPolybenzimidazole for Hydrogen Determination in Air. J. Electrochem. Soc,2002,149(6):119-122.
    [88] Ramesh C, Velayutham G, Murugesan N, et al. Studies on modified anodepolymer hydrogen sensor. Ionics,2004,10(1-2):50-55.
    [89] Rosini S, Siebert E. Electrochemical sensors for detection of hydrogen in air:model of the non-Nernstian potentiometric response of platinum gas diffusionelectrodes. Electrochim. Acta,2005,50(14):2943-2953.
    [90] Lu G, Miura N, Yamazoe N. High-temperature hydrogen sensor based onstabilized zirconia and a metal oxide electrode. Sens. Actuators B,1996,35(1):130-135.
    [91] Michalska A. Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers.Anal. Bioanal. Chem,2006,384(2),391-406.
    [92] Wroblewski W, Dybko A, Malinowska E, et al. Towards advanced chemicalmicrosensors—an overview. Talanta,2004,63(1),33-39.
    [93] Lukow S R, Kounaves S P. Analysis of simulated Martian regolith using an arrayof ion selective electrodes. Electroanalysis,2005,17(15-16):1441-1449.
    [94] Josowicz M. Applications of Conducting Polymers in Potentiometric Sensors.Analyst,1995,120(4),1019-1024.
    [95] Maksymiuk K. Chemical Reactivity of Polypyrrole and Its Relevance to Poly-pyrrole Based Electrochemical Sensors. Electroanalysis,2006,18(16):1537-1551.
    [96] Vork F T A, Janssen L J J, Barendrecht E. Oxidation of hydrogen at platinu-polypyrrole electrodes. Electrochimica acta,1986,31(12):1569-1575.
    [97] Maffei N, Kuriakose A K. A solid-state potentiometric sensor for hydrogendetection in air. Sens. Actuators B,2004,98(1):73-76。
    [98] Bouchet R, Rosini S, Vitter G, et al. Solid-state hydrogen sensor based onaciddoped polybenzimidazole. Sens. Actuators B,2001,76(1):610-616.
    [99] Bouchet R, Siebert E, Vitter G. Polybenzimidazole-Based Hydrogen Sensors II.Effect of the Electrode Preparation. J. Electrochem. Soc,2000,147(9):3548-3551.
    [100] Opekar F, Langmaier J, Samec Z. Indicator and reference platinum|solidpolymer electrolyte electrodes for a simple solid-state amperometric hydrogensensor. J. Electroanal. Chem,1994,379(1),301-306.
    [101] Zosel J, Schiffel G, Gerlach F, et al. Electrode materials for potentiometrichydrogen sensors. Solid State Ionics,2006,177(26),2301-2304.
    [102] Miura N, Yamazoe N, Development of new chemical sensors based onlow-temperature proton conductors.Solid State Ionics,1992,53(2):975-982.
    [103] Kleperis J, Bayars G,Vaivars G, et al. Solid Electrolytes in Sensor Technology.SoV. Electrochem,1992,28(6),1181-1190.
    [104] Kumar R V, Fray D J. Development of solid-state hydrogen sensors. sensorsand Actuators,1988,15(2):185-191.
    [105] Maffei N, Kuriakose A K. A hydrogen sensor based on a hydrogen ionconducting solid electrolyte. Sensors and Actuators B: Chemical,1999,56(3):243-246.
    [106] Treglazov I, Leonova L, Dobrovolsky Y, et al. Electrocatalytic effects in gassensors based on low-temperature superprotonics. Sens. Actuators B,2005,106(1),164-169.
    [107] Chehab S F, Canaday J D, Kuriakose A K, et al. A hydrogen sensor based onbonded hydronium NASICON. Solid state ionics,1991,45(3):299-310.
    [108] Ponomareva V G, Lavrova G V, Hairetdinov E F. Hydrogen sensor based onantimonium pentoxide-phosphoric acid solid electrolyte. Sensors and ActuatorsB: Chemical,1997,40(2):95-98.
    [109] Jacobs A, Vangrunderbeek J, Beckers H, et al. Hydrogen Measuring Probe forCoal Gasification Processes. Fuel Process. Technol,1993,36(1):251-258.
    [110] Sakthivel M, Weppner W. Application of layered perovskite type protonconducting KCa2Nb3O10in H2sensors: Pt particle size and temperaturedependence. Sensors and actuators. B, Chemical,2007,125(2):435-440.
    [111] Tomita A, Namekata Y, Nagao M, et al. Room-Temperature Hydrogen SensorsBased on an In3+-Doped SnP2O7Proton Conductor. J. Electrochem. Soc,2007,154(5):172-176.
    [112] Lu G, Miura N, Yamazoe N. High-temperature hydrogen sensor based onstabilized zirconia and a metal oxide electrode. Sensors and Actuators B:Chemical,1996,35(1):130-135.
    [113] Martin L P, Glass R S. Hydrogen Sensor Based on YSZ Electrolyte andTin-Doped Indium Oxide Electrode. J. Electrochem. Soc,2005,152(4):43-47.
    [114] Chao Y, Yao S, Buttner W J, et al. Amperometric sensor for selective andstable hydrogen measurement. Sensors and Actuators B: Chemical,2005,106(2):784-790.
    [115] árnason B, Sigfússon T I. Iceland—a future hydrogen economy. InternationalJournal of Hydrogen Energy,2000,25(5):389-394.
    [116] Ren X, Wilson M S, Gottesfeld S. High performance direct methanol polymerelectrolyte fuel cells. Journal of The Electrochemical Society,1996,143(1):12-15.
    [117] Bagotzky V S, Osetrova N V. Investigations of hydrogen ionization onplatinum with the help of micro-electrodes. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry,1973,43(2):233-249.
    [118] Gasteiger H A, Markovic N M, Ross Jr P N. H2and CO electrooxidation onwell-characterized Pt, Ru, and Pt-Ru.1. Rotating disk electrode studies of thepure gases including temperature effects. The Journal of Physical Chemistry,1995,99(20):8290-8301.
    [119] De Mello, Ticianelli E A. Kinetic study of the hydrogen oxidation reaction onplatinum and Nafion covered platinum electrodes. Electrochim. Acta,1997,42(6):1031-1039.
    [120] Harrison J A, Khan Z A. electyonanalytical chemistry and interfacialelectrochemistry. J. Electroanal. Chem,1971,30(1):327-330.
    [121] Sawyer D T, Seo E T. Electrochemistry of dissolved gases: III. Oxidation ofhydrogen at platinum electrodes. Journal of Electroanalytical Chemistry,1963,5(1):23-34.
    [122] Roh S, Stetter J R. Gold Film Amperometric Sensors for NO and NO2. J.Electrochem. Soc,2003,150(11):272-278.
    [123] Yamakawa. A New Electrochemical Hydrogen Sensor. ASTM, STP908,1986:221-236.
    [124] Deluccia J J, Bermn D A. Electrochemical Corrosion Testing, ASTM STP727,Florian Mansfld and Ugo Bertocci Eds.1981:256.
    [125] Robinson M J, Hudson D R J.50D carbon-manganese steel. Br.Corros. J.,1990,25(4):279-284.
    [126] Christensen C, Arup H, Hill R T. Corrosion monitoring in wet sour gas by useof hydrogen permeation probes. Houston, TX (USA); National Assoc. ofCorrosion Engineers,1989,14:477.
    [127] Ando S, Yamakawa K.11th International Corrosion Congress, ASM, Florence,Italy,1990,4(4):241-249.
    [128]杜元龙.钢结构外置式SSCC/HE敏感性在线无损检测技术,中国专利.95111971,1995-04-28.
    [129]张学元,杜元龙.原子氢渗透速率检测电化学传感器的研究.化学传感器,1996,16(2):125-131.
    [130] Zhang X Y, Yu G, Du Y L, A new intelligent amperometric type of electroche-mical hydrogen probe. Acta Metallurgica Sinica,1999,12(2):160-166.
    [131] Lyon S B, Fray D J. Determination of hydrogen generated in electrochemicalprocesses by use of a solid electrolyte probe. British Corrosion Journal,1984,19(1):23-28.
    [132] Lyon S B, Fray D J, Detection of hydrogen generated by corrosion reactionsusing a solid electrolyte probe. Materials Performance,1984,23(4):23-25.
    [133]李久青,杜翠薇.腐蚀试验方法及监测技术.第一版.北京:中国石化出版社,2007,162-163,222-260.
    [134]余刚,赵亮,叶立元,等.三镍电极氢传感器.化学通报,2003,66:1-8.
    [135]姚毓升,解永平,文涛.三电极电化学传感器的恒电位仪设计.仪表技术与传感器,2009,9:23-25.
    [136]董汉鹏,张威,郝一龙.原电池型高分子电解质三电极氢传感器的研究.传感技术学报,2007,20(4):747-750.
    [137]李秀艳,李依依.奥氏体合金的氢损伤.北京:科学出版社,2003,1-13.
    [138] Thompson A W, Bernstein I M. Advances in corrosion science and technology.MG Fontana and RW Staehle, eds,1980,7:53-175.
    [139]傅献彩,沈文霞,姚天扬,等.物理化学.第五版下册.北京:高等教育出版社,2006,122-124.
    [140] Iyer R N, Pickering H W, Zamanzadeh M. Analysis of Hydrogen Evolution andEntry into Metals for the Discharge‐Recombination Process. Journal of theElectrochemical Society,1989,136(9):2463-2470.
    [141] Reddy A K N. Modern electrochemistry. Macdonald, London,1970,38(2):1231-1261.
    [142]博克里斯J O M,德拉齐克D M.电化学科学.北京:人民教育出版社,1980,8:286-291.
    [143]余刚,赵亮,张学元,等.16MnR钢硫化氢腐蚀与氢渗透规律的研究.湖南大学学报:(自然科学版),2004,31(3):5-9.
    [144]天津大学物理化学教研室.物理化学.下册.北京:高等教育出版社,2001,12:219-223
    [145]傅献彩,沈文霞,姚天扬,等.物理化学.第五版下册.北京:高等教育出版社,2006,191-191.
    [146] Li D, Gangloff R P, Scully J R. Hydrogen trap states in ultrahigh-strengthAERMET100steel. Metallurgical and Materials Transactions A,2004,35(3):849-864.
    [147]欧阳跃军,余刚,吴运东,等.丙烷储罐湿硫化氢腐蚀监测技术.湖南大学学报(自然科学版),2007,34(1):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700