用户名: 密码: 验证码:
基于DNA酶和氧化石墨烯的高灵敏荧光生物传感体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器(Biosensor)是由生物学、物理学、数学、化学、计算机科学等多个学科交叉融合而发展起来的一门新兴而活跃的学科。近年来新的分子生物学技术不断涌现,并在科学研究和实际应用中得到不断的发展和完善,使生物分子检测的灵敏度和特异性都得到很大的提高。然而随着疾病诊断要求的不断提高与科学研究的不断深入,我们迫切需要发展一些灵敏度高、选择性好、操作简单且成本低廉的生物传感器以便更好地满足科学研究和实际应用的需求。目前提高荧光传感器灵敏度的方法主要有两类:一类是通过使用碳纳米材料等超级猝灭剂提高猝灭效率以降低检测荧光背景,另一类则是利用各种酶切催化循环放大手段提高传感器的灵敏度。
     基于以上考虑,综合文献报道,本文主要采用可降低背景信号的荧光猝灭剂以及信号放大技术在提高生物传感器的灵敏度方面做了一些工作,主要内容如下:
     (1)基于DNA酶生物传感体系的研究。DNA酶是利用体外筛选的组合生物学技术获得的一段具有催化功能的DNA片段。在第2章中,我们基于氧化石墨烯(GO)对不同长度的单链DNA具有不同的吸附力设计了一种荧光增强型的DNA酶生物传感器用于铅离子的检测。由于底物链和酶链的杂交探针中含有一段单链DNA序列,故该探针可以吸附在氧化石墨烯上,并使底物链5'端的荧光基团靠近GO,从而导致荧光团的荧光被猝灭。当加入Pb~(2+)后,DNA酶的催化活性被激活,并将底物链切割为两部分。含有荧光团的短链DNA(5个碱基)从酶链上解链游离下来。释放出的酶链可继续与未反应的底物链杂交,同时诱发下一轮的催化切割,如此循环,传感体系中就存在很多标记有荧光团的短链DNA。加入GO之后,由于短链DNA与氧化石墨烯结合力很弱,故荧光团远离氧化石墨烯而使其荧光不被猝灭。该传感器的灵敏度很高,对铅离子的检测限为300pM。
     上一章报道的DNA酶荧光传感器对酶链有一定的要求,即酶链的环状部分需要有一段长的DNA单链便于杂交探针吸附在GO上。如果环状部分的单链DNA太短或以双链形式存在就会影响杂交探针与GO的结合能力,从而导致传感器的背景荧光增加。因此,利用GO做荧光猝灭剂限制了上述传感器的通用性。在第3章中,我们利用苝二酰亚胺阳离子化合物的团聚体作猝灭剂构建了一个通用的DNA酶生物传感平台。苝二酰亚胺阳离子化合物可以吸附于DNA酶探针上并发生团聚,而其团聚体可以通过荧光共振能量转移猝灭荧光团(FAM)的荧光。铅离子或L-组氨酸的加入使DNA酶的催化活性被激活并将底物链切割为两部分,释放出标记有FAM的短链DNA、另外一段底物链以及DNA酶。被释放的DNA酶可继续同未反应的底物链杂交,同时诱发下一轮的催化切割。由于苝二酰亚胺阳离子化合物主要吸附在酶链和切割后的另外一段底物链上,而标记有FAM的短链DNA只有5个碱基,苝二酰亚胺阳离子化合物很难与其结合,因此FAM的荧光未被猝灭。该传感器具有很高的灵敏度和选择性且通用性好,可用于检测各种目标物。
     催化信标是当目标物存在时可以催化DNA酶水解底物链从而产生荧光信号增强的荧光检测体系。一般来说,催化信标由标记荧光团的底物链和标记猝灭团的DNA酶链组成,其中底物链与DNA酶链的比例应严格控制在≤1,而这样限制了催化信标在信号放大检测中的应用。另外,这种催化信标荧光猝灭效率较低,因此具有较高的荧光背景。在第4章中,基于具有特殊茎-环结构的分子信标和与之具有相同配对碱基的双链DNA之间熔链温度的差异,我们提出了一种利用分子信标作为底物链,从而避免对DNA酶修饰且能进行多重循环信号放大的新型荧光催化信标。而且该新型催化信标还可作为荧光放大基团用于目标DNA的检测。其动力学响应范围为0.5nM~300nM,检测下限为200pM。
     为了进一步拓宽DNA酶的应用范围,在第5章中,我们基于DNA酶拓扑结构的改变可引起其催化活性的改变构建了一个通用的放大传感平台用于检测DNA序列和酶的活性。由于8-17DNAzyme的部分序列被固定于探针的发夹结构中,故酶的催化活性被抑制。当存在目标物(DNA或甲基化酶)时,目标物和探针作用使其发夹结构被打开,8-17DNA酶从发夹结构中释放出来且催化活性被激活。具有催化活性的8-17DNA酶可与发夹型的分子信标底物杂交形成催化分子信标传感体系。加入锌离子后,DNA酶催化切割分子信标底物,使底物链片段从酶链上游离下来,荧光明显增强。最后游离出来的8-17DNA酶的酶链可重新与分子信标底物杂交,引发下一轮的催化切割,如此循环,实现了目标物的放大检测。此外,我们还利用小分子末端保护策略和DNA酶的信号放大功能实现了蛋白质的放大检测。当不存在链霉亲和素(SA)时,DNA探针被核酸外切酶I(ExoI)切割为单碱基核苷酸,故不能催化切割分子信标底物,因此传感器的背景荧光很低。当存在SA时,探针上标记的生物素和SA结合从而阻止了ExoI切割DNA探针。最后包含8-17DNA酶序列的DNA探针可以催化切割分子信标底物并引起传感体系荧光信号的增强。
     (2)在第6章中,我们将氧化石墨烯高的荧光猝灭率与核酸外切酶Ⅲ信号放大功能结合构建了一种高灵敏、快速、单标记的DNA荧光传感器。标记有荧光素(FAM)的DNA探针以单链形式存在故不能被核酸外切酶III切割,因此它可以通过π-π堆积作用吸附于GO表面并且荧光被猝灭。当目标DNA和探针链杂交后,核酸外切酶III沿3'→5'方向将探针链切割成碱基碎片,从而目标DNA被释放出来。释放出的目标DNA可继续和其它DNA探针杂交同时诱发第二次酶切循环反应。当酶切反应结束后加入适量的GO,由于DNA探针被切碎,故FAM远离GO而使其荧光不被猝灭。实验结果表明该方法可实现对目标DNA的高灵敏检测,检测下限为20pM。
     (3)在第7章中,我们利用苝二酰亚胺阳离子化合物作为荧光信号的报告分子,富G核苷酸序列作为铅离子的识别探针构建了一种简单、快速和无标记的荧光增强型铅离子传感器。带正电荷的苝二酰亚胺阳离子化合物和带负电荷的DNA探针之间强的静电吸附作用导致苝二酰亚胺阳离子化合物吸附在DNA探针上并使其荧光被猝灭。当加入铅离子后,DNA探针从单链状态折叠成稳定的G四股螺旋结构。此时,苝二酰亚胺阳离子化合物与G四股螺旋结构的吸附力远低于它与单链DNA的吸附力,使得很多苝二酰亚胺阳离子化合物脱离DNA而游离于溶液中,从而导致传感体系的荧光增强。该传感器的动力学响应范围为10nM-10μM,检测限为4nM。
Biosensor is an emerging and active field originating from the interplay ofnumerous subjects, such as biology, physics, mathematics, chemistry and computertechnology. Recent years, as the new detection technologies constantly spring up andget perfected both in the research and practical application, the sensitivity and thespecificity of the biosensor have been largely improved. However, with the researchdeveloping, the development of the sensitive, selective and inexpensive biosensorsare of paramount importance for biomedical research and clinical diagnosis. Twodifferent strategies have been widely employed to improve the sensitivity of a sensor:lower the detection background and signal amplified detection.
     In view of the considerations above and many relevant documents, we mainlyutilize the super fluorescence quencher and signal amplified strategy to improve thedetection sensitivity of the biosensor. The major contents are as follows:
     (1) Study on the biosensors based on DNAzyme. DNAzymes (also calleddeoxyribozymes or DNA enzymes) are DNA sequences that can catalyze chemicalreactions, such as cleaving ribonucleic acid targets. Based on the remarkabledifference in affinity of GO with ssDNA containing different number of bases inlength, we constructed a graphene–DNAzyme based sensing system for amplifiedfluorescence “turn-on” detection of Pb~(2+)in chapter2. The DNAzyme-substratehybrid containing a large ssDNA loop make the fluorophore close to the GO surfaceto the greatest extent to afford a high quenching efficiency and a low backgroundfluorescence. Upon the addition of Pb~(2+), the DNAzyme was activated and cleaved thesubstrate strand, releasing a short FAM-linked oligonuleotide fragment, a relatedlong oligonuleotide fragment and the DNAzyme strand. The DNAzyme strand canhybridize with another substrate strand and then induce the second cycle of cleavageby binding Pb~(2+). The introduction of GO into the sensing solution will result in weakquenching of the fluorescence of FAM due to the weak affinity of the shortFAM-linked oligonuleotide fragment to GO, and the fluorescence intensity shouldgradually increase with increasing Pb~(2+)concentration added. Our proposed biosensorexhibits a high sensitivity towards target with a detection limit of300pM for Pb~(2+).
     In chapter3, we employ cationic perylene derivative as a superquencher toconstruct DNAzyme-based fluorescence catalytic biosensors for the detection of Pb~(2+) and L-histidine. The strong affinity of perylene derivative with DNA drives it to forma complex with the DNAzyme-substrate hybrid, and efficiently quench thefluorescence of the FAM moiety. The introduction of Pb~(2+), however, will activateDNAzyme to catalyze the cleavage of the substrate in the RNA site, releasing a shortFAM-linked oligonuleotide fragment which show weak affinity with perylenederivative, and the introduction of perylene derivative into the system will showweak quenching effect on the FAM’s fluorescence. These results togetherdemonstrate that our design provides a convenient and universal platform foramplified detection of a wide range of targets.
     The molecular beacon has the properties of low background and high sensitivity,and the huge difference with the melting temperature of other double-strand DNA.By utilizing the molecular beacons as the substrate sequence, a new kind offluorescent catalytic and molecular beacon has been developed in chapter4.Moreover, this design is willing to be applied in the fluorescence-based signalamplification for the detection of target DNA. A dynamic range from0.5nM to300nM for target DNA was achieved and the detection limit was200pM.
     In chapter5, taking advantage of a topological effect of DNAzyme, we designeda new and general amplified sensing platform for nucleic acids and Dam MTaseactivity detection. Because the8-17DNAzyme is caged by partially hybridizing toform a hairpin structure, and is inactive to MB substrate, which provides a lowbackground for the sensing system. In the presence of the target, the hairpin structureis opened, and the8-17DNAzyme is liberated from the caged structure with itscatalytic activity being restored. The activated8-17DNAzyme can hybridize with theMB substrate to form the CAMB system and catalyze the cleavage of the MBsubstrate in the presence of cofactor Zn~(2+). After cleavage, the quenched MBfluorophore/quencher pair was separated from each other, resulting in an obviousincrease of fluorescent signal and a free DNAzyme strand. Eventually, eachtarget-induced activated8-17DNAzyme can undergo many cycles to trigger thecleavage of many MB substrates, achieving an amplified detection signal for thetarget. Furthermore, we constructed an amplified sensing platform for proteindetection based on the terminal protection of small-molecule-linked DNA. In theabsence of SA, the DNA probe was hydrolyzed successively into mononucleotides byExo I and cannot catalyze the cleavage of the MB substrate, therefore, providing azero-background for the sensing system. In the presence of SA, the probe is protectedfrom the degradation by Exo I. Consequently, the probe containing the8-17 DNAzyme sequence can catalyze the cleavage of the hairpin-structured MB substrateto induce a significant fluorescence enhancement.
     (2) Using the GO as super fluorescence quencher and the Exo III as anamplifying biocatalyst, we develop a facile, sensitive, cost-effective method for DNAdetection in chapter6. In the absence of target DNA, Exo III is unable to catalyze theremoval of bases from the probe DNA. Upon the addition of GO, the fluorescence ofFAM was significantly quenched because of the strong binding between ssDNA andGO. In the presence of target DNA, Exo III can catalyze the stepwise removal ofmononucleotides of probe DNA from the blunt3′termini, which resulting in thereleasing of the target and fluorophore. The released target DNA can hybridize withanother probe DNA and then initiate a next round of cleavage. The introduction ofGO into the sensing solution will induce weak quenching of the fluorophore becauseof the weak affinity of the fluorophore and GO, and the fluorescence intensitygradually increases with increasing target concentration. The proposed biosensorexhibits high sensitivity, and a detection limit of20pM could be achieved for targetDNA.
     (3) In chapter7, we report a simple, rapid and label-free approach forfluorescent “turn-on” detection of Pb~(2+)by using a water-soluble cationic perylenederivative (compound1) as the fluorescence reporter and the G-rich DNA probe forthe specific binding of Pb~(2+). Strong electrostatic interactions between the cationiccompound1and the polyanionic nucleic acid induced the aggregation of compound1and resulted in the fluorescence quenching. Upon the addition of Pb~(2+), theconformation of DNA probe changed from a random-coil to a Pb~(2+)-stabilizedG-quadruplex structure. This conformational change weakened the interactionbetween probe DNA and compound1. As a result, compound1is present in both thefree monomeric and the aggregated form in aqueous solution. Owing to the existenceof the free dye monomer, a fluorescence enhancement was observed. A dynamicrange from10nM to10μM for Pb~(2+)was achieved and the detection limit was4nM.
引文
[1]李松林,崔建明.导电聚合物固定酶生物传感器研究进展.材料导报,2006,20(4):38-40
    [2]钱军民,奚西峰,黄海燕.我国酶传感器研究新进展.石化技术与应用,2002,20(5):333-336
    [3]许春向.生物传感器及其应用.北京:科学出版社,1993,1-12
    [4]蒋中华,马立人.化学传感器和生物传感器的研究进展.军事医学科学院院刊,1995,19(4):306-309
    [5] Campanella L, Pacifici F, Sammartino M P, et al. A new organic phasebienzymatic electrode for lecithin analysis in food products.Bioelectrochemistry and Bioenergetics,1998,47(1):25-38
    [6] Pandey P C, Weetall H H. Detection of aromatic compounds based on DNAintercalation using an evanescent wave biosensor. Analytical Chemistry,1995,67(5):787-792
    [7] Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectricbiosensor and polymerase chain reaction to detect apolipoproteinepoly-morphisms. Biosensors and Bioelectronics,2000,15(7-8):363-370
    [8] Blackburn G F, Talley D B, Booth P M, et al. Potentiometric biosensoremploying catalytic antibodies as the molecular recognition element.Analytical Chemistry,1990,62(20):2211-2216
    [9] Oungpipat W, Alexander P W, Southwell-Keely P. A reagentless amperometricbiosensor for hydrogen peroxide determination based on asparagus tissue andferrocene mediation. Analytica Chimica Acta,1995,309(1-3):35-45
    [10] Lee T, Tsuzuki M, Takeuchi T, et al. Quantitative determination ofcyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetricmethod. Analytica Chimica Acta,1995,302(1):81-87
    [11] Sergeyeva T A, Soldatkin A P, Achkov A E, et al. β-Lactamase label-basedpotentiometric biosensor for α-2interferon detection. Analytica Chimica Acta,1999,390(1-3):78-81
    [12] Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber opticimmunosensor for quantitating cocaine in coca. Biosensors and Bioelectronics,1997,12(2):113-124
    [13]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展.中国医学物理学杂志,2007,24(1):60-62
    [14]施咏军,杨斌,赵亚丽.生物传感器的现状及发展前景.医疗装备,2005,18(11):8-9
    [15] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bindspecific ligands. Nature,1990,346(6287):818-822
    [16] Cuenoud B, Szostak J W. A DNA metalloenzyme with DNA ligase activity.Nature,1995,375(15):611-614
    [17] Breaker R R. DNA enzymes. Nature Biotechnology,1997,15(5):427-431
    [18] Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chemistry&Biology,1994,1(4):223-229
    [19]于乐成,顾长海,王升启,等.HCV脱氧核酶在表达荧光素酶HepG2细胞中的活性.第三军医大学学报,2003,25(10):870-873
    [20] Sioud M, Leirdal M. Design of nuclease resistant protein kinase eaipha DNAenzymes with potential therapeutic application. Journal of Molecular Biology,2000,296(3):937-947
    [21] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA-enzyme.Proceedings of the National Academy of Sciences,1997,94(9):4262-4266
    [22] Brown A K, Li J, Pavot C M B. A lead-dependent DNAzyme with a two-stepmechanism. Biochemistry,2003,42(23):7152-7161
    [23] Santoro S W, Joyce G F, Sakthivel K, et al. RNA Cleavage by a DNA enzymewith extended chemical functionality. Journal of the American Chemical
    [24] tCSohacer mieNita ytN, io,2n0B0ala0lAk, ch1ai22dH(e1mR1y,): oB2fr4eSa3ck3iee-2nr4cR3e9sR,1.9C9l8ea, v9i5n(g5)D: N22A33w-2it2h3D7NA. Proceedings of
    [25] Li J W, Lu Y. A highly sensitive and selective catalytic DNA biosensor forlead ions. Journal of the American Chemical Society,2000,122(42):10466-10467
    [26] Liu J W, Lu Y. Improving fluorescent DNAzyme biosensors by combininginter-and intramolecular quenchers. Analytical Chemistry,2003,75(23):6666-6672
    [27] Chiuman W, Li Y. Efficient signaling platforms built from a small catalyticDNA and doubly labeled fluorogenic substrates. Nucleic Acids Research,2007,35(2):401-405
    [28] Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directedassembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22):6642-6643
    [29] Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled byDNAzymes for simple and fast colorimetric Pb2+. Journal of the AmericanChemical Society,2004,126(39):12298-12305
    [30] Liu J W, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates forlight-up colorimetric sensing. Journal of the American Chemical Society,2005,127(36):12677-12683
    [31] Lee J H, Wang Z D, Liu J W, et al. Highly sensitive and selective colorimetricsensors for uranyl (UO22+): development and comparison of labeled andlabel-free DNAzyme-gold nanoparticle systems. Journal of the AmericanChemical Society,2008,130(43):14217-14226
    [32] Liu J W, Lu Y. Colorimetric Cu2+detection with a ligation DNAzyme andnanoparticles. Chemical Communications,2007,(46):4872-4874
    [33] Sun Y H, Kong R M, Lu D Q, et al. A nanoscale DNA-Au dendrimer as a signalamplifier for the universal design of functional DNA-based SERS biosensors.Chemical Communications,2011,47(13):3840-3842
    [34] Xiao Y, Rowe A A, Plaxco K W, et al. Electrochemical detection ofparts-per-billion lead via an electrode-bound DNAzyme assembly. Journal ofthe American Chemical Society,2007,129(2):262-263
    [35] Shen L, Chen Z, Li Y H, et al. Electrochemical DNAzyme sensor for leadbased on amplification of DNA-Au bio-bar codes. Analytical Chemistry,2008,80(16):6323-6328
    [36] Yang X R, Xu J, Tang X M, et al. A novel electrochemical DNAzyme sensorfor the amplified detection of Pb2+ions. Chemical Communications,2010,(46):3107-3109
    [37]邬芳玉,张贝,张妮和. SELEX技术及核酸适配子在临床诊断中的应用前景.国外医学内科学分册,2006,11(33):489-492
    [38] Song S, Wang L, Li J, et al. Aptamer-based biosensors. TrAC Trends inAnalytical Chemistry,2008,2(27):108-117
    [39] Zhou C S, Jiang Y X, Hou S, et al. Detection of oncoprotein platelet-derivedgrowth factor using a fluorescent signaling complex of an aptamer and TOTO.Analytical and Bioanalytical Chemistry,2006,384(5):1175-1180
    [40] Wang L H, Liu X F, Hu X F, et al. Unmodified gold nanoparticles as acolorimetric probe for potassium DNA aptamers. Chemical Communications,2006,(36):3780-3782
    [41] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the directdetection of proteins. Analytical Biochemistry,2001,294(2):126-131
    [42] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes forrapid protein monitoring in complex biological fluids. Proceedings of theNational Academy of Sciences USA,2005,102(48):17278-17283
    [43] Huang C C, Chiu S H, Huang Y F, et al. Aptamer-functionalized goldnanoparticles for turn-on light switch detection of platelet-derived growthfactor. Analytical Chemistry,2007,79(13):4798-4804
    [44] Numnuam A, Chumbimuni K Y, Xiang Y, et al. Aptamer-based potentiometricmeasurements of proteins using ion-selective microelectrodes. AnalyticalChemiatry,2008,80(3):707-712
    [45] Zheng J, Feng W, Lin L, et al. A new amplification strategy for ultrasensitiveelectrochemical aptasensor with network-like thiocyanuric acid/goldnanoparticles. Biosensors and Bioelectronics,2007,23(3):341-347
    [46] Li B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor takingAuNPs based sandwich sensing platform as a model. Biosensors andBioelectronics,2008,23(7):965-970
    [47] Radi A E, Acero S J L, Baldrich E, et al. Reusable impedimetric aptasensor.Analytical Chemistry,2005,77(19):6320-6323
    [48] Rodriguez M C, Kawde A N, Wang J, et al. Aptamer biosensor for label-freeimpedance spectroscopy detection of proteins based on recognition-inducedswitching of the surface charge. Chemical Communications,2005,(34):4267-4269
    [49] Liao W, Cui X T. Reagentless aptamer based impedance biosensor formonitoring a neuro-inflammatory cytokine PDGF. Biosensors andBioelectronics,2007,23(2):218-224
    [50] Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection ofpicomolar platelet-derived growth factor directly in blood serum. AnalyticalChemisty,2007,79(1):229-233
    [51] Wang J L, Wang F, Dong S J. Methylene blue as an indicator for sensitiveelectrochemical detection of adenosine based on aptamer switch. Journal ofElectroanalytical Chemistry,2009,626(1-2):1-5
    [52] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensingplatform for highly sensitive detection of small molecules based onstructure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [53] Li B, Wei H, Dong S, et al. Sensitive detection of protein by an aptamer-basedlabel-free fluorescing molecular switch. Chemical Communications,2007,(1):73-75
    [54] Kroto H W, Heath J R, Brien S C, et al. C60: buchminsterfullerene.Nature,1985,318(7):162-163
    [55] Kr tschmer W, Lamb L D, Fostiropoulos K, et al. C60: a new form of carbon.Nature,1990,347(27):354-358
    [56] Li H L, Zhai J F, Sun X P. Highly sensitive and selective detection of silver(I)ion using nano-C60as an effective fluorescent sensing platform. Analyst,2011,136(10):2040-2043
    [57] Li H L, Zhai J F, Sun X P. Nano-C60as a novel effective fluorescent sensingplatform for mercury(II) ion detection at critical sensitivity and selectivity.Nanoscale,2011,3(5):2155-2157
    [58] Iijima S. Helical microtubtes of graphitic carbon. Nature,1991,354(7):56-58
    [59] Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbonnanotubes and single-stranded DNA: An effective sensing platform for probingbiomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [60] Ouyang X Y, Yu R Q, Jin J Y, et al. New strategy for label-free and time-resolved luminescent assay of protein: conjugate Eu3+complex andaptamer-wrapped carbon nanotubes. Analytical Chemistry,2011,83(3):782-789
    [61] Zhao C, Qu K G, Song Y J, et al. A reusable DNA single-walledcarbon-nanotube-based fluorescent sensor for highly sensitive and selectivedetection of Ag+and cysteine in aqueous solutions. Chemistry-A EuropeanJournal,2010,16(27):8147-8154
    [62] Kim J H, Ahn J H, Barone P W, et al. A luciferase/single-walled carbonnanotube conjugate for near-infrared fluorescent detection of cellular ATP.Angewandte Chemie International Edition,2010,122(8):1498-1501
    [63] Deng C Y, Chen J H, Nie Z, et al. A sensitive and stable biosensor based on thedirect electrochemistry of glucose oxidase assembled layer-by-layer at themultiwall carbon nanotube-modified electrode. Biosensors and Bioelectronics,2010,26(1):213-219
    [64] Wang J, Liu G D, Jan M R. Ultrasensitive electrical biosensing of proteins andDNA: carbon-nanotube derived amplification of the recognition andtransduction events. Journal of the American Chemical Society,2004,126(10):3010-3011
    [65] Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linkedDNA for sensitive electrochemical detection of protein binding via selectivecarbon nanotube assembly. Journal of America Chemistry Society,2009,131(34):12325-12332
    [66] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5696):666-669
    [67] Geim A K, Novoselov K S. The rise of grapheme. Nature Materials,2007,6(3):183-191
    [68] Ghosh S, Calizo I, Teweldebrhand D, et a1. Extremely high thermalconductivity of grapheme: Prospects for thermal management applications innanoelectronic circuits. Applied Physics Letters,2008,92(15):15191l-151913
    [69] Novoselov K S, Jiang D, Schedin F, et a1. Two dimensional atomic crystals.Proceedings of the National Academy of Sciences,2005,102(30):10451-10453
    [70] Stankovich S, Dikin D A, Piner R D, et a1. Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565
    [71] Dikin D A, Stankovich S, Zimney E J, et a1.Preparation and characterizationof grapheme oxide paper. Nature,2007,448(7152):457-60
    [72] Schniepp H C, Li J, McAllister M J, et a1. Functionalized single graphenesheets derived from splitting graphite oxide. Journal of Physical Chemistry B,2006, l10(11):8535-8539
    [73] Dato A, Radmilovic V, Lee Z, et a1. Substrate-free gas-phase synthesis ofgraphene sheets. Nano Letters,2008,8(7):2012-2016
    [74] Reina A, Jia X, Ho J, et a1. Large area few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Letters,2009,9(1):30-35
    [75] Lu C H, Yang H H, Zhu C L, et a1. A graphene platform for sensingbiomolecules. Angewandte Chemie International Edition,2009,121(26):4879-4881
    [76] Chang H X, Tang L H, Wang Y, et a1. Graphene fluorescence resonance energytransfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6):2341-2346
    [77] Lu C H, Li J, Lin M H, et a1. Amplified aptamer-based assay through catalyticrecycling of the analyte. Angewandte Chemie International Edition,2010,122(45):8632-8635
    [78] Wang H B, Zhang Q, Chu X, et a1. Graphene oxide-peptide conjugate as anintracellular protease sensor for caspase-3activation imaging in live cells.Angewandte Chemie International Edition,2011,50(31):7065-7069
    [79] Liu C H, Wang Z, Jia H X, et a1. Efficient fluorescence resonance energytransfer between upconversion nanophosphors and graphene oxide: a highlysensitive biosensing platform. Chemical Communications,2011,47(16):4661-4663
    [80] Dong H F, Gao W C, Yan F, et a1. Fluorescence resonance energy transferbetween quantum dots and graphene oxide for sensing biomolecules. AnalyticalChemistry,2010,82(13):5511-5517
    [81] Du D, Zou Z X, Shin Y S, et a1. Sensitive immunosensor for cancer biomarkerbased on dual signal amplification strategy of graphene sheets andmultienzyme functionalized carbon nanospheres. Analytical Chemistry,2010,82(8):2989-2995
    [82] Zeng Q, Cheng J S, Tang L H, et a1. Self-assembled grapheme-enzymehierarchical nanostructures for electrochemical biosensing. AdvancedFunctional Material,2010,20(19):3366-3372
    [83] Delidow B C, Lynch J P, Peluso J J, et a1. Polymerase chain reaction. PCRProtocols Methods in Molecular Biology,1993,15(4):1-29
    [84] Wang F L, Wu Z, Lu Y X, et a1. A label-free DNAzyme sensor forlead(II)detection by quantitative polymerase chain reaction(QPCR). AnalyticalBiochemistry,2010,405(2):168-173
    [85] Guo Q, Yang X, Wang K, et al. Sensitive fluorescence detection of nucleicacids based on isothermal circular strand-displacement polymerization reaction.Nucleic Acids Research,2009,37(3): e20
    [86] Zhang X R, Xu Y P, Zhao Y Q, et al. A new photo electrochemical biosensorsbased on DNA conformational changes and isothermal circularstrand-displacement polymerizationreaction. Biosensors and Bioelectronics,2013,399(1):338-341
    [87] He J L, Wu Z S, Zhou H, et al. Fluorescence aptameric sensor for stranddisplacement amplification detection of cocaine. Analytical Chemistry,2010,82(4):1358-1364
    [88] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctionaloligonucleotide probe for homogeneous parallel fluorescence detection ofprotein and nucleotide sequence. Analytical Chemistry,2011,83(8):3050-3057
    [89] Li J S, Deng T, Chu X, et al. Rolling circle amplification combined with goldnanoparticle aggregates for highly sensitive identification of single-nucleotidepolymorphisms. Analytical Chemistry,2010,82(7):2811-2816
    [90] Hu J, Zhang C Y. Sensitive detection of nucleic acids with rolling circleamplification and surface-enhanced raman scattering spectroscopy. AnalyticalChemistry,2010,82(21):8991-8997
    [91] Zhou Y T, Huang Q, Gao J M, et al. A dumbbell probe-mediated rolling circleamplification strategy for highly sensitive microRNA detection. Nucleic AcidsResearch,2010,38(15): e156
    [92] Zhang S B, Wu Z S, Shen G L, et al. A label-free strategy for SNP detectionwith high fidelity and sensitivity based on ligation-rolling circle amplificationand intercalating of methylene blue. Biosensors and Bioelectronics,2009,24(11):3201-3207
    [93] Su Q, Xing D, Zhou X M. Magnetic beads based rolling circleamplification–electrochemiluminescence assay for highly sensitive detection ofpoint mutation. Biosensors and Bioelectronics,2009,25(7):1615-1621
    [94] Bi S, Li L, Zhang S S. Triggered polycatenated DNA scaffolds for DNAsensors and aptasensors by a combination of rolling circle amplification anddnazyme amplification. Analytical Chemistry,2010,82(22):9447-9454
    [95] Cho E J, Yang L T, Levy M, et al. Using a deoxyribozyme ligase and rollingcircle amplification to detect a non-nucleic acid analyte ATP. Journal of theAmerican Chemical Society,2005,127(7):2022-2023
    [96] Wu Z S, Zhou H, Zhang S B, et al. Electrochemical aptameric recognitionsystem for a sensitive protein assay based on specific target binding-inducedrolling circle amplification. Analytical Chemistry,2010,82(6):2282-2289
    [97] Yang L T, Fung C W, Cho E J, et al. Real-time rolling circle amplification forprotein detection. Analytical Chemistry,2007,79(9):3320-3329
    [98] Kong R M, Zhang X B, Zhang L L, et al. Molecular beacon-based junctionprobes for efficient detection of nucleic acids via a true target-triggeredenzymatic recycling amplification. Analytical Chemistry,2011,83(1):14-17
    [99] Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNAdetection by nicking endonuclease assisted nanoparticle amplification.Angewandte Chemie International Edition,2009,48(37):6849-6852
    [100] Liu Z Y, Zhang W, Zhu S Y, et al. Ultrasensitive signal-on DNA biosensorbased on nicking endonuclease assisted electrochemistry signal amplification.Biosensors and Bioelectronics,2011,29(1):215-218
    [101] Hun X, Liu F, Mei Z H, et al. Signal amplified strategy based on target-inducedstrand release coupling cleavage of nicking endonuclease for the ultrasensitivedetection of ochratoxin. Biosensors and Bioelectronics,2013,39(1):145-151
    [102] Tang D P, Tang J, Li Q F, et al. Ultrasensitive aptamer-based multiplexedelectrochemical detection by coupling distinguishable signal tags with catalyticrecycling of DNase I. Analytical Chemistry,2011,83(19):7255-7259
    [103] Zuo X L, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescenceDNA detection based on exonuclease III-aided target recycling. Journal of theAmerican Chemical Society,2010,132(6):1816-1818
    [104] Freeman R, Liu X Q, Willner I. Amplified multiplexed analysis of DNA by theexonuclease III-catalyzed regeneration of the target DNA in the presence offunctionalized semiconductor quantum dots. Nano Letter,2011,11(10):4456-4461
    [105] Zhao C, Wu L, Ren J, et al. A label-free fluorescent turn-on enzymaticamplification assay for DNA detection using ligand-responsive G-quadruplexformation. Chemical Communications,2011,47(19):5461-5463
    [106] Zheng D M, Zou R X, Lou X X. Label-free fluorescent detection of ions,proteins, and small molecules using structure-switching aptamers, SYBR gold,and exonuclease I. Analytical Chemistry,2012,84(8):3554-3560
    [107] Sando S, Sasaki T, Kanatani K, et al. Amplified nucleic acid sensing usingprogrammed self-cleaving DNAzyme. Journal of the American ChemicalSociety,2003,125(51):15720-15721
    [108] Qi L, Zhao Y X, Yuan H, et al. Amplified fluorescence detection of mercury(II)ions (Hg2+) using target-induced DNAzyme cascade with catalytic andmolecular beacons. Analyst,2012,137(12):2799-2805
    [109] Sun C, Liu X, Feng K, et al. An aptazyme-based electrochemical biosensor forthe detection of adenosine. Analytica Chimica Acta,2010,669(1-2):87-93
    [110] Kamat P V. Graphene-based nanoarchitectures anchoring semiconductor andmetal nanoparticles on a two-dimensional carbon support rashant. The Journalof Physical Chemistry Letters,2010,1(2):520-527
    [111] Hsin Y L, Wang K C, Yeh C T. Poly(vinylpyrrolidone)-modified graphitecarbon nanofibers as promising supports for PtRu catalysts in direct methanolfuel cells. Journal of the American Chemical Society,2007,129(32):9999-10010
    [112] Wang Y, Lu J, Tang L, et al. Graphene oxide amplified electrogeneratedchemiluminescence of quantum dots and its selective sensing for glutathionefrom thiol-containing compounds. Analytical Chemistry,2009,81(23):9710-9715
    [113] Dong X C, Shi Y M, Huang W, et al. Electrical detection of DNA hybridizationwith single-base specificity using transistors based on CVD-grown graphenesheets. Advanced Materials,2010,22(14):1649-1653
    [114] Cai L P, Zhan R Y, Pu K Y, et al. Butterfly-shaped conjugated oligoelectrolyte/graphene oxide integrated assay for light-up visual detection of heparin.Analytical Chemistry,2011,83(20):7849-7855
    [115] Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs. Journal of the American ChemicalSociety,2008,130(33):10876-10877
    [116] Mohanty N, Berry V. Graphene-based single-bacterium resolution biodeviceand DNA transistor: interfacing graphene derivatives with nanoscale andmicroscale biocomponents. Nano Letter,2008,8(12):4469-4476
    [117] Jung J H, Cheon D S, Liu F, et al. Graphene oxide based immuno-biosensor forpathogen detection. Angewandte Chemie International Edition,2010,49(33):5708-5711
    [118] Wen Y Q, Xing F F, He S J, et al. A graphene-based fluorescent nanoprobe forsilver(I) ions detection by using graphene oxide and a silver-specificoligonucleotide. Chemical Communications,2010,46(15):2596-2598
    [119] Stine R, Robinson J T, Sheehan P E, et al. Real-time DNA detection usingreduced graphene oxide field effect transistors. Advanced Materials,2010,22(46):5297-5300
    [120] Needleman H. Lead poisoning. Annual Review of Medicine,2004,55:209-222
    [121] Schwartz J. Low-level lead exposure and children's IQ: a meta-analysis andsearch for a threshold. Environmental research,1994,65:42-55
    [122] Godwin H A. The biological chemistry of lead. Current Opinion in ChemicalBiology,2001,5(2):223-227
    [123] Ma R, Mol W V, Adams F. An evaluation of flow injection on-line sorbentextraction for flame atomic absorption spectrometry. Analytica Chimica Acta,1994,285(1-2):33-43
    [124] Rapsomanikis S, Donard O X, Weber J H, et al. Speciation of lead andmethyllead ions in water by chromatography/atomic absorption spectrometryafter ethylation with sodium tetraethylborate. Analytical Chemistry,1986,58(1):35-38
    [125] Ochsenkuhn P M, Ochsenkuhn K M. Comparison of inductively coupledplasma-atomic emission spectrometry, anodic stripping voltammetry andinstrumental neutron-activation analysis for the determination of heavy metalsin airborne particulate matter. Journal of Analytical Chemistry,2001,369(7-8):629-632
    [126] Elfering H, Andersson J T, Poll K G. Determination of organic lead in soils andwaters by hydride generation inductively coupled plasma atomic emissionspectrometry. Analyst,1998,123(4):669-674
    [127] Liu C W, Huang C C, Chang H T. Highly selective DNA-based sensor forlead(II) and mercury(II) ions. Analytical Chemistry,2009,81(6):2383-2387
    [128] Telting D M, Bakker E. Mass-produced ionophore-based fluorescentmicrospheres for trace level determination of lead ions. Analytical Chemistry,2002,74(20):5251-5256
    [129] Nagraj N, Liu J W, Sterling S, et al. DNAzyme catalytic beacon sensors thatresist temperature-dependent variations. Chemical Communications,2009,(27):4103-4105
    [130] Deo S, Godwin H A. A selective, ratiometric fluorescent sensor for Pb2+.Journal of the American Chemical Society,2000,122(1):174-175
    [131] Chen P, Greenberg B, Taghavi S, et al. An exceptionally selectivelead(II)-regulatory protein from ralstonia metallidurans: development of afluorescent lead(II) probe. Angewandte Chemie International Edition,2005,44(18):2715-2719
    [132] Li T, Wang E K, Dong S J. Potassium-lead-switched G-quadruplexes: a newclass of DNA logic gates. Journal of the American Chemical Society,2009,131(42):15082-15083
    [133] Li T, Wang E K, Dong S J. A lead(II)-driven DNA molecular device forturn-on fluorescence detection of lead(II) ion with high selectivity andsensitivity. Journal of the American Chemical Society,2010,132(38):13156-13157
    [134] Kwon J Y, Jang Y J, Lee Y J, et al. A highly selective fluorescent chemosensorfor Pb2+. Journal of the American Chemical Society,2005,127(28):10107-10111
    [135] Wang H, Kim Y, Liu H, et al. Engineering a unimolecular DNA-catalytic probefor single lead ion monitoring. Journal of the American Chemical Society,2009,131(23):8221-8226
    [136] Chang H, Tulock j, Liu J W, et al. Miniaturized lead sensor based onlead-specific DNAzyme in a nanocapillary interconnected microfluidic device.Environment science&technology,2005,39(10):3756-3761
    [137] Zhang X B, Wang Z D, Xing H, et al. Catalytic and molecular beacons foramplified detection of metal ions and organic molecules with high sensitivity.Analytical Chemistry,2010,82(12):5005-5011
    [138] Schlosser K, Gu J, Lam J C, et al. In vitro selection of small RNA-cleavingdeoxyribozymes that cleave pyrimidine-pyrimidine junctions. Nucleic AcidsResearch,2008,36(14):4768-4777
    [139] Faulhammer D, Famulok M. The Ca2+ion as a cofactor for a novel RNA‐cleaving deoxyribozyme. Angewandte Chemie International Edition,1996,35(23-24):2837-2841
    [140] Lan T, Furuy K, Lu Y. A highly selective lead sensor based on a classic leadDNAzyme. Chemical Communications,2010,46(22):3896-3898
    [141] Lu C H, Wang F, Willner I. Zn2+-ligation DNAzyme-driven enzymatic andnonenzymatic cascades for the amplified detection of DNA. Journal of theAmerican Chemical Society,2012,134(25):10651-10658
    [142] Li J, Zheng W, Kwon A H, et al. In vitro selection and characterization of ahighly efficient Zn (II)-dependent RNA-cleaving deoxyribozyme. NucleicAcids Research,2000,28(2):481-488
    [143] Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium withparts-per-trillion sensitivity and million fold selectivity. Proceedings of theNational Academy of Sciences,2007,104(7):2056-2061
    [144] Breaker R R, Joyce G F. A DNA enzyme with Mg2+-dependent RNAphosphoesterase activity. Chemistry&Biology,1995,2(10):655-660
    [145] Roth A, Breaker R R. An amino acid as a cofactor for a catalyticpolynucleotide. Proceedings of the National Academy of Sciences of theUnited States of America,1998,95(11):6027-6031
    [146] Wernette D P, Swearingen C B, Cropek D M, et al. Incorporation of aDNAzyme into Au-coated nanocapillary array membranes with an internalstandard for Pb(II) sensing. Analyst,2006,131(1):41-47
    [147] Wang B, Yu C. Fluorescence turn-on detection of a protein through the reducedaggregation of a perylene probe. Angewandte Chemie International Edition,2010,49(8):1485-1488
    [148] Wang B, Wang F Y, Jiao H P, et al. Label-free selective sensing of mercury(II)via reduced aggregation of the perylene fluorescent probe. Analyst,2010,135(8):1986-1991
    [149] Wang B, Jiao H P, Li W Y, et al. Superquencher formation via nucleic acidinduced noncovalent perylene probe self-assembly. Chemical Communications,2011,47(37):10269-10271
    [150] Creighton T E. Encyclopedia of Molecular Biology. New York: Wiley,1999,2:1147
    [151] Mei H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzymethat synchronizes catalysis with fluorescence signaling. Journal of theAmerican Chemical Society,2003,125(14):412-420
    [152] Liu Z, Mei S H J, Brennan J D, et al. Assemblage of signaling DNA enzymeswith intriguing metal-ion specificities and pH dependences. Journal of theAmerican Chemical Society,2003,125(25):7539-7545
    [153] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(3):303-308
    [154] Venkatesan N, Seo Y J, Kim B H. Quencher-free molecular beacons: a newstrategy in fluorescence based nucleic acid analysis. Chemical Society Reviews,2008,37(4):648-663
    [155] Fang X H, Li J W, Tan W H, et al. Using molecular beacons to probe molecularinteractions between lactate dehydrogenase and single-Stranded DNA.Analytical Chemistry,2000,72(14):3280-3285
    [156] Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemistry Review,2009,109(5):1948-1998
    [157] Irizarry K, Kustanovich V, Li C, et al. Genome-wide analysis ofsingle-nucleotide polymorphisms in human expressed sequences. Nature Genet,2000,26:233-236
    [158] Sachidanandam R, Weissman D, Schmidt S C, et al. Single nucleotidepolymorphisms: to a future of genetic medicine. Nature,2001,409:928-933
    [159] Kim S, Misra A. SNP Genotyping: Technologies and biomedical applications.Annual Review of Biomedical Engineering,2007,9:289-320
    [160] Turkson J, Jove R. Molecular targets for cancer drug discovery. Oncogene,2000,19(56):6613-6626
    [161] Whittington D, Waheed A, Ulmasov B, et al. Crystal structure of the dimericextracellular domain of human carbonic anhydrase XII, a bitopic membraneprotein overexpressed in certain cancer tumor cells. Proceedings of theNational Academy of Sciences,2001,98(17):9545-9550
    [162] Rogalla T, Ehrnsperger M, Preville, et al. Regulation of Hsp27oligomerization,chaperone function, and protective activity against oxidative stress/tumornecrosis factor alpha by phosphorylation. The Journal of Biological Chemistry,1999,274(27):18947-18956
    [163] Duan R X, Zhou X M, Xing D. Electrochemiluminescence biobarcode methodbased on cysteamine-gold nanoparticle conjugates. Analytical Chemistry,2010,82(8):3099-3103
    [164] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection withPCR-like sensitivity. Journal of the American Chemical Society,2004,126(19):5932-5933
    [165] Thaxton C S, Elghanianc R, Thomasa A D, et al. Nanoparticle-basedbio-barcode assay redefines “undetectable” PSA and biochemical recurrenceafter radical prostatectomy. Proceedings of the National Academy of Sciences,2009,106(44):18437-18442
    [166] Bao Y P, Wei T, Lefebvre P A, et al. Detection of protein analytes viananoparticle-based bio bar code technology. Analytical Chemistry,2006,78(6):2055-2059
    [167] Zheng G F, Daniel W L, Mirkin C A. A new approach to amplified telomerasedetection with polyvalent oligonucleotide nanoparticle conjugates. Journal ofthe American Chemical Society,2008,130(30):9644-9645
    [168] Sato S, Fujit K, Kanazaw M, et al. Reliable ferrocenyloligonucleotide-immobilized electrodes and their application to electrochemical DNase I assay.Analytica Chimica Acta,2009,645(8):30-35
    [169] Chen H, Wang J Q, Liang G H, et al. A novel exonuclease III aidedamplification method for sensitive nucleic acid detection based on singlewalled carbon nanotube induced quenching. Chemical Communications,2012,48(2):269-271
    [170] Li J, Fu H E, Wu L J, et al. General colorimetric detection of proteins and smallmolecules based on cyclic enzymatic signal amplification and hairpin aptamerprobe. Analytical Chemistry,2012,84(12):5309-5315
    [171] Breaker R R. Making catalytic DNA. Science,2000,290(5499):2095-2096
    [172] Wang F, Elbaz J, Teller C, et al. Amplified detection of DNA through anautocatalytic and catabolic DNAzyme-mediated process. Angewandte ChemieInternational Edition,2011,50(1):295-299
    [173] Liu J W, Lu Y. Rational design of “turn-on” allosteric DNAzyme catalyticbeacons for aqueous mercury ions with ultrahigh sensitivity and selectivity.Angewandte Chemie International Edition,2007,119(40):7731-7734
    [174] Zhang L L, Zhao J J, Jiang J H, et al. Target-activated autocatalytic DNAzymeamplification strategy for the assay of base excision repair enzyme activity.Chemical Communications,2012,48(70):8820-8822
    [175] Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponentself-assembly of nucleic acid structures for the activation of DNAzymecascades: a paradigm for DNA sensors and aptasensors. Chemistry-A EuropeanJournal,2009,15(14):3411-3418
    [176] Zhou M G, Liang X G, Mochizuki T, et al. A light-driven DNA nanomachinefor the efficient photoswitching of RNA digestion. Angewandte ChemieInternational Edition,2010,122(12):2213-2216
    [177] Cao Y, Zhu S, Yu J C, et al. Protein detection based on small molecule-linkedDNA. Analytical Chemistry,2012,84(10):4314-4320
    [178] Lu L M, Zhang X B, Kong R M, et al. Ligation-triggered DNAzyme cascadefor amplified fluorescence detection of biological small molecules withzero-background signal. Journal of the American Chemical Society,2011,133(30):11686-11691
    [179] Zhang Z X, Sharon E, Freeman R, et al. Fluorescence detection of DNA,adenosine-5′-triphosphate (ATP), and telomerase activity byzinc(II)-protoporphyrin IX/G-quadruplex labels. Analytical Chemistry,2012,84(11):4789-4797
    [180] Li J, Yan H F, Wang K M, et al. Hairpin fluorescence DNA probe for real-timemonitoring of DNA methylation. Analytical Chemistry,2007,79(3):1050-1056
    [181] Wu Z, Wang H Q, Guo M, et al. Terminal protection of small molecule-linkedDNA: a versatile biosensor platform for protein binding and gene typing assay.Analytical Chemistry,2011,83(8):3104-3111
    [182] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genomesequence variation containing1.42million single nucleotide polymorphisms.Nature,2001,409:928-933
    [183] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome.Science,2001,291(5507):1304-1351
    [184] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutationdetection using high-fidelity DNA ligase. Nucleic Acids Research,2005,33(19): e168
    [185] Lapierre M A, O'Keefe M, Taft B J, et al. Electrocatalytic detection ofpathogenic DNA sequences and antibiotic resistance markers. AnalyticalChemistry,2003,75(22):6327-6333
    [186] Takenaka S, Yamashita K, Takagi M, et al. DNA Sensing on a DNAprobe-modified electrode using ferrocenylnaphthalene diimide as theelectrochemically active ligand. Analytical Chemistry,2000,72(6):1334-1341
    [187] Fan C, Plaxco K W, Heeger A J, et al. Electrochemical interrogation ofconformational changes as a reagentless method for the sequence-specificdetection of DNA. Proceedings of the National Academy of Sciences,2003,100(16):9134-9137
    [188] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection offemtomolar DNA by target-induced strand displacement in an electrode-boundduplex. Proceedings of the National Academy of Sciences,2006,103(45):16677-16680
    [189] Su H, Kallury K M R, Thompson M. Interfacial nucleic acid hybridizationstudied by random primer32P labeling and liquid-phase acoustic networkanalysis. Analytical Chemistry,1994,66(6):769-777
    [190] Liu S F, Li J R, Jiang L. Surface modification of platinum quartz crystalmicrobalance by controlled electroless deposition of gold nanoparticles and itsenhancing effect on the HS-DNA immobilization. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,257-258:57-62
    [191] Xu L G, Zhu Y Y, Ma W, et al. Sensitive and specific DNA detection based onnicking endonuclease-assisted fluorescence resonance energy transferamplification. The Journal of Physical Chemistry C,2011,115(33):16315-16321
    [192] Yang R H, Jin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescentoligonucleotides: probes that fluoresce upon hybridization. Journal of theAmerican Chemical Society,2008,130(26):8351-8358
    [193] Ho H A, Dore′K, Boissinot M, et al. Direct molecular detection of nucleicacids by fluorescence signal amplification. Journal of the American ChemicalSociety,2005,127(36):12673-12676
    [194] Wang X, Zhi L J, Mullen K, et al. Transparent, conductive graphene electrodesfor dye-sensitized solar cells. Nano Letters,2008,8(1):323-327
    [195] Bolotin K I, Sikes K J, Klima M. Ultrahigh electron mobility in suspendedgraphene. Solid State Communications,2008,146(9-10):351-355
    [196] He Y, Lin Y, Tang H W, et al. A graphene oxide-based fluorescent aptasensorfor the turn-on detection of epithelial tumor marker mucin. Nanoscale,2012,4(6):2054-2059
    [197] Sun W L, Shi S, Yao T M. Graphene oxide-Ru complex for label-free assay ofDNA sequence and potassium ions via fluorescence resonance energy transfer.Analytical Methods,2011,3(11):2472-2474
    [198] Lin Y H, Tao Y, Pu F, et al. Combination of graphene and thiol-activated DNAmetallization for sensitive fluorescence turn-on detection of cysteine and theiruse for logic gate operations. Advanced Functional Materials,2011,21(23):4565-4572
    [199] Liu M, Zhao H M, Chen S, et al. Label-free fluorescent detection of Cu(II) ionsbased on DNA cleavage-dependent graphene-quenched DNAzyme. ChemicalCommunications,2011,47(27):7749-7751
    [200] Zhang C L, Yuan Y X, Zhang S M, et al. Biosensing platform based onfluorescence resonance energy transfer from upconverting nanocrystals tographene oxide. Angewandte Chemie International Edition,2011,50(30):6851-6854
    [201] Li F, Huang Y, Yang Q, et al. A graphene-enhanced molecular beacon forhomogeneous DNA detection. Nanoscale,2010,2(6):1021-1026
    [202] He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, andmulticolor fluorescent DNA analysis. Advanced Functional Materials,2010,20(3):453-459
    [203] Pu Y, Zhu Z, Han D, et al. Insulin-binding aptamer-conjugated graphene oxidefor insulin detection. Analyst,2011,136(20):4138-4140
    [204] Cui L, Ke G L, Zhang W Y, et al. A universal platform for sensitive andselective colorimetric DNA detection based on ExoIII assisted signalamplification. Biosensors and Bioelectronics,2011,26(5):2796-2800
    [205] Lee H Y, Li Y, Wark A W, et al. Enzymatically amplified surface plasmonresonance imaging detection of DNA by exonuclease III digestion of DNAmicroarrays. Analytical Chemistry,2005,77(16):5096-5100
    [206] Wu D, Yin B C, Ye B C, et al. A label-free electrochemical DNA sensor basedon exonuclease III-aided target recycling strategy for sequence-specificdetection of femtomolar DNA. Biosensors and Bioelectronics,2011,28(1):232-238
    [207] Leung C H, Chan D S, Man B Y, et al. Simple and convenientG-Quadruplex-based turn-on fluorescence assay for3′-5′exonuclease activity.Analytical Chemistry,2011,83(2):463-466
    [208] Fan Q, Zhao J, Li H, et al. Exonuclease III-based and goldnanoparticle-assisted DNA detection with dual signal amplification. Biosensorsand Bioelectronics,2012,33(1):211-215
    [209] Li C L, Liu K T, Lin Y W, et al. Fluorescence Detection of lead(II) ionsthrough their induced catalytic activity of DNAzymes. Analytical Chemistry,2011,83(1):225-230
    [210] Ma F, Sun B, Qi H L, et al. A signal-on electrogenerated chemiluminescentbiosensor for lead ion based on DNAzyme. Analytica Chimica Acta,2011,683(2):234-241
    [211] Li T, Wang E K, Dong S J. Parallel G-Quadruplex-specific fluorescent probefor monitoring DNA structural changes and label-free detection of potassiumion. Analytical Chemistry,2010,82(18):7576-7580
    [212] Tang L H, Liu Y, Ali M M, et al. Colorimetric and ultrasensitive bioassaybased on a dual-amplification system using aptamer and DNAzyme. AnalyticalChemistry,2012,84(11):4711-4717
    [213] Li F, Feng Y, Zhao C, et al. Crystal violet as a G-quadruplex-selective probefor sensitive amperometric sensing of lead. Chemical Communications,2011,47(43):11909-11911
    [214] Li T,Wang E K, Dong S J, et al. Lead(II)-induced allosteric G-quadruplexDNAzyme as a colorimetric and chemiluminescence sensor for highly sensitiveand selective Pb2+detection. Analytical Chemistry,2010,82(4):1515-1520
    [215] Würthner F. Perylene bisimide dyes as versatile building blocks for functionalsupramolecular architectures. Chemical Communications,2004,(14):1564-1579
    [216] Zheng Y, Long H, Schatz G C, et al. Duplex and hairpin dimer structures forperylene diimide-oligonucleotide conjugates. Chemical Communications,2005,(38):4795-4797
    [217] Wang W, Han J J, Wang L Q, et al. Dynamic π-π stacked molecular assembliesemit from green to red colors. Nano Letter,2003,3(4):455-458
    [218] Yang X J, Pu F, Ren J S, et al. DNA-templated ensemble for label-free andreal-time fluorescence turn-on detection of enzymatic/oxidative cleavage ofsingle-stranded DNA. Chemical Communications,2011,47(28):8133-8135
    [219] Wang B, Zhu Q K, Liao D L, et al. Perylene probe induced gold nanoparticleaggregation. Journal of Materials Chemistry,2011,21(13):4821-4826
    [220] Smirnov I, Shafer R H. Lead is unusually effective in sequence-specific foldingof DNA. Journal of Molecular Biology,2000,296(1):1-5
    [221] Kotch F W, Fettinger J C, Davis J T. A lead-filled G-Quadruplex: Insight intothe G-Quartet's selectivity for Pb2+over K+. Organic Letter,2000,2(21):3277-3280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700