用户名: 密码: 验证码:
混沌序列生成新方法及其在数字水印中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌系统具有的确定性系统的内在随机性、对初始条件的高度敏感性、长期不可预测性等特征与密码设计中的混淆与扩散两种基本方法有着本质联系。近年来,混沌密码作为密码学研究的新技术及有力补充,得到了广泛研究。其中大部分研究都集中在混沌序列的产生及分析上,众多文献认为混沌序列具有足够长的周期及良好的随机数统计特性,并将此引入到数字水印等领域。然而,随着研究的深入,人们发现数字化后的混沌系统普遍存在有限精度下的动力学特征退化,从而使得系统进入短周期轨道。这种有限精度下的短周期行为严重破坏了混沌序列的随机数特征,导致其统计学特性变弱,相应的密钥空间缩小。
     为改善和消除有限精度下混沌的短周期行为对混沌序列密码的影响,学术界提出了包括改善混沌系统结构、多个混沌系统混和及采用更复杂的混沌系统等三种解决方法。这些方法的共同点是采用实验仿真的形式验证了其有效性,而理论上的分析仅涉及混沌系统的部分特性。本文首次比较完整地分析了混沌系统在有限精度下的动力学特征退化问题及三种解决方法的理论依据,并以切比雪夫序列为例定性分析了这种短周期的存在;以混沌系统的可加性理论研究深入探讨了多个混沌系统在串联混合、交叉混合、级联混合下的规律。为验证规律的有效性,本文设计、实现了一些新的混沌序列产生方法,并将其应用到数字水印领域。本文从三个方面探讨了混沌序列的生成方法及其在数字水印中的应用问题。
     (1)混沌动力学特征退化及系统可加性研究
     近年来,数字化混沌系统在有限精度下的动力学特征退化现象引起了广泛关注,不少文献指出,Logistic映射、Tent映射、Chebyshev映射等一维混沌映射均存在短周期退化现象,导致生成的混沌序列退化为短周期序列,从而失去其密码学上的应用价值。本文以Chebyshev映射为例,定性分析了这种短周期的存在性,并给出了相应的周期公式。
     为解决数字化混沌系统存在的短周期特性,业界普遍采用多个混沌系统混合的方法,并采用实验仿真的形式说明了这些方法的有效性。然而,随着本文作者的进一步研究,发现这些方法的本质特征是利用了混沌系统具备的可加性性质,可惜的是,国内外研究人员很少关心混沌系统的可加性性质。本文先定义了混沌系统的串联混合、交叉混合、级联混合等概念,然后采用定性分析及仿真实验相结合的方式论证了混沌系统在这几种混合方式下存在的特性,研究结果对混沌序列的产生及分析有着良好的指导作用。
     (2)混沌序列产生新方法及其性质分析
     基于混沌动力学特征退化和系统可加性理论,本文提出了一种改进型切比雪夫混沌序列算法、一类多涡卷蔡氏混沌序列产生方法和一种新型混沌电路随机序列发生器。改进型切比雪夫混沌序列算法充分利用了混沌系统的短周期特性,通过在系统出现短周期时的前—时刻改变方程参数,使得混沌系统避免进入短周期,从而得到周期更长的混沌序列。基于多涡卷蔡氏混沌系统的序列产生新方法说明,采用高维混沌系统既可以从一定程度削弱短周期行为对混沌序列的影响,又能扩大混沌系统的密钥空间。尤为重要的是,高阶多涡卷乃至网格状多涡卷蔡氏混沌系统产生随机序列的原理均一样,因此,在实际应用时,可以根据需要选择不同的多涡卷蔡氏混沌系统。一种新型混沌电路随机序列发生器在作者提出的新的混沌系统的基础上以电子电路形式实现了一种随机数序列发生器,为硬件实现混沌序列发生器提供了新的思路。
     (3)混沌序列在数字水印中的应用研究
     混沌序列在数字水印领域得到了越来越广泛的研究,这些研究普遍认为低维混沌系统产生的伪随机序列比传统算法生成的伪随机序列性质好、密钥空间大,忽视了混沌的短周期行为对混沌序列密码的影响。本文先讨论了混沌密码系统中的密钥及密钥空间问题,然后给出了混沌密码算法设计过程中有关密钥及密钥空间的若干建议,并在基于Contourlet及SVD的混沌数字水印算法和基于网格状多涡卷蔡氏混沌系统的数字水印两章,探讨了混沌序列在数字水印中的应用问题及应遵循的密码学设计原则和评价体系。
     本学位论文的工作得到了禹思敏教授主持的国家自然科学基金(批准号:60871025,61172023)、教育部高等学校博士学科点(博导类)专项科研基金(批准号:20114420110003)、广东省自然科学基金(批准号:8151009001000060,S2011010001018)、广东省科技计划项目(批准号:20098010800037)的资助。
Chaos system has the following features, such as intrinsic randomness of deterministic system, highly sensitive to initial conditions, long-term unpredictability. They have essentially relationship with confusion and diffusion in cipher design.As a new technology and a strong complement to Cryptography, chaotic cryptography has got a lot of research in recent years. Most studies have focused on the generation and analysis of chaotic sequence, numerous literatures suggests that the chaotic sequence has a sufficiently long cycle and good statistical properties. However, with the in-depth study, people found that the dynamic characteristics of chaotic system will be degraded in finite precision, which make the system into short-period. The short-cycle behavior serious damage to the randomness of the chaotic sequence, lead to its statistical characteristics weakened and the corresponding key space narrowed.
     In order to improve and eliminate the impacts on chaotic sequence, three methods were put forward by researchers, including improving chaotic system structure, mixing multi-chaotic system and using more complex chaotic system. The common characteristics of these methods are the use of experimental simulation verifies its effectiveness, and almost with no theoretical analysis. This paper was first qualitative analysis these characteristics, and used chebyshev sequence as an example in order to qualitative analysis the feature of short-period, then discusses the law of multiple chaotic systems which were series connected, cross-mixed, cascade mixed. In order to verify the validity of the law, we design some new chaotic sequence generating method and apply them in digital watermarking.
     This article discussed the three aspects about chaotic sequence generation method and its application in digital watermarking.
     (1) dynamics characteristics degradation and addition of chaos
     In recent years, dynamics characteristics degradation of digital chaotic in finite precision has aroused widespread interest. A lot of literatures show that it appears in Logistic map, Tent map and Chebyshev Map, the chaotic sequences which were generated by these map have always lost their value on cryptography. In order to analysis the short-period feature of chaos, we used chebyshev sequence as an example to qualitative analysis of the existence and give the cycle formula of chebyshev sequence finally.
     To solve the short-period characteristics of digital chaotic system, multi-chaotic system mixed method was commonly used in the industry and experimental simulation always used to illustrates the effectiveness of these methods. It is found that the essential characteristic of these methods is the addition ability of chaos.Unfortunately, few researchers at home and abroad concerned about the addition ability of chaos. This article first defined a series of concept about chaotic system, such as series connected, cross-mixed, cascade mixed. Then using qualitative analysis and simulation experiments to demonstrate the characteristics of chaotic systems exist in several mixed mode. This is a very good guide to design and analysis the chaotic sequences.
     (2) The new generation method and property analysis of chaotic sequences
     Based on the characteristics of degradation and addition ability of chaos, we present some methods, such as an improved chaotic sequence algorithm based on Chebyshev map, a class of multi-scroll Chua chaotic sequence generating method and a new kind of chaotic circuit random sequence generator. The improved chaotic sequence algorithm with Chebyshev by changes the equation parameters before the system enter in short-period, which makes the system not enter the short cycle and got longer sequence. The new method to generate chaotic sequence by multi-scroll Chua chaotic system shows that the short-period problem can be weakened by high-dimensional chaotic system as well as enlarging the key space. Particularly important, the principle of generating random sequence by high-dimensional is the same as by low-dimensional chaotic system. Therefore, we can choose a different multi-scroll Chua chaotic system to generate a random sequence according to the actual situation. In this paper, we first propose a new fourth-order chaotic system, and then implement a random sequence, which provides a new way for the hardware implementation of chaotic sequence.
     (3) The research of chaos sequence in digital watermarking
     In the field of digital watermarking, chaotic sequence has got more and more researched. These studies generally agreed that the nature of the pseudo-random sequences generated by chaotic systems is better than by traditional algorithms, and ignore the impact of the short-period behavior of the chaotic sequence. In this article, we firstly discuss the key and key space of chaotic cryptosystems and then given some suggestions to design a chaotic cryptographic algorithm, we give two algorithms, one is a digital watermarking algorithm with dual transform domain based on Contourlet and SVD, another one is a digital watermarking algorithm based on grid multi-scroll Chua's chaotic attractors. Furthermore, we point out that cryptography design principles and evaluation method should be followed in the chaotic digital watermark design.
     This work was supported by the National Natural Science Foundation of China under Grant Nos.60871025and61172023, the Specialized Research Foundation of Doctoral Subject Point of Education Ministry under Grant No.20114420110003, the Natural Science Foundation of Guangdong Province under Grant Nos.8151009001000060and S2011010001018, and the Science and Technology Program of Guangdong Province under Grant No.2009B010800037.
引文
[1]Xiang H., Wang L. D., Lin H., et al., Digital watermarking systems with chaotic sequences:Security and Watermarking of Multimedia Contents [C], Sanjose, American,1999,449-57.
    [2]孙克辉,贺少波,尹林子,阿地力·多力坤.模糊熵算法在混沌序列复杂度分析中的应用[J].物理学报,2012,61(13):1-7.
    [3]葛为卫,崔志明,吴健.基于混沌映射的小波域脆弱数字水印算法[J].计算机工程与设计,2008,29(8):2137-2139.
    [4]李赵红,侯建军.基于Logistic混沌映射的DCT域脆弱数字水印算法[J].电子学报,2006,34(12):2135-2137.
    [5]Zhong Q. C, Zhu Q. X., A DCT domain color watermarking scheme based on chaos and multilayer Arnold transformation:2009 International Conference on Networking and Digital Society [C], Guiyang, China,2009:209-212.
    [6]殷肖川,蒋晓迪,周翔翔.基于位扩展的灰度图像混沌加密算法[J].空军工程大学学报(自然科学版),2008,9(1):58-61.
    [7]许文丽,苏万力,李磊等.基于混沌置乱和混合变换域的扩频水印方案[J].计算机科学,2007,34(7):248-250.
    [8]胡欲峰,朱善安.混沌置乱在图像水印系统中的研究[JJ].电子器件,2008,31(5):1457-1459.
    [9]吴琦.一种基于DCT的数字图像水印算法[J].电子工程师,2008,34(12):45-47.
    [10]和红杰,张家树.基于混沌置乱的分块自嵌入水印算法[J].通信学报,2006,27(7):80-86,93.
    [11]李明,廖晓峰.结合混沌的小波变换数字水印技术[J].计算机科学,2007,34(8):245-247.
    [12]赵辉,余波,陈建勋.基于小波变换和人类视觉系统的盲数字水印算法[J].计算机技术与发展,2008,18(9):141-144.
    [13]Zhang L. H., Liao X. F., Wang X. B., An image encryption approach based on chaotic maps [J]. Chaos, Solitons and Fractals,2005,24(3):759-765.
    [14]Ni R. R, Ruan Q. Q., Zhao Y., Pinpoint authentication watermarking based on a chaotic system [J]. Forensic Science International,2008,179(1):54-62.
    [15]Liu S. H., Yao H. X., Gao Wen., et al., An image fragile watermark scheme based on chaotic image pattern and pixel-pairs [J]. Applied Mathematics and Computation,2007,185 (1):869-882.
    [16]Aidan M., John G. K., Ioannis P., A comparative study of chaotic and white noise signal in digital watermarking [J]. Chaos, Solitons and Fractals,2008,35(5): 913-921.
    [17]Aidan M., John G. Ke., Daniel M. H., A detailed study of the generation of optically detectable watermarks using the logistic map [J].Chaos, Solitons and Fractals,2006,30(5):1088-1097.
    [18]余波,陈建勋.基于整数小波变换和混沌映射的盲数字水印算法[J].计算机技术与自动化,2008,27(1):53-56.
    [19]Wu X. Y., Guan Z. H., A novel digital watermark algorithm based on chaotic maps [J]. Physics Letters A,2007,365(5):403-406.
    [20]Zhao D. W., Chen G. R., Liu W. B., A chaos-based robust wavelet-domain watermarking algorithm [J]. Chaos, Solitons and Fractals,2004,22(1):47-54.
    [21]张博,王玲.一种基于Arnold混沌映射的小波变换域图像水印算法[J].计算机与数字工程,2008,36(5):129-131.
    [22]程玉柱.一种新的文本数字水印算法研究[J].科学技术与工程,2005,5(14):1006-1009.
    [23]Xiao M. S., Wan X. X., Gan C. H., et al., A robust DCT domain watermarking algorithm based on chaos system:Proceedings of SPIE-The International Society for Optical Engineering [C],2009:7495-7499.
    [24]杨淼,闵乐泉.一个基于广义混沌同步系统的数字水印算法[J].计算机工程与应用,2007,43(14):42-45.
    [25]Tiegang G, Gub Q. L., Sabu E., A novel image authentication scheme based on hyper-chaotic cell neural network [J]. Chaos, Solitons and Fractals,2006, 31(3):1043-1047.
    [26]Biham E., Cryptanalysis of the chaotic-map cryptosystem suggested at EuroCrypt'91:Cryptology-EUROCRYPT'91 [C], Brighton, UK,1991:532-534.
    [27]Biham E., Shamir A., Differential crypt-analysis of the data encryption standard [M], [S.1.]Springer.
    [28]唐国坪,廖晓峰.基于混沌映射的抗剪切鲁棒水印算法[JJ].计算机工程,2005,31(9):34-36.
    [29]赵立强,李艳坡等.基于广义Arnold混沌映射和Henon混沌映射的小波水印算法[J].河北科技师范学院学报,2006,20(4):32-37.
    [30]周红,罗杰,凌燮亭.混沌非线性反馈密码序列的理论设计和有限精度实现[J].电子学报,1997,25(10):57-60.
    [31]桑涛,王汝笠,严义埙.一类新型混沌反馈密码序列的理论设计[J].电子学报,1999,27(7):47-50.
    [32]Pierre L. E., Efficient and portable combined random number generators [J]. Communcation of ACM.1988,31(6):742-749.
    [33]Berstein G. M., Lieberman M. A., Method and apparatus for generating secure random numbers using chaos [P]. US Patent No.5007087.
    [34]Yao W. G., Yu P., Christopher E., Communication between synchronized random number generators [J]. International Journal of Bifurcation and Chaos,2004, 14(11):3995-4008.
    [35]冯国瑞,蒋铃鸽,何晨.一种有效提高静止图像水印系统安全性的预处理方案[J].上海交通大学学报,2004,38(9):1505-1508.
    [36]刘泉,余娜敏.基于扩频技术的自适应数字水印研究[J].武汉理工大学学报,2003,25(7):71-74.
    [37]张斌,金晨辉.对基于混沌映射的水印算法的选择明文攻击[J].计算机工程,2007,33(18):164-166.
    [38]李井辉,申静波,李德宝,齐峰.基于混沌序列的数字水印图像认证算法[J].计算机工程与科学,2008,30(8):46-48.
    [39]和红杰,张家树.基于混沌的自嵌入安全水印算法[J].物理学报,2007,56(7):3092-3100.
    [40]向华,曹汉强,伍凯宁,魏访.一种基于混沌调制的零水印算法[J].中国图象图形学报,2006,11(5):720-724.
    [41]Han F. L., Hu J. K., Yu X. H., et al., Fingerprint images encryption via multi-scroll chaotic attractors [J]. Applied Mathematics and Computation,2007,185(1): 931-939.
    [42]Lu W., Lu H.T., Chung F.L. Robust digital image watermarking based on subsampling [J]. Applied Mathematics and Computation,2006,181(2):886-893.
    [43]Li S. J., Mou X. Q., Cai Y. L. Improving security of a chaotic encryption approach [J]. Physics Letters A,2001,290(3):127-133,2001.
    [44]Gon Z. A., Li S. J., Some basic cryptographic requirements for chaos-based cryptosystems [J]. International Journal of Bifurcation and Chaos,2006,16(8): 2129-2151.
    [45]Golomb S. W., Shift register sequences, San Francisco, CA:Holden-Day,1967 Revised edition:Laguna Hills,1982.
    [46]刘曼昊,孙堡垒,郭云彪等.文本数字水印技术研究综述[J].东南大学学报(自然科学版),2007,37(supl):225-229.
    [47]郑成勇.基于混沌的数字文本水印技术与应用[J].五邑大学学报(自然科学版),2006,20(1):17-21.
    [48]程玉柱,孙星明,黄华军.一种新的基于混沌映射的文本零水印算法[J].计算机应用,2005,25(2):2753-2755.
    [49]张陶.基于混沌加密的二值图像数字水印算法[J],国外电子测量技术,2008,27(3):10-12.
    [50]罗强.一种基于混沌加密的二值图像数字水印算法[J].科学技术与工程,2008,8(13):3682-3685.
    [51]朱从旭,陈志刚.基于DWT域的混沌置乱二值图像数字水印新算法[J].小型微型计算机系统,2005,26(7):1241-1245.
    [52]Liu N., Zhang Y, Chen Z. Y, et al., Chaos-based semi-blind watermarking for CAD models:Proceedings of the 2009 WRI Global Congress on Intelligent Systems [C], Xiamen, China,2009:411-414.
    [53]丁文霞,卢焕章,王浩,谢剑斌.一种基于混沌的彩色图像空域半脆弱水印算法[J].国防科技大学学报,2008,30(4):59-63.
    [54]朱志宇,张代华.基于离散小波变换和混沌加密的图像水印算法[J].激光与红外,2006,36(5):417-420.
    [55]张秋余,李凯,袁占亭.基于混沌和SVD-DWT的稳健数字图像水印算法[J].计算机应用研究,2010,27(2):718-720.
    [56]孙克辉,包善琴.基于混沌映射和小波变换的彩色图像水印算法[J].计算机应用研究,2009,26(7):2735-2737.
    [57]王丽娜,董晓梅.图像及声音的数字水印嵌入研究与实现[J].东北大学学报:自然科学版.2002,23(2):217-220.
    [58]胡云,伍宏涛,张涵钰等.大容量索引图像水印方案的设计与实现[J].北京邮电大学学报,2005,28(1):26-29.
    [59]Liu N. H., Guo D. H., Watermarking scheme of colour image based on chaotic sequences [J]. Optoelectronics Letters,2010,5(3):227-231.
    [60]Cheddad A., Condell J., Curran K., et al., A hash-based image encryption algorithm [J]. Optics communications,2010,283(6):879-893.
    [61]王庆席,郑晓势,刘广起,赵彦玲,李娜.基于混沌置乱的小波域数字音频水印算法[J].电声技术,2006,7(4):35-37.
    [62]陈雪松,张寒,杨永田.基于混沌理论的音频数字水印算法研究[J].计算机工程与应用,2007,43(24):59-60,77.
    [63]张春田,苏育挺,张静编著.数字图像压缩编码/信号与信息处理丛书[M].清华大学出版社,2006.
    [64]武拴虎,谈正.基于混沌序列的视频图像数字水印隐藏与多分辨检测[J].西安交通大学学报,2000,34(6):35-39.
    [65]刘飞,伍祥生,陈琼.基于视频内容和混沌的鲁棒水印技术[J].中国图象图形学报,2008,13(3):411-414.
    [66]吴镝锋,杨高波,韩佳.基于混沌加密和误差扩散控制的AVS压缩域视频水印 [J].计算机应用研究,2009,26(7):2732-2734.
    [67]甘建超, 肖先赐.混沌的可加性[J].物理学报,2003,52(5):1085-1090.
    [68]刘金梅,丘水生.基于Lyapunov指数改善数字化混沌系统的有限精度效应[J].暨南大学学报(自然科学报),2010,31(5):425-430.
    [69]蒋建初,彭跃辉.切比雪夫多项式的混沌性[J].湘潭大学自然科学学报,1996,19(3):37-39.
    [70]刘会师.OCDM编码技术及其在光标记交换系统中的应用研究[D].北京:北京邮电大学,2010.
    [71]Chen F. D., Shi J. L., Periodicity in a logistic type system with several delays [J]. Computers and Mathematics with Applications,2004,48:35-44.
    [72]Chen Y. M., Periodic solutions of a delayed periodic logistic equation [J].Applied Mathematics Letters,2003,16:1047-1051.
    [73]禹思敏.混沌系统与混沌电路-原理、设计及其在通信中的应用[M].西安:西安电子科技大学出版社,2011.
    [74]金建国,魏明军,邸志刚,许广利,贾春荣,赵宏微.级联混沌系统Lyapunov指数研究[J].计算机工程,2011,37(19):12-16.
    [75]Stinson D. R., Cryptography:theory and pratice [M]. CRC press,1995.
    [76]Bao. F., Cryptanalysis of a new cellular automata cryptosystem [C]. Proc. ACISP, Spring-Verlag, Wollongong, Australia,2003:416-427.
    [77]Gonzalo A., Shu J. L. Some basic cryptographic requirements for chaos-based cryptosystems [J]. International Journal of Bifurcation and Chaos,2006,16(8): 2129-2151.
    [78]Bu S., Wang B. H., Improving the security of chaotic encryption by using a simple modulating method [J], Chaos, Solitons and Fractals,2004,19 (4):919-924.
    [79]Alvarez G, Montoya F., Romera M., Pastor G, Cryptanalyzing a discretetime chaos synchronization secure communication system [J], Chaos, Solitons and Fractals,2004,21 (3):689-694.
    [80]Alvarez G, Montoya F., Romera M., Pastor G, Breaking parameter modulated chaotic secure communication system[J], Chaos, Solitons and Fractals,2004, 21(4):783-787.
    [81]Alvarez G, Li S., Montoya F., Pastor G, Romera M., Breaking projective chaos synchronization secure communication using filtering and generalized synchronization, Chaos, Solitons and Fractals,2005,24(3) 775-783.
    [82]Wang K., Pei W., Zou L., Song A., He Z., On the security of 3D cat map based on symmetric image encryption scheme[J], Physics Letters A,2005,343 (5),432-439.
    [83]Alvarez G, Hernandez L., Munoz J., Montoya F., and Li S. Security analysis of a communication system based on the synchronization of different order chaotic systems [J], Physics Letters A,2005,345(4):245-250.
    [84]Wei J., Liao X. F., Wong K. W., Cryptanalysis of a cryptosystem using multiple one-dimensional chaotic maps [J]. Communications in Nonlinear Science and Numerical Simulation,2007,12(5):814-822.
    [85]Jakimoski G, Kocarev L., Analysis of some recently proposed chaos based encryption algorithms [J]. Physics Letters A,2001,291(6):381-384.
    [86]Biham. E., Cryptanalysis of the chaotic-map cryptosystem suggested at EuroCrypt'91 [C]. Proc. EUROCRYPT'91, Berlin, Germany,1991:532-534.
    [87]Biham. E., A Differential Crypt-analysis of the Data Encryption Standard [C]. Proc. EUROCRYPT'91, Berlin, Germany,1991:503-514.
    [88]Ecuyer L.P., Efficient and portable combined random number generators [J]. Communications of the ACM.1998,31(6):742-749.
    [89]Berstein, G.M., Lieberman M. A., Method and apparatus for generating Secure random numbers using chaos [P].US Patent No.5007087.
    [90]Yao W. G., Pei Yu., Christopher Essex.Communication between synchronized random number generators [J]. International Journal of Bifurcation and Chaos, 2004,14(11):3995-4008.
    [91]Golomb S. W., Shift Register Sequences [M], San Francisco, CA:Holden-Day, 1967 Revised edition:Laguna Hills, CA:Aegean Park,1982.
    [92]Bruce S., Applied Cryptography:Protocols, Algorithms, and Source Code in C [M], BRUCE SCHNEIER,1999.
    [93]Sohrab B., AFSHIN A., and Hadi M., Chaotic cryptographic scheme based on composition maps [J]. International Journal of Bifurcation and Chaos,2008, 18(1):251-261.
    [94]Li Shujun, Mou Xuanqin, Cai Yuanlong. Improving security of a chaotic encryption approach [J]. Physics Letters A,2001,290(3):127-133.
    [95]Mao.Y, Chen.G, Lian. s. A novel fast image encryption scheme based on 3D chaotic baker maps [J], Int.J.Bifurcation and chaos 2004,14(1):3613-3624.
    [96]Wang Guang Yi, Bao Xu-Lei, Wang Zhong-Lin. Design and FPGA Implementation of a new hyperchaotic system [J]. Chinese Physics B,2008, 17(10):3596-3602.
    [97]Guo. MZ, Zhao. L, Wang. LP. An Image Encryption Scheme Based on Lorenz Chaos System[C].4th International Conference on Natural Computation, Ji'an, China,2008:600-604.
    [98]Ding.Qun, Pang. Jing, Fang. Jinqing. Designing of chaotic system output sequence circuit based on FPGA and its applications in network encryption card [J]. International journal of innovative computing information and control,2007,3(2): 449-456.
    [99]Carroll T. L., Pecora L. M., A new watermarking method based on chaotic mixing and SVD [J]. Imaging science journal,2012,60(3):127-137.
    [100]范延军,孙燮华,阎晓东,郑林涛.一种基于混合混沌序列的图像置乱加密算法[J].中国图像图形学报,2006,11(3):388-391.
    [101]杨雪松,于万波,魏小鹏.基于复合超混沌系统且与明文相关联的图像加密[J].计算机应用研究,2011,28(10):3807-3810.
    [102]齐冬莲,厉小润,赵光宙.一类混合混沌系统的无源控制[J].浙江大学学报(工学版),2004,38(1):86-89.
    [103]周红,凌燮亭.有限精度混沌系统的m序列扰动实现[J].电子学报,1997,25(7):95-97.
    [104]刘家胜,黄贤武,朱灿焰, 吕皖丽.基于m序列变换和混沌映射的图像加密算法[J].电子与信息学报,2007,29(6):1477-1479.
    [105]Da Hui, Hu. Zhi-Guo, Du. An audio watermarking based on Logistic map and m-sequence [J]. International Journal of Digital Content Technology and its Applications,2012,6(8):169-176.
    [106]王冰,赵耿.新的基于Legendre扰动的混沌序列[J].计算机工程与应用,2009,45(32):98-100.
    [107]Rukhin A, Soto J, Nechvatal J.A statistical test suite for random and pseudorandom number generator for cryptographic applications[EB/OL].http://csrc.nist.gov/rng/.
    [108]刘金梅,屈强.几类混沌序列的随机性测试[J].计算机工程与应用,2011,47(5):46-49.
    [109]Suykens J A K, Vandewalle J. Quasilinear approach to nonlinear systems and the design of n-double scroll (n= 1; 2; 3; 4;...). G, IEE Proc.,1991,138(5): 595-603.
    [110]Yalcin M E, Suykens J A K, Vandewalle J. Families of scroll grid attractors. Int. J. Bifurc. Chaos,2002,12(1):23-41.
    [111]Lu J. H., S.M. Yu, Henry Leung. Design of 3-D multi-scroll chaotic attractors via basic circuits [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms 1,2005,10(1):324-328.
    [112]J.H. Lu, S.M. Yu, Henry Leung, and G.R. Chen. Experimental verification of multidirectional multiscroll chaotic attractors [J]. IEEE Transactions on Circuits and Systems-I:Regular Papers,2006,53(1):149-165.
    [113]S.M. Yu, J.H. Lu, Henry Leung, G.R. Chen. Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [J]. IEEE Transactions on Circuits and Systems-I:Regular Papers,2005,52(7):1459-1476.
    [114]S.M. Yu, J.H. Lu, GR. Chen. Theoretical Design and Circuit Implementation of Multi-Directional Multi-Torus Chaotic Attractors [J]. IEEE Transactions on Circuits and Systems-I:Regular Papers,2007,54(9):2087-2098.
    [115]S.M. Yu, J.H. Lu, Wallace K. S. Tang, and GR. Chen. A general multi-scroll Lorenz system family and its realization via digital signal processors [J], Chaos, 2006,16(3):033126(1-10).
    [116]S.M. Yu, J.H. Lu, and G.R. Chen. Multi-folded torus chaotic attractors [J]. Design and implementation. Chaos,2007,17(1):1-12.
    [117]S.M. Yu, J.H. Lu, and G.R. Chen. A family of n-scroll hyperchaotic attractors and their realizations [J], Physics Letters A,2007,364(3):244-251.
    [118]S.M. Yu, Wallace K. S. Tang. Generation of n×m-scroll attractors in a two-port RCL network with hysteresis circuits[J]. Chaos, Solitons & Fractals,2008.
    [119]S.M. Yu, Wallace K. S. Tang, and G.R. Chen. Generation of nxm-scroll attractors under a Chua-circuit framework [J]. International Journal of Bifurcation And Chaos,2007,17(11):3951-3964.
    [120]S.M. Yu, J.H. Lu, and G.R. Chen. A module-based and unified approach to chaotic circuit design and its applications[J], International Journal of Bifurcation and Chaos,2007,17(5):1785-1800.
    [121]Lu J H, Chen G R. Multi-scroll chaos generation:Theories, methods and applications [J]. Int. J. Bifurc. Chaos,2006,16(4):775-858.
    [122]Der Pol B. V. and Der Mark J. V., Frequency demultiplication [J], Nature,1927, 120:363-364.
    [123]Kennedy M. P. and Chua, L. Der pol O. Van and chaos [J], IEEE Trans. Circuits Syst. I,1986,33(10):974-980.
    [124]Chua L. O., Komuro M., and Matsumoto T., The double scroll family [J], IEEE Trans. Circuits Syst. I,1986,33(11):1072-1118.
    [125]Matsumoto T., Chua L. O., and Komuro M., The double scroll [J]. IEEE Trans. Circuits Syst. I,1985,32(8):798-817.
    [126]Keneedy M. P., Three steps to chaos-Part 2:A Chua's circuit primer [J], IEEE Trans. Circuits Syst. I,1993,40(10):657-674.
    [127]Yu S.M., Lu J.H., Wallace K. S. Tang, and Chen G. R. A general multi-scroll Lorenz system family and its realization via digital signal processors [J], Chaos, 2006,16(1):1-10.
    [128]Yalcin M. E., Suykens J. A. K., and Vandewalle J., Experimental confirmation of 3-and 5-scroll attractors from a generalized Chua's circuit[J], IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Fundam. Theory Appl.,2000,47(3): 425-29.
    [129]Tang K. S., Zhong G. Q., Chen G, and K. F. Man, Generation of n-scroll attractors via sine function [J]. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,2001, 48(11):1369-1372.
    [130]Zhong G, Man K. E, and Chen G, A systematic approach to generating n-scroll attractors [J], Int. J. Bifurc. Chaos,2002,12(12):2907-2915.
    [131]Matsumoto T., Chua L. O., and Kobayashi K., Hyperchaos:Laboratory experiment and numerical confirmation [J]. IEEE Trans. Circuits Syst.,1986,33(11): 1143-1147.
    [132]Yu S. M., Lu J.H., Henry Leung, Chen G R.., Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [J]. IEEE Transactions on Circuits and Systems-I:Regular Papers,2005,52(7):1459-1476.
    [133]M. P. Kennedy, Chaos in the Colpitts oscillator [J]. IEEE Trans. Circuits Syst. I, 1994,41(11):771-774.
    [134]G M. Maggio, O. D. Feo, and M. P. Kennedy, Nonlinear analysis of the Colpitts oscillator and applications to design [J]. IEEE Trans. Circuits Syst. I,1999, 46(9):1118-1130.
    [135]J.H. Lu, S.M. Yu, Henry Leung, and G.R. Chen. Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Transactions on Circuits and Systems-I:Regular Papers,2006,53(1):149-165
    [136]Yalcin M. E., Suykens J. A. K., Vandewalle J., and Ozoguz S., Families of scroll grid attractors [J]. Int. J. Bifurc. Chaos,,2002,12(1):23-41.
    [137]Elwakil A S., Integrator-based circuit-independent chaotic oscillator structure [J]. Chaos,2004,14(3):364-369.
    [138]Lu J., Chen G, Generating multiscroll chaotic attractors:theories methods and applications [J]. Int. J. Bifurc. Chaos,2006,16(4):775-858.
    [139]Do M. N., VETTERLI M., The contourlet transform:an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [140]Burt P., Adelson E.. The Laplacian Pyramid as a Compact Image Code [J]., IEEE Transactions on Communications,1983,31(4):532-540.
    [141]Bamberger R. H., Smith M. J. T. Efficient 2-D Analysis/Synthesis Filter Banks for Directional Image Component Representation [J]. IEEE International Symposium on Circuits and Systems,1990,3:2009-2012.
    [142]肖羽,王相海.基于Contourlet的中低码率图像质量可分级编码算法[J].计算机研究与发展,2008,45(6):1020-1028.
    [143]刘瑞祯,谭铁牛.基于奇异值分解的数字图像水印方法[J].电子学报,2001,29(2):168-171.
    [144]Liu R, Tan T., A SVD-Based watermarking scheme for protecting rightful ownership [J]. IEEE Transactions on Multimedia,2002,4(1):121-128.
    [145]张建伟,鲍政,王顺凤.图像小波域分块奇异值分解的自适应水印方案[J].中国图象图形学报,2007,12(5):812-818.
    [146]边笛,肖华勇,李建辉.基于DWT和SVD相结合的图像水印算法[J].计算机仿真,2008,25(4):87-90.
    [147]杨格兰,张建明,向德生.基于混沌序列的二值图像加密算法[J].计算机技术与发展,2006,16(2):148-150,153.
    [148]刘竹松,陈平华,刘怡俊.混沌数字水印技术研究进展[J].计算机应用研究,2011,28(1):1-4.
    [149]韦军,廖晓峰,扬吉云.对一个混沌密码模型的分析[J].通信学报,2008,29(9):134-139.
    [150]Yu S. M., Generation of n×m-Scroll Attracors under a Chua-circuit Framework [J]. International Journal of Bifurcation and Chaos,2007,17(11):3951-3964.
    [151]毕洪波,张玉波,王秀芳.基于超混沌和DCT理论的数字图像水印算法[J].计算机仿真,2008,25(10):161-163.
    [152]伍宏涛.数字水印容量理论与应用算法研究与设计[D].北京:北京邮电大学,2004.
    [153]银国瑞,平子良,董佳莉.基于圆谐-傅里叶矩的数字水印算法[J].计算机工程,2009,35(20):142-144.
    [154]刘晶,刘刚,何文娟.基于NSCT和DWT的鲁棒数字水印算法[J].计算机工程,2009,35(13):174-176.
    [155]栗风永,徐江峰.基于Hash函数和多混沌系统的图像加密算法[J].计算机工程与设计,2010,31(1):141-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700