用户名: 密码: 验证码:
构造形变监测中人工角反射器的RCS模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是地震灾害发生较为频繁的国家,地震监测和预报是国家防震减灾的核心工作。地壳在地震发生前会产生各种各样的变形,从而构成一个地壳形变场。对易发生地震的构造区域进行形变测量,是近年来预测地震的重要手段。
     CR-InSAR (Corner Reflector Synthetic Aperture Radar Interferometry)技术能以毫米级的精度获取地表形变信息。通过在断层等易发生地震的形变重点监测区域架设一定数量尺寸和规格严格统一的人工角反射器,CR-InSAR可实现大面积、长期性的连续高精度形变监测。关于CR-InSAR技术,过往的研究多侧重于基于CR稳定点的形变量提取算法的改进,而对人工角反射器本身的散射特性不做过多分析。事实上,系统地研究人工角反射器的散射特点,模拟反映人工角反射器散射特点的雷达散射截面(RCS)曲线是一项很有意义的工作:RCS分析的结果可以帮助选择合适的角反射器类型;指导如何在野外架设角反射器(主要包括方位角和入射角);人工角反射器达到最大RCS值时有利于其在SAR影像上的识别,提高形变监测的精度。鉴于这些认识,论文把研究的焦点集中在RCS的模拟方法和实验验证研究上。
     论文系统阐述了常用的RCS预估方法,在比较了各种方法优缺点基础上,结合人工角反射器的物理特征,选择了物理光学法(PO)计算模拟人工角反射器的RCS变化曲线。应用于CR-InSAR的人工角反射器属于电大尺寸目标,采用高频近似算法-物理光学法对常用的几种人工角反射器(二面角、三角锥形三面角、矩形锥体三面角和正方形三面角)进行了RCS曲线模拟,分析了RCS值在不同尺寸、形状和角度下的变化规律。
     人工角反射器在制作、加工和布设和野外恶劣的自然条件下难免会产生形状的变化,影响自身的散射性能。利用PO算法,论文讨论了角度偏差、不平整度误差和打孔误差引起的RCS缩减情况。对于可能引发较大RCS缩减的物理性质,在实际操作过程中必须严格把关。
     京西北试验区位于首都圈内,地表干涉条件较好且有着稳定的形变速率。在该试验场内前后分期架设了34个角反射器,获取了多景ASAR影像。通过对影像上不同类型角反射器、同类型不同尺寸角反射器、相同角反射器不同时期的后向散射强度统计分析,论文验证了RCS模拟结果的可靠性,这为今后的科学布设人工角反射器试验场提供了理论指导。
China is a country with frequent earthquake disaster. Earthquake monitoring and prediction is at the core of protection against and mitigation of earthquake disasters. The earth's crust before the earthquake will produce all kinds of deformation, then form crustal deformation field. In recent years, tectonic deformation measurement in the area which is prone to earthquake is an important means to forecast the earthquake.
     The technique of Corner Reflector Synthetic Aperture Radar Interferometry (CR-InSAR) can obtain ground deformation information with millimeter-scale accuracy. Artificial corner reflectors set up in region of prone to earthquake su ch as default which have strictly uniform number, size and specifications. CR-I nSAR realizes large-area, long-term continuous high precision deformation moni toring using CR. However, past studies focus on improving algorithm of extrac tion deformation based on CR, and for artificial corner reflector itself scatterin g properties don't make much analysis. In fact, it is a very significant job incl uding systematic research on scattering characteristics and simulating RCS curv e of CR. The results of the analysis RCS can help choose the right type of c orner reflector and provide guidance on how to set up CR in the fields (mainl y including azimuth and incident Angle).When RCS of artificial corner reflect or achieves maximum, it is easier to recognize CR from SAR. In view of the understanding, the paper is focusing on the simulation method to RCS and test ing its reliability based SAR images.
     This paper introduces the common prediction method on RCS. Compared to benefits and drawbacks of different method, we hold that physical optics is most suitable for simulating RCS of artificial corner reflector. Because artificial corner reflector is electrically large target, PO is relatively appropriate algorithm. In this paper, we simulate RCS curve of several common artificial corner reflectors such as dihedral corner reflector, triangular trihedral corner reflector, rectangular trihedral corner reflector, square trihedral corner reflector, and analyze RCS change rule in different size, shape and angle.
     Artificial corner reflector in production, processing and layout and field of the bad natural conditions will inevitably produce shape variation, influence their scattering characteristics. Based on PO, this paper discusses RCS shrinking caused by the deviation angle, the unevenness of error and punched by the error. Through study, in the actual operation process theses error must be strictly checks.
     The northwest area in Beijing is located in the capital circle where surface interference conditions are good and deformation rate is stable. In this test area, there are34corner reflectors, and many ASAR scene images have obtained. Based on SAR images, trough the analysis to CR backscatter intensity with different style, and different size but same style and different stage of one CR, we verify simulation results are reliable. These conclusions provide theoretical guidance for scientific layout artificial corner reflector in test field.
引文
1)[法]Henri Maitre编,孙洪等译.合成孔径雷达图像处理[M],北京电子工业出版社,2005.
    2) A Ferretti, C. Prati, F. Rocca. Permanent Scatterers in SAR Interferometry, IEEE TGARS, Vol.39, no.1,2001.
    3) A Ferretti, D. Perissin, C. Prati. Spaceborne SAR anatomy of a city. Proceedings of FRINGE 2005.
    4) Alessandro Ferretti, Claudio Prati and Fabio Rocca. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Intererometry. IEEE Trans. Geosci. Remote Sensing,, Sept.2000.vol.38,2202-2212.
    5) Balanis and T. Griesser.RCS predictions of multiple flat-plate targets using GO-GTD (UTD) and PO-PTD techniques:A review. In Radar Cross Section of Complex Objects, W. R. Stone Ed. New York:IEEE Press,1990,260-274.
    6) Berardino P, Fornaro G, et al. A New Algorithm for Surface Deformatiom Monitoring Based on Small Baseline Differretial SAR Interferometry. IEEE Transaction on Geoscience and Remote Sensing.2002,40(11):2375-2383.
    7) Bhattacharyya A K, Sengupta D L. Radar Cross Section Analysis and Control. Norwood: Aretech House, MA, Chap.2,1991.
    8) Brown W. M., Synthetic Aperture Radar, IEEE Trans, on Aerospace and Electronic System, March 1967, Vol.AES-3, no.2,217-229.
    9) Brunner, D.; Bruzzone, L.; Ferro, A.; Lemoine, G. Analysis of the reliability of the double bounce scattering mechanism for detecting buildings in VHR SAR images.2009 IEEE Radar Conference, Pasadena, CA, USA,4-8 May 2009.
    10) C.Ulusik, G.Cakir, M.Cakir, L.Sevgi. Radar cross section (RCS) modeling and simulation: Part I-Definitions, strategies, and canonical examples. IEEE Antennas and Propagation Magazine. Feb,2008.Vol.50,No.l:115-126.
    11) Chandran A R., Gopikrishna M., Aanadan C K., Mohanan P., Vasudevan K. Radar cross-section enhancement of dihedral corner reflector using fractal-based metallo-dielectric structures, Electronics Letters,2006,42(20):1135-1137.
    12) Che Jing, Tang Shuo. RCS analysis of hypersonic cruise vehicle. Journal of Astronautics, 2007,28(1),227-232.
    13) Chew W C, et al. Fast and Efficient Algorithms in Computational Electromagnetics. Norwood:Artech House,2001,94-96.
    14) Chris Oliver, Shaun Quegan著.丁赤飚,陈杰等译.合成孔径雷达图像理解[M].北京:电子工业出版社,2009.
    15) Colesanti C, Ferretti A, Prati C. Monitoring Landdidesand Tectonic Motion with the Perm anent ScatterersTechnique-J]. Engineering Geology,2003,68:3-14.
    16) Corona, P.; Ferrara, G.; Gennarelli, C.; Riccio, G. Phase mathematical modelling for corner reflectors in remote sensing synthetic aperture radar applications.1995 International Geoscience and Remote Sensing Symposium, Firenze, Italy,10-14 July 1995, vol.1,763-766.
    17) CoronaP, DeBonitatibusA, FerraraG A very accurate model for back scattering by right angled dihedralcorner.Antennasand Propagation Society International Symposium, 1999,14(5):1734-1737.
    18) Crispin J W Jr, Maffett A L.RCS estimation for simple shape.Proceedings of The IEEE,1965,53(8):833-848.
    19) Crosetto M, Castillo M, Arbiol R. Urban subsidence monitoring using radar interferometry: Algorithms and validation. Photegrametric Engineering and Remote Sensing,2003, vol.69, no.7,775-783.
    20) Donald M, Kiyoshi, Genya. Assessment of Small Passive Corner Reflectors for Geometric Correction of Rada—rsat Eine Mode SAR Data rA. ACRS 2001—22nd AsianConference on Remote Sensing,5-9 November 2001, Singapore.Vol.2,1026-1031.
    21) DYBDAL Robert B. Radar cross section measurement.Proceedings of the IEEE,1987,75 (4):498-519.
    22) E. F. Knott, RCS reduction of dihedral corners. IEEE Transactions on Antennas and Propagation,1977,25(5):406-409.
    23) Eli Brookner. A spects of Modern Radar [M]. MA:Artech House Inc,1988.
    24) ERS-Envisat PS coherent combination. IEEE TGARS,2006, Vol.44, Issue 9:2343-2351.
    25) F. Knott, J. F. Shaeffer, M. T. Tuely. Radar cross section, its prediction, measurement, and reduction. Dedham, MA:Artech House.1985.
    26) F. Knott. RCS reduction of dihedral corners, IEEE Trans. AntennasPropagat., May 1977, vol. AP-25,406-409.
    27) FERRETTI A, PRATIC, RCOCCA F. Nonlinear Subsidence Rate Estimations Using Permannent Scatteres in Differerntial SAR Interferometry. IEEE Transtions on Geoscience and Remote Sensing.2000,38(5):2202-2212.
    28) FERRETTI A, PRATI C, RCOCCA F. Permannent Scatteres in SAR Interferometry. IEEE Transtions on Geoscience and Remote Sensing.2001,39(1):8-20
    29) Ferretti A, Prati C, Rocca R. Nonlinear Subsidence RateEstimation Using Perm anent Scatterers in Differential SAR Inter-ferometry[J]. IEEE Trans,2000,38(5):2202-2212.
    30) Ferretti, A., C. Prati, and F. Rocca. Permanent Scatterers in SAR Interferometry [J], IEEE Transactions on Geoscience and Remote Sensing,2001,39 (1):8-20.
    31) Forger J L, Merle O, Brio le P. Active spreading and regional extension at Mount Etna imaged by SAR interferometry. Earth and Planetary Science Letters.2001.187:245-258.
    32) Fu jiw ara S, et a.l Crusta l deformation measurements using repeat-pass JERS-1 synthetic aperture radar interfe rometry near Izu peninsula. Japan. J. Geophys. Res.1998,103(B2): 2411-2426.
    33) G.Cakir, M. Cakir, L.Sevgi. Radar cross section (RCS) modeling and simulation:Part Ⅱ-A novel FDTD-based RCS prediction virtual tool. IEEE Antennas and Propagation Magazine. Apr 2008. VOL.50, No.2:81-94.
    34) Gabriel AK, Goldstein RM, Zebker HA, Mapping small elevation changes over large areas—differential radar interferometry,1989, J. Geophys. Res.94:9183-91.
    35) GARAT J. Microwave techniques for radar cross section measurements:a review/8th Meditarranean, MELECON.IEEE,1996,4:22-58.
    36) Ge Li lin, Eric Cheng, Li Xiao-jing, Chris Rizos. Quanti—tative Subsidence Monitor-ing: The Integrated InSAR, GPS and GIS Approach. the 6th International Sym posiumon Satellite Navigation Technology Including MobilePositioning& Location Serivces. Melbourne:Australia,22-25 July,2003.
    37) Ge Lin lin, Han Shao-wei, Chris Rizos, Howard Zebker. Mining Subsi-dence Monitoring Using the Combined InSAR and GPS Approach[A]. The 10th FIG Interna—tional Symposium On Deform ation Measurements. California:Orange,2001.
    38) Geng N, Ressler M A, Carin L. Wide-band VHF scattering from a trihedral reflector situated above a lossy dispersive halfspace. IEEE Transaction on Geoscience and Remote Sensing, 1999,37(5):2609-2617.
    39) Gorden W. Far field approximations to the Kirchhoff-Helmholtz representations of scattered fields. IEEE Transactions on Antennas and Propagation,1975, vol.23, no.4,590-592.
    40) Graham, L. C., Synthetic interferometer radar for topographic mapping, Proc, IEEE,,1974, 62,763-768.
    41) Griesser T, Balanis C A. Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction. IEEE Transactions on Antennas and Propagation. 1987,vol.35,no.10,1137-1147.
    42) GriesserT,BalanisCA,LiuK. RCS analysis and reduction for lossy dihedral corner reflectors. Proceedings of IEEE,1991,77(6):806-814.
    43) Hao Ling, Richee Chou, Shungwu Lee. Shooting and bouncing rays:calculating the RCS of an arbitrarily shaped cavity, IEEE Transactions on Antennas and Propagation, 1989,37(2):194-205.
    44) HAO Lu, WU Jia-sheng. RCS Reduction of Airborne Dispenser. Journal of Beijing Institute of Technology (English Edition).2004,vol.13, (S),58-62.
    45) Hayashi K., Sato R., Yamaguchi Y., Yamada H. Polarimetric scattering analysis for a finite dihedral corner reflector, IEICE Transactions on Communications,2006,E89B(1):191-195.
    46) HU Chu-feng, XU Jia-dong, LI Nan-jing, et al. Signal processing techniques in high-resolution RCS measurement system.2009 4th IEEE Conference on Industrial Electronics and Applications. IEEE.2009:586-588.
    47) Interferograms, IEEE Transactions on Geoscience and Remote Sensing. November 2002, Vol. 40,No.11,2375-2383.
    48) Just D; Bamler R. Phase statistics of interferograms with applications to synthetic aperture radar. Applied Optics,1994, vol.33, no.20,4361-4368.
    49) Keen, K.M. New technique for the evaluation of the scattering cross-sections of radar comer reflectors. IEE Proceedings H (Microwaves, Optics and Antennas),1983, vol.130, no.5, 322-326.
    50) Kennaugh E M, Moffatt D L. Transient and impulse response approximations. Proceedings of the IEEE,1965,53(8),893-901.
    51) Kimura, Hiroshi, Kinoshita, et al. Experimental analysis of differential SAR interferometry. International Geoscience and Remote Sensing Symposium (IGARSS),1999, V5,2404-2406.
    52) Knott E F etc.. Radar Cross Section:its prediction-, measurement and reduction, Artech Deharm, MA,1985:55-60.
    53) Knott E F.RCS reduction of dihedral corners. IEEE TRANS,1997,25:406-409
    54) Kusano S; Sato M. Evaluation of Trihedral Corner Reflector for SAR Polarimetric Calibration. IEICE Transaction on Electronics,2009, vol.E29C, no.1,112-115.
    55) Kuwano, S.; Kitaide, T.; Kokubun, K. Microwave power absorption in a human model near a corner reflector. Transactions of the Institute of Electronics, Information and Communication Engineers B-Ⅱ,1998,voI.J81B-Ⅱ, No.6,643-650.
    56) L. Sevgi. Target reflectivity and RCS interaction in integrated maritime surveillance systems based on surface wave HF radars. IEEE Antennas and Propagation Magazine, Feb. 2001.Vol.43, No.1,36-51.
    57) Ling H, Lee S W, ChouR. High-frequency RCS of open cavities with rectangular and circular cross sections. IEEE Trans.on AP,1989.37(5):648-654.
    58) Ling, R. Chou, and S. W. Lee. Shooting and bouncing rays:Calculating the RCS of an arbitrary shaped cavity. IEEE Trans Antennas Propagat., Feb.1989,vol.37,194-205.
    59) M. Cakir, G.Cakir, L.Sevgi. Parallel FDTD-based radar cross section (RCS) simulations. in Fifth International Conference on Electrical and Electronics Engineering (ELECO 2007), Dec 5-9,2007, Bursa, Turkey.
    60) Ma Yunhui. Calculation of the scattered field from a 2-D perfectly conducting dihedral corner reflector. Journal of Microwaves,2000,16(2),193-197.
    61) Maffett Andrew Lewis.Topic for a Statistical Description of RCS[M].N Y:John Wiley&Sons Inc,1989.
    62) Massonet, D,1993.The displacement field of the Landers earthquake Mapped by Radar Interferometry.Nature,364,138-142.
    63) Massonnet D, Feigl K, Rossi M, et al. Radar Interferomic mapping of deformation in the year after the Landers Earthquake. Nature,1994,369:227-230.
    64) Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers Earthquake mapped by radar interferometry. Nature,1993,364:138-142.
    65) Michael A; Richards; Keith D. Trott. A physical optics approximation to the range profile signature of a dihedral corner reflector. IEEE transactions on electromagnetic compatibility, 1995, vol.37, no.3,478-481.
    66) Michael. A closed form physical theory of diffraction solution for electromagnetic scattering by strips and 90 dihedrals, Radio Sci., Mar./Apr.1984, vol.19,609-616.
    67) Michaeli A. Elimination of infinites in equivalent edge currents, Part Ⅰ:fringe current components. IEEE Trans.1986, vol.34, no.7,912-918.
    68) Pastore, L.; Cantalloube, H.; Daout, F. Under foliage observation of corner reflectors and commodity trucks with a full polarimetric UHF SAR. Proceedings 4th European Conference on Synthetic Aperture Radar, Cologne, Germany,4-6 June 2002,61-64.
    69) Pathak, Techniques for high-frequency problems," in Antennas Handbook, Y. T. Lo and S. W. Lee, Eds. New York:Van Nostrand Reinhold,1988,4.102-4.115.
    70) Perissin, C. Prati, M. Engdahl, Y.-L. Desnos.Validating the SAR wave-number shift principle with
    71) Perissin, F. Rocca. High accuracy urban DEM using Permanent Scatterers. IEEE TGARS, 2006, Volume 44, Issue11:3338-3347.
    72) Polyca ipou A C, Balannis C A. A New Approach to improve RCS Patterns of Trihedral Corner Reflectors. IEEE,2009,3:2299-2301.
    73) Proceedings IEEE Special Issue on Radar Cross Section.1989(5).
    74) Proceedings IEEE Special Issue on Radar.1985 (2).
    75) Pulliainen, J. T. Backscattering properties of boreal forests at the C-and X-band, IEEE Transaction on Geoscience and Remote Sensing 1994, (32):1041-1050.
    76) Richards, M.A.; Trott, K.D. A physical optics approximation to the range profile signature of a dihedral corner reflector. IEEE Transactions on Electromagnetic Compatibility,1995vol.37, no.3,478-481.
    77) Ross, R. A., and M. E. Bechtel:Radar Cross Section Prediction Using the Geometrical Theory of Diffraction, IEEE Int. Antenna Propagat. Symp. Dig.,1966,18-23.
    78) Ruck G T, et al. RCS Handbook[M]. NY:Pknum Press,1970..
    79) S. Fujiwara,P A,Rosen,M.Tobita and M. Murakani Crustal deformation measurements using repeat pass JERS-1 synthetic aperture radar interferometry near Izu peninsula. Japan. J.Geophys.Res.1998,103 (B2):2411-2426.
    80) Sakurai-Amano, T.; Kobayashi, S.; Fujii, N. Detection of singular corner reflectors in residential and mountainous areas from SAR images. IEEE 1999 International Geoscience and Remote Sensing Symposium,,Hamburg, Germany,28 June-2 July 1999,vol.2, 1454-1456.
    81) Satake M, Kobayshi, T; Manabe, T; Masuko, H. Polarimetric calibration of X-band airborne synthetic aperture radar using corner reflectors and an active radar calibrator.1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Seattle, WA, USA, 6-10 July 1998vol.2,660-662.
    82) Satake, M.; Umehara, T.; Kobayashi, T.; Nadai, A.; Matsuoka, T.; Uratsuka, S. Corner reflectors' responses observed by X-band polarimetric airborne synthetic aperture radar. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany,28 June-2 July 1999,vol.5,2667-2669.
    83) Shi Z D. Effects of variance in the size of the scatter on its RCS.Microwave and Optical Technology Letter,1993,6(5):301-304.
    84) Sigismondi, S. An automatic method for determining the cross section of a trihedral corner reflector in SAR images.1995 International Geoscience and Remote Sensing Symposium, Firenze, Italy,10-14 July 1995,vol.1,83-84.
    85) Skolnik M I.雷达手册[M].王军,等译.北京:电子工业出出版社,2003.
    86) Strozzi T, Wegmuller U, Tosi L, Bitelli G, Spreckels V. Land subsidence monitoring with differential SAR interferometry. Photegrametric Engineering and Remote Sensing,2001, vol.67, no.11,1261-1270.
    87) Toshimi Mizuno, Makoto YAMANE; "The applications of hi-precision measuring technique using InSAR technology in Japan" EIT-JAPANAIT Joint Workshop, Bangkok, Kingdom of Thailand, September 21,2004.
    88) W. C. Anderson.Consequences of nonorthogonality on the scattering properties of dihedral corner reflectors. IEEE Trans. AntennasPropagat, Oct.1987.vol. AP-35,1154-1159.
    89) Wright, T J, et al. Toward mapping surface deformation in three dimensions using InSAR. GEOPHYICAL RESEARCH LETTERS,2004,31:L016071.
    90) Xia Y., Kaufinann H., Guo X. F., Differential SAR interferometry using comer reflectors. 2002,IGARSS'02,2,1243-1246.
    91) Xia, Y., Kaufinann, H., and Guo, X.F. Landslide monitoring in the Three Georges Area using D-InSAR and corner reflectors. Photogrammetric Engineering and Remote Sensing.2004, 70(10):1167-1172.
    92) Xiaoqing Wu, Karl-Heinz Thiel, Aloysius Wehr.The Effects of different Land Covers on the Accuracy of Interferometric DEM. FRINGE 96.1996.
    93) Yin H C, et al. PO Solution for Scattering by Complex Object Coated with Anisotropic Materials. Journal of Systems Engineering and Electronics.2003,14(2):1-7.
    94) Youssef N N. Radar cross section of complex targets. Proceedings of the IEEE.1989,77(5):722-734.
    95) Youssef Nazih N. RCS of complex targets. Proceedings of The IEEE,1989,77(5):722-734.
    96) Zebker, H.A., P.A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, Journal of Geophysical Research, 1997,102 (B4):7547-7563.
    97) Zheng-She Liu; Jian Li. Feature extraction of a single dihedral reflector from SAR data.1997 IEEE International Conference on Acoustics, Speech and Signal Processing, Munich, Germany, April 1997, vol.5,4133-4136.
    98) Zhong Lu, Charles Wicks, Daniel Dzurisin, et al. A seismic inflation of West Dahl volcano, A laska, revealed by satellite radar interferometry. Geophysical Research Letters.2000.27 (11):1567-1570.
    99)陈光保.GPS技术监测地壳运动的新进展.西北地震学报,2009,31(3):302-310.
    100)陈振华,才长帅,李光伟.三角形角反射器的时域有限差分法分析.微计算机信息,2007,(29):53-54.
    101)谌华CRInSAR大气校正模型研究及初步应用[D].中国地震局地质研究所硕士学位论文,2006.
    102)程滔.CR, PS干涉形变测量联合解算算法研究与应用[D].中国地震局地质研究所硕士学位论文,2007.
    103)单新建,马瑾,王长林,柳稼航,宋晓宇,张桂芳.利用星载一技术获取的地表形变场提取玛尼地震震源断层参数,中国科学,2002,32(10):837-844.
    104)单新建,叶洪.干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用.地震学报,1998,20(6):647-655.
    105)丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2002.
    106)范景辉.基于相干目标的D-InSAR技术地表形变监测研究与应用[D].中科院研究生院博士学位论文,2008.
    107)范菊红,王月青.二面角反射器的RCS特性分析[J].舰船电子工程,2006,26(2):148-150.
    108)方仲景,程绍平,冉勇康等.延怀盆地构造及其晚第四纪断裂运动的某些特征.地球物理学进展,1993,8(4):265-276.
    109)方重华,赵晓楠,刘倩.改进的物理光学法分析远场目标的电磁散射特性.微波学报,2008,(04):118-121.
    110)傅文学,田庆久,郭小方,工黎明技术及其在地表形变监测中的应用现状与发展[J].地球科学进展,2006,21(11):1193-1198.
    111)顾俊,戴飞.一种电大尺寸涂覆目标RCS的算法.微波科学.2010.40-43.
    112)郭阳,龚书喜.基于UG建模、PO方法的电大尺寸目标RCS计算技术.空间电子技术,2006,(S1).105-108.
    113)韩明华,袁乃昌.基于物理光学方法二面角反射器一维距离像特征信号计算.国防科技大学学报,1999(5):66-68.
    114)韩明华.光学区复杂目标RCS特征信号计算及实验研究[D].国防科技大学硕士论文,1999.
    115)黄培康,殷红成,许小剑编著.雷达目标特性[M].北京:电子工业出版社,2010.
    116)黄培康.雷达目标特征信号[M].北京:宇航出版社,1993.
    117)姜山,王国栋,王化深.三角形三面角反射器加工公差对其单站RCS影响研究.航空兵器,2006(4):24-27.
    118)克拉特E F.雷达散射截面—预估、测量和减缩[M].北京:电子工业出版社,1988.
    119)李建周.雷达散射截面算法的研究及应用[D].西安:西北工业大学,2002.
    120)李稳,张元生,何斌.地震波到时与视出射角联合定位方法研究[J].西北地震学报.2009,31(3):207-210.
    121)李柱贞等.雷达散射截面常用计算方法.北京:目标特性研究编辑部,1981.
    122)廖明生,林晖.雷达干涉测量学:原理与信号处理基础[M].北京:测绘出版社,2003.
    123)刘海红.物理光学法在雷达散射场计算中的应用.中国高新技术企业.2008.18:67-69.
    124)刘松华;郭立新.电大目标RCS的高频计算方法.微波学报,2010.S1:105-108.
    125)刘艳,刘经南,李陶等.利用高分辨率SAR卫星监测灾害条件下电网铁塔形变.武汉大学学报(信息科学版),2009,34(11):1354-1359.
    126)孟敏,聂在平.超大电尺寸目标的物理光学高效算法分析.电子科技大学学报,2004.33(5):507-510.
    127)莫锦军,袁乃昌.SAR校准常用参考目标分析与比较.无线电工程,1999,29(5):1-4,44.
    128)冉勇康,方仲景,李志义等.怀来—涿鹿盆地周缘的活动断裂及其基本特征.国家地震局地质研究所编.活动断裂研究(1).1991,北京:地震出版社.
    129)阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.
    130)时振栋,刘宏伟,唐璞.基本散射体的散射规律.电子科技大学学报,1995,24(增刊):6 —9.
    131)时振栋,唐璞等.基本散射体RCS的分析和综合.应用科学学报,2003,Vol.21,No.4:331-333
    132)舒宁.微波遥感原理[M].武汉:武汉大学出版社,2000.
    133)舒宁雷达遥感原理[M].北京:科学出版社,1997.
    134)斯科尔尼克MI主编,谢卓译.雷达手册[M].第二分册.北京:国防工业出版社,1974.
    135)苏东林,李建辉,韩学文,李青.一种确定目标强散射区的方法.北京航空航天大学学报,1998.Vol.24No.1:13-15.
    136)唐璞,时振栋,钟碧华,等.抛物面天线的雷达散射截面.电波科学学报,2001,16(增刊):94—96.
    137)涂鹏飞,谌华,甘卫军.应用CRInSAR技术监测三峡库区滑坡形变.大地测量与地球动力学.2010. Vol.30Supp. (1):126-128.
    138)汪茂光.几何绕射理论[M].西安:西北电讯工程学院出版杜,1985.
    139)王超,张红,刘智星.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    140)王继学.星载合成孔径雷达的现状与发展.上海航天,2002,18(6):50-57.
    141)王志勇,刘磊,周兴东.利用合成孔径雷达差分干涉测量技术监测伊朗Bam地震同震形变场.西北地震学报,2008,30(4):310-316.
    142)吴先良.三面角反射器多次散射图形电磁计算.安徽大学学报(自然科学版),2000, Vol.24, No.3:85-91.
    143)吴子荣,袁宝印,孙建中等.延怀盆地新构造与地震.地震地质,1979,1(2):46-55.
    144)薛洪新,沈卫东,刘选俊,邵锦萍.强散射体的RCS分析.光电技术应用,2008,23(4):14-17
    145)袁礼海,葛家龙,江凯,张长耀.SAR辐射定标精度设计与分析.雷达科学与技术,2009,7(1):35-39.
    146)袁孝康.星载合成孔径雷达的辐射校准.上海航天,1998,15(4):13-19.
    147)张景发,龚利霞,姜文亮.PS InSMR技术在地壳长期缓慢形变监测中的应用[J].国际地震动态,2006(6):1-6.
    148)张拴宏,纪占胜.合成孔径雷达干涉测量(Ins AR)在地面形变监测中的应用[J].中国地质灾害与防治学报,2004,15(1):112-117.
    149)张婷,张鹏飞,曾琪明.SAR定标中角反射器的研究.遥感应用.2010.3:38-43.
    150)张先康,王椿镛,刘国栋等.延庆—怀来地区地壳细结构—利用深地震反射剖面.地球物理学报,1995,39(3):356-363.
    151)张晓燕,盛新庆.介质粗糙面上目标后向散射的高效混合算法.北京理工大学学报.2010,30(4):460-463.
    152)张月华,王润峰.星载雷达干涉测量中角反射器的设计和安装.测绘通报,2007(6):37-39.
    153)赵超英,张勤,丁晓利等.利用InSAR技术定位西安活动地裂缝.武汉大学学报(信息科学 版),2009,34(7):809-813.
    154)赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    155)周力行.二面角反射器的RCS预估.长沙电力学院学报(自然科学版)1997, Vol.12 No.3:276-279.
    156)朱淑梅.基于电大尺寸物体的有限元/物理光学方法比较.电子测试.2007,(10),35-37.
    157)朱武,张勤,赵超英,等.基于CR-InSAR的西安地裂缝监测研究.大地测量学与地球动力学,2010,30(6):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700