用户名: 密码: 验证码:
分布式信号源参数估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在阵列信号处理中,由于复杂环境下的散射、反射、衍射及折射等原因造成信号源在空间发生一定的角度扩展,此时需采用参数化的分布式信号源模型进行处理。与点源模型相比,分布式信号源模型的待估计参量维数增加,计算复杂度高,并且通常要求分布源的分布函数精确已知,因此有必要研究对分布函数不敏感的低复杂度参数估计算法。针对上述问题,本文在对现有的分布源参数估计算法进行理论分析的基础上,重点研究了相干、非相干和复合式分布源参数估计技术,并提出了相应的参数估计算法,主要研究内容和成果如下:
     1.研究了一维相干分布源参数估计问题。对于相干分布源的参数估计问题,通常采用的是子空间类算法。首先针对子空间类算法需要二维搜索,计算复杂度较高的问题,给出了一种基于Root-MUSIC的低复杂度相干分布源参数估计算法。然后基于分布源中心DOA和角度扩展存在的空间稀疏特性,提出了一种相干分布源中心DOA和角度扩展去耦估计算法。该算法在低信噪比、小快拍数时估计性能良好,能够分辨出来向相近的两个相干分布源,并且在估计分布源中心DOA时无需分布函数的先验信息,能用于多个分布源具有不同分布函数的情况。
     2.研究了二维相干分布源参数估计问题,由于二维相干分布源需利用四维参数进行描述,通常具有较高的计算复杂度。本文基于空间频率近似模型,给出了两种低复杂度的二维相干分布源参数估计算法。首先将高阶累积量应用于二维相干分布源参数估计中,直接估计得到分布源的中心DOA和角度扩展。该算法无需谱峰搜索,计算复杂度低,并且不受阵型限制。然后将虚拟内插技术推广应用至二维相干分布源中,该算法将二维搜索转化为一维搜索,有效地降低了算法计算复杂度。并且这两种低复杂度二维相干分布源在估计分布源中心DOA时均无需相干分布源角信号密度函数精确已知,且可用于多个分布源具有不同分布函数的情况。
     3.研究了一维非相干分布源参数估计问题。由于阵列无噪协方差矩阵的秩通常大于分布源个数,此时子空间类的算法不再适用。首先利用非相干分布源无噪协方差矩阵的相位信息仅受分布源中心DOA影响的特性,提出了一种非相干分布源中心DOA和角度扩展去耦估计方法。该算法在低信噪比、小快拍数时具有较好的参数估计性能,并且具有极好的分辨率。然后基于阵列无噪协方差矩阵和伪噪声子空间之间的正交性,提出了一种基于二阶锥规划的非相干分布源参数估计算法。该算法将二维搜索问题转化为一维搜索,具有较低的计算复杂度,且对分布函数误差具有稳健性。这两种非相干分布源参数估计算法在非相干分布源的角功率密度函数未知均能估计得到分布源的中心DOA,且可用于多个非相干分布源分布类型不同的情况。
     4.研究了二维非相干分布源参数估计问题。与二维相干分布源类似,二维非相干分布源同样利用四维参数进行描述,在参数估计时涉及高维的非线性优化,计算量巨大。针对这个问题,提出了两种低复杂度的二维非相干分布源参数估计算法。首先将一维非相干分布源参数估计中的协方差矩阵匹配法推广应用于二维非相干分布源中,该算法无需谱峰搜索,仅需几次迭代就能估计得到分布源的二维中心DOA,具有较低的计算复杂度。然后提出了一种二维非相干分布源中心DOA和角度扩展去耦估计算法。该算法将四维搜索问题转化为两个二维搜索问题,有效地降低了计算复杂度。上述两种低复杂度的二维非相干分布源参数估计算法均不受阵型限制,并且在估计非相干分布源二维中心DOA时无需角功率密度函数的先验信息,适用于多个不同类型分布源同时存在的情况。
     5.研究了复合式分布源参数估计问题。首先统一了相干分布源和非相干分布源的表示模型,然后提出了一种复合式分布源参数估计算法。该算法实现了相干分布源和非相干分布源并存时的参数估计,并在估计分布源中心DOA时无需分布源的角信号密度函数或角功率密度函数精确已知。
In the field of array signal processing, as a result of dispersion, reflection, diffraction andrefraction under complicated circumstance, impinging sources will bring about angular spreadand therefore have more complex spatial distribution characteristics than point sources. So aparameterized distributed sources model is needed. Compared with point source model,distributed source model has a higher dimension of parameters, a larger computation complexityand demands an accurate acknowledgement of distribution function of distributed sources.Consequently, it is necessary to study low complexity estimation algorithms which are notsensitive to distribution function. Take above problems into consideration, this paper makes adeep study on parameters estimation algorithms for coherent, incoherent and compositedistributed sources. The main research content is as follows:
     Parameter estimation algorithms for one-dimensional coherent distributed sources arestudied. Subspace-based methods are often used to settle the estimation problem of coherentdistributed sources. So, a low complexity estimation method based on Root-MUSIC is proposedfirstly. Then, on the basis of space sparsity that exists in both central DOAs and angular spread, adecoupled estimation algorithm is given. This algorithm displays a nice performance under lowsignal-to-noise ratio (SNR) as well as under small snapshot and could distinguish closed-placeddistributed sources. Furthermore, it does not need transcendent information of distributionfunction and is suitable for distributed sources with different distribution functions.
     The parameters estimation algorithms for two-dimensional coherent distributed sources areresearched. Because two-dimensional coherent distributed source is described usingfour-dimensional parameters, it has a high computation burden. Based on space frequencyapproximation model, two low complexity estimation algorithms for two-dimensional coherentdistributed sources are proposed. Firstly, cumulants is used in the estimation for two-dimensionalcoherent distributed sources. It asks for no peak search, has low complexity and has no bearingupon array structure. Then the application of interpolation array in the distributed source modelis also validated. The algorithm possesses a low-complexity through converting two-dimensionalsearch into one-dimensional search. The above two low complexity algorithms do not need theacknowledgement of accuracy angle weighting function of coherent distributed sources, so theyare suitable for multi sources with different distribution functions.
     The parameters estimation algorithms for one-dimensional incoherent distributed sourcesare researched. Because the rank of noise-free covariance matrix is greater than the number ofdistributed sources, subspace based algorithms are no more applicable. Firstly, on the basis of the characteristic that the phase information of covariance matrix of distributed sources only hasrelation to the nominal DOAs of distributed sources, a kind of decoupled estimation algorithm,mis proposed. This algorithm could estimates effectively nominal DOAs and angle spread ofincoherent distributed sources. Moreover, it shows very nice estimation performance as well asresolving power under low SNR and small snapshot. Then considering the orthogonalityproperty between noise-free covariance matrix and pseudonoise subspace, a kind of SOCP basedestimation algorithm for incoherent distributed sources is presented. This algorithm convertstwo-dimensional search to one-dimensional search. it has low-complexity and robust todistribution function error. Both of the two methods mentioned above can achieve the estimationfor nominal DOAs of distributed sources without the acknowledgement of angular power densityfunction of incoherent distributed sources, and they are both suitable for multi incoherentdistributed sources with different distribution type.
     The parameters estimation algorithms for two-dimensional incoherent distributed sourcesare researched. Two-dimensional incoherent distributed sources are similarly described usingfour-dimensional parameters, which results in a high computation burden due to high dimensionnonlinear optimization. In order to reduce the complexity, two low-complexity estimationalgorithms for two-dimensional incoherent distributed sources are proposed. Firstly, covariancematching estimator used in the estimation for one-dimensional incoherent distributed sources isextended to two-dimensional incoherent distributed sources. The algorithm only needs severaliterations to obtain the nominal DOAs of distributed sources without peak search, so it has a lowcomplexity. Then, a decoupled estimation algorithm for nominal DOAs of two-dimensionalincoherent distributed source is proposed based on the orthogonality property between noise-freecovariance matrix and pseudonoise subspace. In the proposed algorithm, four-dimensional searchis transformed into twice two-dimensional search, which effectively reduces the complexity. Thetwo low complexity algorithms mentioned above are both independent of array structure, andbecause it dose not need the acknowledgement of acknowledgement of angular power densityfunction of incoherent distributed sources, they are also suitable for multi distributed sources ofdifferent types.
     The parameters estimation algorithm for composite distributed source is studied. Firstly,composite signal models of incoherent distributed sources and coherent distributed sources areunified, and a parameters estimation algorithm for composite distributed source is introduced.This algorithm realizes the estimation for both incoherent and coherent distributed sources at thesame time, and the acknowledgement of angular signal density function and angular powerdensity function is not necessary while during the estimation for nominal DOAs of distributedsources.
引文
[1] Krim H, Viberg M. Two decades of array and signal processing: The parametric approach[J]. IEEESignal Processing Magazine,1996,6:67-94.
    [2] Vaccaro R J. The past, present, and future of underwater acoustic signal processing[J]. IEEE SignalProcessing Magazine,1998,15(4):21-51.
    [3] Winters J H. Smart antennas for wireless system[J]. IEEE Personal Communication,1998,5(1):23-27.
    [4] Chen T. Highlights of statistical signal and array processing[J]. IEEE Signal Processing Magazine,1998,9:21-64.
    [5] Johnson J T. A numerical study of scattering from an object above a rough surface[J]. IEEE Transactionson Antennas Propagation,2002,50(10):1361-1367.
    [6] Narengo E A, Gruber F K, Simonetti F. Time-reversal MUSIC imaging of extended targets[J]. IEEETransactions on Image Processing,2007,16(8):1967-1984.
    [7] Pesavento M, Gershman A B, Haardt M. Unitary Root-MUSIC with a real-valued eigendecomposition:A theoretical and experimental performance study[J]. IEEE Transactions on Signal Processing,2000,48(5):1306-1314.
    [8] Gao F F, Gershman A B. A generalized ESPRIT approach to direction-of-arrival estimation[J]. IEEESignal Processing Letters,2005,12(3):254-257.
    [9] Beck A, Stoica P, Li J. Exact and approximate solutions of source localization problems[J]. IEEETransactions on Signal Processing,2008,56(5):1770-1778.
    [10] Yardibi T, Li J, Stoica P, et al. Source localization and sensing: a nonparametric iterative adaptiveapproach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):425-443.
    [11] Zetterberg P, Ottersten B. The spectrum efficiency of a base station antenna array for spatially selectivetransmission[J]. IEEE Transaction on Vehicular Technique,1995,44(3):651-660.
    [12] Goldberg J M, Fonolloca J R. Down-link beam-forming for spatially distributed sources in cellularmobile communications[J]. Signal Processing,1998,65:181-197.
    [13] Asztely D, Ottersten B, Swindlehurst A L. Generalized array manifold for wireless communicationchannels with local scattering[J]. IEE Processing-F,1998,145(1):51-57.
    [14] Meng Y, Wong K M, Wu Q. Estimation of the direction of arrival of spread source in sensor arrayprocessing[J]. Processing ICSP,1993(10):430-434.
    [15] Meng Y, Stoica P, Wong K M. Estimation of the direction of arrival spatially dispersed signals in arrayprocessing. IEE Processing-F,1996,43(1):1-9.
    [16] Monakov A A. Observation of extended targets with antenna arrays[J]. IEEE Transactions on Aerospaceand Electronic Systems,2000,36(1):297-302.
    [17] Lee Y U, Lee S R, Kim H M, et al. Estimation of direction of arrival for angle-perturbed sources[J].IEICE Transactions on Fundamentals,1997, E80A(1):109-117.
    [18] Jantti T P. The influence of the extended sources on the theoretieal performance of MUSIC and ESPRITmethod: narrow-band sources[C]. Processing of ICASSP,1992,3: Ⅱ-429-Ⅱ-432.
    [19] Astely D, Ottersten B. The effect of local scattering on direction of arrival estimation with MUSIC andESPRIT[C]. ICASSP,1998,5:3333-3336.
    [20] Tabrikian J, Messer H. Robust localization of scattered sources[C]. Processing of IEEE Workshop onStatistical Signal and Array Processing,2000,453-457.
    [21] Gershman A B, Mecklenbrauker C F, Bohme J F. Direction finding with imperfect wavefornt coherence:a matrix fitting approach using genetic algorithm. ICASSP,1997,1:519-522.
    [22] Stoica P, Besson O, Gershman A B. Direction-of-arrival estimation of an amplitude-distortedwavefornt[J]. IEEE Transactions on Signal Processing,2001,49(2):269-276.
    [23] Wu Q, Wong K M, Meng Y. DOA estimation of point and scattered sources-Vec-MUSIC[C]. Processingof IEEE Workshop on Statistical Signal and Array Processing,1994:365-368.
    [24] Valaee S, Champagne B, Kabal P. Parametric localization of distributed sources[J]. IEEE Transactionson Signal Processing,1995,43(9):2144-2153.
    [25] Astely D, Ottersten A L, Swindlehurst A L. Generalized array manifold model for wirelesscommunication channels with local scattering[J]. IET Radar Sonar Navigation,1998,145(1):51-57.
    [26] Astely D, Ottersten B. The effects of local scattering on direction of arrival estimation with MUSIC[J].IEEE Transaction on Signal Processing,1999,47(12):3220-3234.
    [27] Raich R, Goldberg J, Messer H. Bearing estimation for a distributed source: modeling, inherentaccuracy limitations and algorithms[J]. IEEE Transactions on Signal Processing,2000,48(2):429-441.
    [28] Bengtsson M, Ottersten M. Rooting techniques for estimation of angular spread with an antennaarray[C]. Vehicular Technology Conference,1997,2:1158-1162.
    [29] Bengtsson M, Ottersten M. Low complexity estimation for distributed sources[J]. IEEE Transaction onSignal Processing,2000,48(8):2185-2194.
    [30] Bengtsson M. Antenna array processing for high rank data models[D]. Stockholm, Sweden: RoyalInstitute of Technology,1999.
    [31]刘申建.空间分布源波达方向估计及其性能分析研究[D].北京:清华大学,2003.
    [32] Kikuchi S, Tsuji H, Sano A. Direction-of-arrival estimation for spatially non-symmetric distributedsources[J]. IEEE Sensor Array and Multichannel Signal Processing Workshop,2004,589-593.
    [33]李强.分布源目标方位估计研究[D].西安,西北工业大学,2007.
    [34] Lee S R, Song I, Lee Y U, et al. Estimation of two dimensional DOA under a distributed model andsome simulations results[J]. IEICE Transactions on Fundamentals,1996, E79A(9):1475-1485.
    [35] Lee J S, Wilkinson P, Manikas A. Blind multiuser vector channel estimation for space-time distributedsignals[C]. ICASSP,2000,5:3061-3064.
    [36] Ghogho M, Durrani T S. Broadband direction of arrival estimation in presence of angular spread[J].Electronics Letters,2001,37(15):986-987.
    [37] Fuks G, Goldberg J, Messor H. Bearing estimation in a Ricean channel-Part1: inherent accuracylimitations[J]. IEEE Transactions on Signal Processing,2001,9(5):925-937.
    [38] Jeong J S, Sakaguchi K, Takada J, et al. Performance of MUSIC and ESPRIT for joint estimation ofDOA and angular spread in slow fading environment[J]. IEICE Transactions on Communication,2002,E85-B(5):972-977.
    [39] Meng Y, Wong K M, Wu Q. Direction finding for point and dispersed sources-Vec-MUSIC and itsperformance[C]. ICASSP,1996,5:2908-2911.
    [40] Meng Y, Stoica P, Wong K M. Estimation of the directions of arrival of spatially dispersed signals inarray signal processing[J]. IET Radar Sonar Navigation,1996,143(2):1-9.
    [41] Bengtsson M, Ottersten B. Rooting techniques for estimation of angular spread with an antennasarray[J]. VTC,1997:1158-1162.
    [42] Bengtsson M, Volcker B. On the estimation of azimuth distributions and azimuth sprectra[J]. VTC,2001,3:1612-1615.
    [43] Lee Y U, Choi J, Song I, et al. Distributed sources modeling and direction-of-arrival estimationtechniques[J]. IEEE Transactions on Signal Processing,1997,4(45):960-969.
    [44] Bengtsson M, Ottersten B. A generalization of weighted subspace fitting to full-rank models[J]. IEEETransactions on Signal Processing,2001,49(5):1002-1012.
    [45] Shahbazpanahi S, Valaee S, Bastani M H. Distributed source localization using ESPRIT algorithm[J].IEEE Transactions on Signal Processing,2001,49(10):2169-2178.
    [46] Lee J, Song I, Kwon H, et al. Low-complexity estimation of2D DOA for coherently distributedsources[J]. Signal Processing,2003,83:1789-1802.
    [47] Zheng Z, Li G J, Teng Y L.2D DOA estimator for multiple coherently distributed sources usingmodified propagator[J]. Circuits, System&Signal Processing,2012,31:255-270.
    [48] Zheng Z, Li G J, Teng Y L. Simplified estimation of2D DOA for coherently distributed sources[J].Wireless Personal Communications,2012,62:90-922.
    [49]韩英华,汪晋宽,宋昕.相干分布式信源二维波达方向估计算法[J].电子与信息学报,2009,31(2):323-326.
    [50] Zheng Z, LI G J. Decoupled estimation of the central azimuth and elevation for an incoherentlydistributed source[J]. Energy Procedia,2011,13:4680-4687.
    [51]万群.分布式目标波达方向估计方法研究[D].成都,电子科技大学,2000.
    [52] Wan Q, Peng Y N. Low-complexity estimator for four dimensional parameters under a re-parameterizeddistributed source model[J]. IEE Proceeding, Radar, Sonar and Navigation,2001,148(6):313-317.
    [53]万群,杨万麟.一种分布式目标波达方向估计方法[J].通信学报,2001,22(2):65-70.
    [54]万群,杨万麟.一种相干信号源分布式目标波达方向[J].系统工程与电子技术,2001,23(3):8-11.
    [55]万群,彭应宁,杨万麟.单次快摄的局部散射源中心DOA估计方法[J].电子学报,2003,31(6):809-811.
    [56] Stoica P, Gershman A B. Maximum likelihood DOA estimation by data-supported grid search[J]. IEEESignal Processing Letters,1999,6:273-275.
    [57] De Maio A, Pallotta L, Farina A. Maximum likelihood estimation of a structured covariance matrixwith a condition number constraint[J]. IEEE Transactions on Signal Processing,2012,6(6):2004-3021.
    [58] Sieskul B T. An asymptotic maximum likelihood for joint estimation of nominal angles and angularspreads of multiple spatially distributed sources[J]. IEEE Transactions on Vehicular Technology,2010,59(3):1534-1538.
    [59] Tabrikian J, Messer H. Robust localization of scattered sources[J]. IEEE Workshop Statistical Signaland Array Processing,2000,453-457.
    [60] Trump T, Ottersten B. Estimation of nominal direction of arrival and angular spread using an array ofsensors. Signal Processing,1996,50(4):57-69.
    [61] Besson O, Vincent F, Stoica P. Approximate maximum likelihood estimators for array processing inmultiplicative noise environments[J]. IEEE Transactions on Signal Processing,2000,48(9):2506-2518.
    [62] Sieskul B T, Jitapunkul S. An asymptotic maximum likelihood for estimating the nominal angle of aspatially distributed source[J]. International Journal of Electronics and Conmunications,2006,60(4):279-289.
    [63] Ottersten B, Stoica P, Roy R. Covariance matching estimation techniques for array signal processingapplications[J]. Digital Signal Processing,1998,8:185-210.
    [64] Besson O, Stoica P, Gershman A B. A simple and accurate direction of arrival estimator in the case ofimperfect spatial coherence[J]. IEEE Transactions on Signal Processing,2001,49(4):730-737.
    [65] Kassem H, Forster P, Larzabal P. H. Joint mean and covariance matching estimation techniques:MCOMET[J]. ICASSP,2002,2:1157-1160.
    [66] Besson O, Stoica P. Decoupled estimation of DOA and angular spread for a spatially distributedsource[J]. IEEE Transactions on Signal Processing,2000,48(7):1872-1882.
    [67] Zoubir A, Wang Y, Charge P. On the ambiguity of COMET-EXIP algorithm for estimating a scatteredsource[C]. ICASSP,2005:941-945.
    [68] Zoubir A, Wang Y, Charge P. A modified COMET-EXIP method for estimating a scattered source[J].Signal Processing,2006,86(2):733-743.
    [69] Ghogo M, Besson O, Swami A. Estimation of directions of arrival of multiple scattered sources[J].IEEE Transactions on Signal Processing,2001,49(11):2467-2480.
    [70] Shahbazpanahi S, Valaee S, Gershman A B. A covariance fitting approach to parametric localization ofmultiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing,2004,52(3):592-600.
    [71] Boujemaa H. Extension of COMET algorithm to multiple diffuse source localization in azimuth andelevation[J]. European Transactions on Telecommunications,2006,16:557-566.
    [72] Bell K L, Trees H L. Adaptive beamforming for spatially spread sources[C]. IEEE Workshop onStatistical Signal and Array Processing,1998:1-4.
    [73] Xu X L. Spatially-spread sources and the SMVDR estimator[C]. SPAWC,2003,639-643.
    [74] Hassanien A, Shahbazpanahi S, Gershman A B. A generalized Capon estimator for localoization ofmultiple spread sources[J]. IEEE Transactions on Signal Processing,2004,51(1):280-283.
    [75] Wang Y, Zoubir A. Some new techniques of localization of spatially distributed sources[J]. ACSSC,2007:1807-1811.
    [76] Zoubir A, Wang Y. Robust generalized Capon algorithm for estimating the angular parameters ofmultiple incoherently distributed sources[J]. IET Signal Processing,2008,2(2):163-168.
    [77] Zoubir A, Wang Y. Performance analysis of the generalized beamforming estimators in the case ofcoherently distributed sources[J]. Signal Processing,2008,88:428-435.
    [78] Senst A, Rittich P S, Krause U, et al. Random beamforming in correlated MISO channels for multiusersystems[C]. International Conference on Communications,2004(5):2909-2913.
    [79] Christou C T, Jacyna G M. Simulation of the beam response of distributed signals[J]. IEEE Transactionson Signal Processing,2005,53(8):3023-3031.
    [80] Morell A, Iserte A P, Neira A P. Fuzzy inference based on beamforming[J]. Signal Processing,2005,85:2014-2029.
    [81] Liu S J, Wan Q, Peng Y N. Asymptotic performance analysis of bearing estimate for spatiallydistributed sources with finite broadband[J]. Electronics letters,2002,38(24):1600-1601.
    [82]熊维族,叶中付.一类快速的宽带分布源到达角估计算法[J].系统工程与电子技术,2004,26(5):665-667.
    [83] Friedmann J, Raich R, Goldberg J, et al. Bearing estimation for a distributed source of nonconstantmodulus-bounds and analysis[J]. IEEE Transactions on Signal Processing,2003,51(12):3027-3035.
    [84]熊维族,叶中付.极化分布源模型及角度估计[J].数据采集与处理,2004,18(3):243-248.
    [85]熊维族,叶中付.角度分布对有效子空间的影响[J].电波科学学报,2004,19(1):7-12.
    [86]熊维族,叶中付.利用电磁传感器估计分布源三维到达角[J].电路与系统学报,2004,9(4):36-41.
    [87]钱斌.分布式信号波达方向-时延联合估计算法研究[D].成都,电子科技大学,2008.
    [88] Qian B, Yang W L, Wan Q. A joint DOA and time delay estimation method for space-time coherentdistributed signals based on search[J]. Journal of Systems Engineering and Electronics,2007,18(2):341-346.
    [89] Qian B, Yang W L, Wang Q. A joint DOA and time delay estimation method for space-time coherentdistributed signals[C]. ICCCAS,2006,6:1099-1102.
    [90] Qian B, Yang W L, Wang Q. An improved2-D ESPRIT method for joint DOA-delay estimation[C].ICCCAS,2007,1:129-132.
    [91]万群,杨万麟.相干分布式目标一维波达方向估计方法[J].信号处理,2001,17(2):115-119.
    [92] Han Y H, Wang J K, Song X. A low complexity robust parameter estimator for distributed source[C].TENCON,2006:1-4.
    [93] Krim H, Forster P, Proakis J G. Operator approach to performance analysis of Root-MUSIC and rootmin-norm[J]. IEEE Transactions on Signal Processing,1992,40(7):1687:1696.
    [94] Ren Q S, Willis A J. Fast Root-MUSIC algorithm[J]. IEE Electronics Letters1997,33(6):450-451.
    [95] Selva J. Computation of spectral and Root MUSIC through real polynomial rooting[J]. IEEETransactions on Signal Processing,2005,53(5):1923-1927.
    [96] Belloni F, Richter A, Koivunen V. DOA estimation via manifold separation for arbitrary arraystructures[J]. IEEE Transaction on Signal Processing,2007,55(10):4800-4810.
    [97] Rubsamen M, Gershman A B. Direction-of-arrival estimation for nonuniform sensor arrays: Frommanifold separation to fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing,2009,57(2):588-599.
    [98] Gershman A B, Rubsamen M, Pesavento M. One-and two-dimensional direction-of-arrival estimation:an overview of search-free techniques[J]. Signal Processing,2010,90:1338-1349.
    [99] Hyder M M, Mahata K. Coherent spectral analysis of asynchronously sampled signals[J]. SignalProcessing Letters,2011,18(1):75-78.
    [100] Wohlberg B. Impaining by joint optimization of linear combinations of exemplars[J]. Signal ProcessingLetters,2011,18(1):75-78.
    [101] Yang J C, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEETransactions on Image Processing,2010,19(11):2861-2873.
    [102] Dmitry M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization withsensor arrays[J]. IEEE Transactions on Signal Processing,2005,53(8):3010-3022.
    [103] Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiple sources usingdynamic sensors arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):1754-1769.
    [104] Hu N, Ye Z F, Xu D Y, et al. A sparse recovery algorithm for DOA estimation using weighted subspacefitting[J]. Signal Processing,2012,92:2566-2570.
    [105] Blanco L, Najar M. Sparse covariance fitting for direction of arrival estimation[J]. Eurasip Journal onAdvances in Signal Processing,2012:111.
    [106] Stoica P, Babu P, Li J. SPICE: a sparse covariance-based estimation method for array processing[J].IEEE Transactions on Signal Processing,2011,59(2):629-638.
    [107] Goradnisky I F, Rao B D. Sparse signal reconstruction form limited data using FOCUSS: a re-weightedminimum norm algorithm[J]. IEEE Transactions on Signal Processing,1997,45(3):600-616.
    [108] Cotter S F, Rao B D, Engan K, et al. Sparse solutions to linear inverse problems with multiplemeasurement vectors[J]. IEEE Transactions on Signal Processing,2005,53(7):2477-2588.
    [109] He Z S, Cichicki A, Zdunek R, et al. Inproved FOCUSS method with conjugate gradient interations[J].IEEE Transactions on Signal Processing,2009,57(1):399-404.
    [110] Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming using worst-cast performanceoptimization: a solution to signal mismatch problem[J]. IEEE Transactions on Signal Processing,2003.51(2):313-324.
    [111] Dattorro J. Convex optimization Euclidean distance geometry[M]. Meboo,2005, pp214-218.
    [112] Teixiera FCA, Bergen SWA, Antoniou A. Signal recovery method for compressive sensing usingretaxation and second-order cone programming[C]. ISCAS,2011:2125-2128.
    [113] Lobo M, Vandenberghe L, Boyd S, et al. Applications of second-order cone programming[J]. LinearAlgorithm Application,1998,284:193-228.
    [114] Sturm J F. Using Sedumi1.02, A Matlab toolbox for optimization over symmetric cones[EB/OL].http://www.unimaas.nl/~sturm/papers/guide.ps.gz.
    [115] Grant M, Boyd S. CVX: MATLAB software for disciplined convex programming[EB/OL].http://cvxr.com/cvx.
    [116] Donoho D L, Huo X, Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions onInformaction Theory,2001,47(7):2845-2862.
    [117]郑植,李广军,滕云龙.基于双平行线阵的相干分布源二维DOA估计[J].电波科学学报,2010,25(6):1123-1129.
    [118]韩英华,汪晋宽,宋昕.基于L阵的分布式信源二维波达方向估计算法[J].东北大学学报,2008,29(5):677-680.
    [119]郑植.分布式信源低复杂度参数估计算法研究[D].成都,电子科技大学,2011.
    [120] Zhang G Y, Tang B. Estimation of2D-DOAs and angular spreads for coherently distributed sourcesusing cumuluants[C]. SPAWC,2007:1-5.
    [121] Dogan M, Mendel M J. Applications of cumulants to array processing Part Ⅱ: non-Gaussian noisesuppression[J]. IEEE Transactions on Signal Processing,1995,43(7):1663-1676.
    [122] Dogan M, Mendel M J. Applications of cumulants to array processing Part Ⅳ: Direction finding incoherent signals case[J]. IEEE Transactions on Signal Processing,1997,45(9):2265-2276.
    [123] Ye Z, Zhang Y. DOA estimation for non-Gaussian signals using fourth-order cumulants[J]. IETMicrowaves Antennas Propagation,2009,3(7):1069-1078.
    [124]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究[J].通信学报,2006,27(9):89-101.
    [125] Friedlander B. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactionson Aerospace and Electronic Systems[J].1992,28(2):574-587.
    [126] Weiss J A, Friedlander B. Performance analysis of spatial smoothing with interpolated arrays[J]. IEEETransactions on Signal Processing,1993,41(4):1881-1892.
    [127] Hyberg P, Jansson M, Ottersten B. Array interpolation and DOA MSE reduction[J]. IEEE Transactionson Signal Processing,2005,23912):4464-4471.
    [128] Chahine K, Baltazart V, Wang Y. Parameter estimation of dispersive media using the matrix pencilmethod with interpolated mode vectors[J]. IET Signal Processing,2011,5(4):397-406.
    [129] Weiss J A, Friedlander B, Stoica P. Direction-of-arrival estimation using MODE with interpolatedarrays[J]. IEEE Transactions on Signal Processing,1995,43(6):296-300.
    [130] Zoubir A, Wang Y, Charge P. Efficient subspace-based estimator for localization of multipleincoherently distributed sources[J]. IEEE Transactions on Signal Processing,2008,56(2):532-543.
    [131]张高毅,唐斌.非相干分布源DOA和角度扩展去耦估计方法[J].电子与信息学报,2010,32(1):98-101.
    [132]郭贤生.多阵列分布源参数估计及跟踪方法研究[D].成都,电子科技大学,2008.
    [133] Biswas P, Lian T C, Wang T C, et al. Semidefinite programming based algorithms for sensor networklocalization[J]. ACM Transactions on Sensor Networks,2006,2(2):188-220.
    [134] Gershman A B, Sidiropoulos N D, Shahbazpanahi S, et al. Convex optimization-based beamforming[J].IEEE Transactions Signal Processing Magazine,2010,27(3):62-75.
    [135] Jiang H, Li X. Applications of convex optimization[J]. IEEE Signal Processing Magazine,2010,27(3):115-127.
    [136] Luo Z Q, Ma W K, Man-Cho A, et al. Semidefinite relaxation of quadratic optimization problems[J].IEEE Signal Processing Magazine,2010,5:20-34.
    [137] Souden M, Affes S, Benesty J. A two-stage approach to estimate the angles of arrival and the angularspreads of locally scattered sources[J]. IEEE Transactions on Signal Processing,2008,56(5):1968-1983.
    [138] Xiong Y, Zhang G Y, Tang B, et al. Blind identification and DOA estimation for array sources inpresence of scattering[J]. Journal of Systems Engineering and Electronics,2011,22(3):393-397.
    [139] Cardoso J F, Souloumiac A. Blind beamforming for non Gaussian signals[J]. IEE Proceedings-F,1993,140(6):362-370.
    [140] Moreau E. A generalization of joint-diagonalization criteria for source separation[J]. IEEE Transactionson Signal Processing,2001,49(3):530-541.
    [141] Wang F X, Liu Z K, Zhang J. Nonorthogonal joint disgonalization algorithm based on trigonometricparameterization[J]. IEEE Transactions on Signal Processing,2007,55(11):5299-5308.
    [142] Chevalier P, Albera L, Comon P, et al. Comparative performance analysis of eight blind sourceseparation methods on radiocommunications signals[C]. IJCNN,2004,1:273-278.
    [143] Hyvarinen A. A fast fixed-point algorithm for independent component analysis[J]. Neural computation,1997,9(7):1483-1492.
    [144] Oja E, Yuan Z J. The FastICA algorithm revisited: convergence analysis[J]. IEEE Transactions onNeural Networks,2006,17(6):1370-1381.
    [145] Cichocki A, Douglas S C, Amari S. Robust techniques for independent component analysis(ICA) withnoisy data[J]. Neurocomputing,1998,22:113-129.
    [146] Zarzoso V, Comon P. Optimal step-size constant modulus algorithm[J]. IEEE Transactions onCommunications,2008,56(1):10-13.
    [147] Zarzoso V, Comon P. Robust independent component analysis by iterative maximization of the kurtosiscontrast with algebraic optimal step size[J]. IEEE Transactions on Neural Networks,2010,21(2):248-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700