用户名: 密码: 验证码:
基于认知的蜂窝与D2D混合网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂窝直通通信(Device-to-Device, D2D)作为一种重要的近场通信技术,已经进入LTE-Advaced系统的标化进程并将成为未来混合网络中的关键技术之一。随着移动互联网技术的发展,蜂窝网络结构已经难以适应未来无线网络应用本地化的需求,因此D2D技术成为蜂窝网络的重要补充。
     D2D通信技术在蜂窝系统基础设施支持下具有三种类型的性能增益:首先相比于蜂窝通信方式采用的上行和下行的通信方式,通过设备之间直连链路进行通信的D2D通信方式可以节省一半的资源;其次由于D2D用户彼此之间的距离很短,链路质量高,因此可以提供高传输速率、低时延和低功耗的数据传输服务;最后D2D用户还可以通过采用underlay的方式与蜂窝系统共存,复用蜂窝用户频谱资源,并通过空间复用进一步提高系统频谱资源的利用效率。除此以外,通过D2D通信方式还可以扩展蜂窝系统的覆盖以及提供更多类型的点对点通信服务。
     本文对于蜂窝与D2D通信组成的混合网络,从三个方面对D2D通信采用underlay模式复用蜂窝系统上行资源进行了研究,目标是通过网络建模评估和优化D2D通信网络容量性能,解决D2D在与蜂窝系统共存中的遇到的关键技术问题。本文的主要贡献如下:
     第一,本文研究了混合D2D通信网络容量问题。本文利用随机几何理论对蜂窝与D2D混合网络进行了建模分析,得到了在保证蜂窝用户通信质量前提下的D2D传输最大容量。与传统的Ad hoc网络容量研究相比,本文的创新点如下:首先,对于复用单一频带资源的蜂窝与D2D通信混合网络,通过优化采用蜂窝和D2D两种通信方式的用户比例得到混合网络和容量的上限。其次,将D2D用户复用单一频带的场景推广到复用多频带的场景,在保证蜂窝系统通信质量的前提下通过调整D2D用户的密度以及在各个频带的发送功率得到D2D用户在多个频带上的通信容量的上限。最后,本文利用随机几何模型分析了移动终端作为中继时为D2D通信带来的网络通信容量增益,通过推导得到了underlay模式和overlay模式下移动中继辅助的D2D通信网络容量。
     第二,本文研究并解决了D2D用户在通信过程中面临的宽带频谱感知问题。本文建立了一个以宽带抽样信号为检测对象的模型,通过综合考虑对于主用户信号的漏检和对于频谱空洞的漏检,以最小化整个频带上对于所有抽样信号的错判率为目标,设计出基于最小错判概率的最优判决门限,并给出了观测时间长度与信号检测概率和虚警概率之间的置换关系。此外,本文还讨论了噪声不确定性对于检测性能的影响,得到了噪声不确定情况下为了达到一定的检测性能需要满足的最小观测时长。基于上述理论,本文提出了一种噪声估计与信号检测的联合迭代算法,可以在信号检测的过程中进行噪声估计,仿真结果证明了算法在多种环境下的可靠性能。
     第三,本文研究了混合网络中的资源管理技术,相比于目前已有研究,本文的创新点如下:首先,在模式选择中提出了一种基于有限地理位置信息的模式选择方案,为原有的通过仿真手段展示模式选择区域的方案提供了一定的理论支撑。其次,本文研究了D2D用户采用underlay模式复用蜂窝上行链路资源时,蜂窝与D2D组成的干扰链路的协调与管理。最后,本文以最大化D2D通信容量为目标建立优化问题,通过采用拉格朗日对偶的方法得到在多个频带上最优分配D2D用户的方案,进一步的通过构造互动算法,得到同时在多个频带上分配D2D用户和发送功率的优化方案。基于上述方案,本文提出了一种在D2D用户不断建立和释放连接的动态网络环境中对于D2D用户的调度算法,仿真结论验证了算法的有效性和可靠性。
Device-to-Device (D2D) communication is an important proximity communication technology, which has been in standard process of LTE-Advanced system and it is a key technology for the future hybrid networks. Wih the development of mobile internet, the cellular network is not able to meet the requirements for the furture localizing applications and D2D technology comes to an important complement for it.
     D2D communication in cellular spectrum supported by a cellular infrastructure holds the promise of three types of gains. First, the D2D transmission can save half resource due to a single link rather than using both uplink and downlink resource when communicating via base station in the traditional cellular transmission. Second, the proximity of user equipment (UE) in the D2D communication may allow for extremely high bit rates, low delays and low power consumption. Finally, D2D communication can reuse the radio resource of cellular in underlay mode, which can further improve the spectrum efficiency by spatial multiplexing. Additionally, D2D communications may extend the cellular coverage and facilitate new types of wireless peer-to-peer services.
     In this issue, we study the hybrid networks of D2D communication underlaying cellular system from three aspects with target of solving key problems in D2D communication and optimizing the performance of D2D transmission. The main contribution of this paper shows as follows:
     Firstly, we have studied the network capacity of D2D transmission. In this paper, we model the hybrid network of cellular and D2D communication with random geometry theory and optimize the D2D capacity with guarantee of cellular user's QoS (quality of service). The main innovations in this paper show as follows:in the first, we make the sum-capacity of hybrid networks reach maximum by scheduling users according to the optimal transmission mode proportion. Then we extend the D2D user sharing single band with cellular user to the multi-bands scenario. By proper allocating D2D user and transmit power over multi-bands, we propose the upper bound of sum capacity of D2D transmission on multi-bands. Finally, we analyze the transmission capacity of D2D communication assisted by mobile relay based on stochastic geometry for the first time and present some results for it.
     Secondly, we have analyzed and solved the wide-band spectrum sensing problem faced by D2D users in the communication. In our study, we build a wide-band sampling spectrum model and design a detection method with target of minimizing the whole detection error, which overall consider the false detection probability and false alarm probability. And we also take the specification of detection and false alarm probability into account and provide the trade-off between watching time and detection performance. Besides, we discuss about the effect of noise uncertainty on the detection performance and obtain the minimum length of watching period when the peak noise uncertainty is given. Based on former results, we propose a noise-estimation and signal-detection joint iteration algorithm, which is able to evaluate the noise power during detection and the simulations demonstrate the reliability of the method over different scenarios.
     Thirdly, we have studied the resource management in the hybrid networks. Comparing with present work, the main contribution shows as follows:at first we provide a mode selection criterion based on the limited location information, which provides the theory support for the present study based on the simulation. Then we analyze the effect of cooperation between cellular and D2D links on the sum capacity of two links. Finally, we set up an optimization problem with target of maximizing D2D network capacity and solve it through Lagrangian dual method. The optimal D2D user allocation over multi-bands is derived first and then we provide an interactive method for both optimal user and power allocation over multi-bands. The simulation results demonstrate the efficiency and reliability of the algorithm.
引文
[I]Technical Specification Group SA 3rd Generation Partnership Project,3GPP TR 22.803, Feasibility Study for Proximity Services (ProSe) (Release 12), v12.0.0 (2012-12), available in http://www.3gpp.org
    [2]3GPP Contribution RP-122009, Proposed new SI:Study on LTE Device to Device Proximity Services, Qualcomm
    [3]FCC Spectrum Task Force Report[EB/OL]. http://www.fcc.gov/sptf/files/E&UWGFinalReport.pdf
    [4]David K, Dixit D, Jefferies N.2020 Vision[J]. IEEE Vehicular Technology Magazine,2010,5(3):22-29.
    [5]Mitola Ⅲ J, Maguire Jr G Q. Cognitive radio:making software radios more personal[J]. IEEE Personal Communications,1999,6(4):13-18.
    [6]Mitola J. Cognitive radio:An integrated agent architecture for software defined radio[J]. Doctor of Technology, Royal Inst. Technol.(KTH), Stockholm, Sweden, 2000:271-350.
    [7]Haykin S. Cognitive radio:brain-empowered wireless communications[J]. IEEE journal on selected areas in communications,2005,23(2):201-220.
    [8]Goldsmith A, Jafar S A, Marie I, et al. Breaking spectrum gridlock with cognitive radios:An information theoretic perspective[J]. Proceedings of the IEEE,2009, 97(5):894-914.
    [9]Akyildiz IF, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine,2002,40(8):102-114.
    [10]Grossglauser M, Tse D N C. Mobility increases the capacity of ad hoc wireless networks[J]. Ieee/Acm Transactions On Networking,2002,10(4):477-486.
    [11]Akyildiz I F, Wang X. A survey on wireless mesh networks[J]. IEEE Communications Magazine,2005,43(9):S23-S30.
    [12]Bruno R, Conti M, Gregori E. Mesh networks:commodity multihop ad hoc networks[J]. IEEE Communications Magazine,2005,43(3):123-131.
    [13]Yu C H, Tirkkonen O, Doppler K, et al. Power optimization of device-to-device communication underlaying cellular communication[C]//Proceedings of IEEE International Conference on Communications 2009 (ICC2009), Dresden, Jun. 2009:1-5.
    [14]Chiou Y S, Wang C L, Yeh S C, et al. Design of an adaptive positioning system based on WiFi radio signals[J]. Computer Communications,2009,32(7): 1245-1254.
    [15]Paul K, Varghese A, Iyer S, et al. WiFiRe:rural area broadband access using the WiFi PHY and a multisector TDD MAC[J]. IEEE Communications Magazine, 2007,45(1):111-119.
    [16]Metropolitan A. IEEE Standards for Local and Metropolitan Area Networks[J]. 1995.
    [17]Liu F, Zeng Z, Tao J, et al. Achieving QoS for IEEE 802.16 in mesh mode[C]//8th International Conference on Computer Science and Informatics, Salt Lake City, USA, References,2005,145.
    [18]Gupta P, Kumar P R. The capacity of wireless networks[J]. IEEE Transactions on Information Theory,2000,46(2):388-404.
    [19]Donald E K. The art of computer programming[J]. Sorting and searching,1999,3: 426-458.
    [20]Rappaport T S. Wireless communications:principles and practice[M]. IEEE press, 1996.
    [21]Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys & Tutorials,2009,11(1): 116-130.
    [22]Sadeghi H, Azmi P. Cyclostationarity-based cooperative spectrum sensing for cognitive radio networks[C]//IEEE International Symposium on Telecommunications 2008(IST 2008), Tehran,2008:429-434.
    [23]Urkowitz H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE,1967,55(4):523-531.
    [24]Gardner W A. Signal interception:a unifying theoretical framework for feature detection[J]. IEEE Transactions on Communications,1988,36(8):897-906.
    [25]Akyildiz I F, Lo B F, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks:A survey[J]. Physical Communication,2011,4(1):40-62.
    [26]Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
    [27]Zeng Y, Liang Y C. Covariance based signal detections for cognitive radio[C]// IEEE 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks 2007(DySPAN 2007), Dublin,2007:202-207.
    [28]IEEE Std.802.11e part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications Amendment 8:Medium Access Control (MAC) Quality of Service Enhancements,2005.
    [29]Chang R S, Chen W Y, Wen Y F. Hybrid wireless network protocols[J]. IEEE Transactions on Vehicular Technology,2003,52(4):1099-1109.
    [30]Chieu T C, Narasimhan A, O'neil G E, et al. Method and apparatus for direct communication in a TDMA radio communication system:U.S. Patent 5,515,366[P].1996-5-7.
    [31]Wellig A, Kuntze R, Salokannel J. Direct mode communication method between two mobile terminals in access point controlled wireless LAN systems:U.S. Patent 6,580,704[P].2003-6-17.
    [32]Adachi T, Nakagawa M. A Study on Channel Usage in a Cellular Ad-Hoc United Communication System for Operational Robots[J]. IEICE transactions on communications,1998,81(7):1500-1507.
    [33]Adachi T, Nakagawa M. Performance under shadowing environment of a hybrid system for mobile robots using cellular and ad-hoc modes[C]//IEEE VTS 50th Vehicular Technology Conference 1999 (VTC 1999-Fall), Amsterdam,1999,2: 1202-1206.
    [34]Michael L B, Kikuchi S, Adachi T, et al. Combined cellular/direct method of inter-vehicle communication[C]//Proceedings of the IEEE Intelligent Vehicles Symposium,2000 (IV 2000), Dearborn, MI,2000:534-539.
    [35]Lin Y D, Hsu Y C. Multihop cellular:A new architecture for wireless communications[C]//Proceedings of IEEE Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM 2000), Tel Aviv,2000,3:1273-1282.
    [36]Chang R S, Chen W Y, Wen Y F. Hybrid wireless network protocols[J]. IEEE Transactions on Vehicular Technology,2003,52(4):1099-1109.
    [37]Zemlianov A, De Veciana G. Capacity of ad hoc wireless networks with infrastructure support[J]. IEEE Journal on Selected Areas in Communications, 2005,23(3):657-667.
    [38]Bharucha Z, Haas H. Application of the TDD underlay concept to home nodeB scenario[C]//IEEE Vehicular Technology Conference 2008(VTC Spring 2008), Singapore,2008:56-60.
    [39]WANG J, XU J, LI Z, et al. METHOD AND APPARATUS FOR DEVICE-TO-DEVICE COMMUNICATION SETUP:WIPO Patent WO/2011/109941 [P].2001-9-15.
    [40]Chen T, Lu Q. AUTONOMOUS UNLICENSED BAND REUSE IN MIXED CELLULAR AND DEVICE-TO-DEVICE NETWORK:U.S. Patent Application 12/888,774[P].2010-9-23.
    [41]Fodor G, Dahlman E, Mildh G, et al. Design aspects of network assisted device-to-device communications[J]. IEEE Communications Magazine,2012, 50(3):170-177.
    [42]Doppler K, Rinne M, Wijting C, et al. Device-to-device communication as an underlay to LTE-advanced networks[J]. IEEE Communications Magazine,2009, 47(12):42-49.
    [43]ang M J, Lim S Y, Park H J, et al. Solving the data overload:Device-to-device bearer control architecture for cellular data offloading[J]. IEEE Vehicular Technology Magazine,2013.3,8(1):31-39.
    [44]Doppler K, Ribeiro C B, Kneckt J. Advances in D2D communications:Energy efficient service and device discovery radio[C]//IEEE 2011 2nd International Conference on.Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai,2011:1-6.
    [45]Lei L, Zhong Z, Lin C, et al. Operator controlled device-to-device communications in LTE-advanced networks[J]. IEEE Wireless Communications, 2012,19(3):96-104.
    [46]Doppler K, Rinne M P, Janis P, et al. Device-to-Device communications; functional prospects for LTE-Advanced networks[C]//IEEE International Conference on Communications Workshops 2009 (ICC Workshops 2009), Dresden,2009:1-6.
    [47]Seppala J, Koskela T, Chen T, et al. Network controlled Device-to-Device (D2D) and cluster multicast concept for LTE and LTE-A networks [C]//2011 IEEE Wireless Communications and Networking Conference (WCNC 2011), Cancun, Quintana Roo,2011:986-991.
    [48]Kaufman, B, Lilleberg, J, Aazhang, B, Spectrum Sharing Scheme Between Cellular Users and Ad-hoc Device-to-Device Users [J] IEEE Transactions on Wireless Communications,2013,pp(99):1-12.
    [49]Gupta P, Kumar P R. Towards an information theory of large networks:An achievable rate region[J]. IEEE Transactions on Information Theory,2003,49(8): 1877-1894.
    [50]Dousse O, Thiran P, Hasler M. Connectivity in ad-hoc and hybrid networks[C]// IEEE Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York, NY, USA,2002,2: 1079-1088.
    [51]Liu B, Liu Z, Towsley D. On the capacity of hybrid wireless networks[C]//IEEE Societies Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), San Francisco,2003,2:1543-1552.
    [52]Kozat U C, Tassiulas L. Throughput capacity of random ad hoc networks with infrastructure support[C]//Proceedings of the ACM 9th annual international conference on Mobile computing and networking, San Diego, California,2003: 55-65.
    [53]Zemlianov A, De Veciana G. Capacity of ad hoc wireless networks with infrastructure support[J]. IEEE Journal on Selected Areas in Communications, 2005,23(3):657-667.
    [54]Vu M, Devroye N, Sharif M, et al. Scaling laws of cognitive networks[C]//IEEE 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications 2007 (CrownCom 2007), Orlando, Florida U.S.A.,2007: 2-8.
    [55]Lowen S B, Teich M C. Power-law shot noise[J]. Information Theory, IEEE Transactions on,1990,36(6):1302-1318.
    [56]Win M Z, Pinto P C, Shepp L A. A mathematical theory of network interference and its applications[J]. Proceedings of the IEEE,2009,97(2):205-230.
    [57]Haenggi M, Andrews J G, Baccelli F, et al. Stochastic geometry and random graphs for the analysis and design of wireless networks [J]. IEEE Journal on Selected Areas in Communications,2009,27(7):1029-1046.
    [58]Weber S P, Yang X, Andrews J Q et al. Transmission capacity of wireless ad hoc networks with outage constraints[J]. IEEE Transactions on Information Theory, 2005,51(12):4091-4102.
    [59]Weber S P, Andrews J G, Yang X, et al. Transmission Capacity of Wireless d Hoc Networks With Successive Interference Cancellation[J]. IEEE Transactions on Information Theory,2007,53(8):2799-2814.
    [60]Weber S, Andrews J G, Jindal N. The Effect of Fading, Channel Inversion, and Threshold Scheduling on Ad Hoc Networks [J]. IEEE Transactions on Information Theory,2007,53(11):4127-4149.
    [61]Zhang X, Haenggi M. Random Power Control in Poisson Networks [J]. IEEE Transactions on Communication,2012,60(9):2602-2611.
    [62]Erturk M, Mukherjee S, Ishii H, et al. Distributions of Transmit Power and SINR in Device-to-Device Networks[J]. IEEE Communications Letters,2013,17(2): 273-276.
    [63]Tanaka A, Nakano K, Sengoku M, et al. Analysis of communication traffic characteristics of a two-hop wireless network[J]. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences,2002, 85(7):1436-1444.
    [64]Hsieh H Y, Sivakumar R. A hybrid network model for cellular wireless packet data networks[C]//IEEE Global Telecommunications Conference 2002 (GLOBECOM2002), Taipei, Taiwan,2002,1:961-966.
    [65]Frlan E. Direct communication wireless radio system:U.S. Patent 6,047,178[P]. 2000-4-4.
    [66]Adachi T, Nakagawa M. Battery consumption and handoff examination of a cellular ad-hoc united communication system for operational mobile robots[C]// IEEE The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 1998 (PIMRC1998), Boston, Massachusetts, U.S.A,1998, 3:1193-1197.
    [67]Doppler K, Yu C H, Ribeiro C B, et al. Mode selection for device-to-device communication underlaying an LTE-advanced network[C]//Wireless Communications and Networking Conference (WCNC2010), Sydney, Australia,2010:1-6.
    [68]Jung M, Hwang K, Choi S. Joint Mode Selection and Power Allocation Scheme for Power-Efficient Device-to-Device (D2D) Communication[C]//2012 IEEE 75th Vehicular Technology Conference (VTC2012-Spring), Yokohama,2012: 1-5.
    [69]Hakola S, Chen T, Lehtomaki J, et al. Device-to-device (D2D) communication in cellular network-performance analysis of optimum and practical communication mode selection[C]//2010 IEEE Wireless Communications and Networking Conference (WCNC2010), Sydney, Australia,2010:1-6.
    [70]Akkarajitsakul K, Phunchongharn P, Hossain E, et al. Mode selection for energy-efficient D2D communications in LTE-advanced networks:A coalitional game approach[C]//2012 IEEE International Conference on Communication Systems (ICCS2012), Singapore,2012:488-492.
    [71]Han M H, Kim B G, Lee J W. Subchannel and Transmission Mode Scheduling for D2D Communication in OFDMA Networks[C]//2012 IEEE Vehicular Technology Conference (VTC2012-Fall), Quebec City, QC,2012:1-5.
    [72]Xu S, Wang H. Transmission mode selection and communication establishment in the hybrid device-to-device and cellular networks[C]//IEEE 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN2012), Phuket,2012:156-161.
    [73]Chien C P, Chen Y C, Hsieh H Y. Exploiting spatial reuse gain through joint mode selection and resource allocation for underlay device-to-device communications[C]//IEEE 2012 15th International Symposium on Wireless Personal Multimedia Communications (WPMC2012), Taipei,2012:80-84.
    [74]Rego M G S, Maciel T F, Barros H H M, et al. Performance analysis of power control for device-to-device communication in cellular MIMO systems[C]//IEEE 2012 International Symposium on Wireless Communication Systems (ISWCS2012), Paris,2012:336-340.
    [75]Gu J, Bae S J, Choi B G, et al. Dynamic power control mechanism for interference coordination of device-to-device communication in cellular networks[C]//IEEE 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN2011), Dalian,2011:71-75.
    [76]Yu C H, Tirkkonen O, Doppler K, et al. On the performance of device-to-device underlay communication with simple power control [C]//IEEE 69th Vehicular Technology Conference (VTC Spring 2009), Barcelona, IEEE,2009:1-5.
    [77]Chae H S, Gu J, Choi B Q et al. Radio resource allocation scheme for device-to-device communication in cellular networks using fractional frequency reuse[C]//IEEE 2011 17th Asia-Pacific Conference on Communications (APCC), Sabah,2011:58-62.
    [78]Yu C H, Tirkkonen O, Doppler K, et al. Power optimization of device-to-device communication underlaying cellular communication[C]//IEEE International Conference on Communications (ICC2009), Dresden,2009:1-5.
    [79]Cheng P, Deng L, Yu H, et al. Resource allocation for cognitive networks with D2D communication:An evolutionary approach[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC2012), Pairs,2012: 2671-2676.
    [80]Xing H, Hakola S. The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system[C]// IEEE 2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC2010), Instanbul,2010:1775-1780.
    [81]Zulhasnine M, Huang C, Srinivasan A. Efficient resource allocation for device-to-device communication underlaying LTE network[C]//2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob2010), Niagara Falls, ON,2010:368-375.
    [82]Xu C, Song L, Han Z, et al. Interference-Aware Resource Allocation for Device-to-Device Communications as an Underlay Using Sequential Second Price Auction[C]//IEEE International Conference on Communications (ICC 2012), Ottawa, ON,2012:445-449.
    [83]Yu C H, Doppler K, Ribeiro C B, et al. Resource sharing optimization for device-to-device communication underlaying cellular networks[J]. IEEE Transactions on Wireless Communications,2011,10(8):2752-2763.
    [84]Wang B, Chen L, Chen X, et al. Resource allocation optimization for Device-to-Device communication underlaying cellular networks[C]//IEEE 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest,2011:1-6.
    [85]Xu Y, Yin R, Han T, et al. Interference-Aware Channel Allocation for Device-to-Device Communication Underlaying Cellular Networks[C]//2012 1st IEEE International Conference on Communications in China (ICCC2012), Beijing,2012:422-427.
    [86]Tsai A H, Wang L C, Huang J H, et al. Intelligent resource management for device-to-device (D2D) communications in heterogeneous networks[C]//IEEE 2012 15th International Symposium on Wireless Personal Multimedia Communications (WPMC2012), Taipei,2012:75-79.
    [87]Liu P, Hu C, Peng T, et al. Admission and power control for Device-to-Device links with quality of service protection in spectrum sharing hybrid network [C]// IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC2012), Sydney, NSW,2012:1192-1197.
    [88]Tsolkas D, Liotou E, Passas N, et al. A graph-coloring secondary resource allocation for D2D communications in LTE networks[C]//IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD2012), Barcelona,2012:56-60.
    [89]Tao X, Xiao X, Lu J. A QoS-Aware Power Optimization Scheme in OFDMA Systems with Integrated Device-to-Device (D2D) Communications [J].2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA,2011: pp.1-5.
    [90]Fodor G, Reider N. A distributed power control scheme for cellular network assisted D2D communications[C]//2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA,2011:1-6.
    [91]Zhu X, Wen S, Cao G, et al. QoS-based resource allocation scheme for Device-to-Device (D2D) radio underlaying cellular networks[C]//IEEE 2012 19th International Conference on Telecommunications (ICT2012), Jounieh,2012: 1-6.
    [92]Bao P, Yu G. An interference management strategy for device-to-device underlaying cellular networks with partial location information [C]//012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC2012), Sydney, NSW,2012:465-470.
    [93]Han T, Tin R, Xu Y, et al. Uplink channel reusing selection optimization for Device-to-Device communication underlaying cellular networks[C]//2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC2012), Sydney, NSW,2012:559-564.
    [94]Wang D, Wang X, Zhao Y. An Interference Coordination Scheme for Device-to-Device Multicast in Cellular Networks[C]//2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC,2012:1-5.
    [95]Wen S, Zhu X, Lin Z, et al. Optimization of interference coordination schemes in Device-to-Device (D2D) communication[C]//2012 7th International ICST Conference on Communications and Networking in China (CHINACOM), Kun Ming,2012:542-547.
    [96]Xu S, Wang H, Chen T, et al. Effective interference cancellation scheme for device-to-device communication underlaying cellular networks[C]//2010 IEEE 72nd. Vehicular Technology Conference Fall (VTC 2010-Fall), Ottawa, ON,2010: 1-5.
    [97]Janis P, Koivunen V, Ribeiro C B, et al. Interference-avoiding MIMO schemes for device-to-device radio underlaying cellular networks[C]//2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo,2009:2385-2389.
    [98]Wang H, Chu X. Distance-constrained resource-sharing criteria for device-to-device communications underlaying cellular networks[J]. Electronics letters,2012,48(9):528-530.
    [99]Chen T, Charbit G, Hakola S. Time hopping for device-to-device communication in LTE cellular system[C]//2010 IEEE Wireless Communications and Networking Conference (WCNC2010), Sydney, Australia,2010:1-6.
    [100]Peng T, Lu Q, Wang H, et al. Interference avoidance mechanisms in the hybrid cellular and device-to-device systems[C]//2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, 2009:617-621.
    [101]Xu S, Wang H, Chen T. Effective Interference Cancellation Mechanisms for D2D Communication in Multi-Cell Cellular Networks[C]//2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama,2012:1-5.
    [102]Min H, Seo W, Lee J, et al. Reliability improvement using receive mode selection in the device-to-device uplink period underlaying cellular networks[J]. IEEE Transactions on Wireless Communications,2011,10(2):413-418.
    [103]Yu C H, Tirkkonen O. Device-to-Device underlay cellular network based on rate splitting[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC2012), Shanghai,2012:262-266.
    [104]Qu X, Kang C G. An effective interference alignment approach for device-to-device communication underlaying multi-cell interference network[C]// IEEE 2012 International Conference on ICT Convergence (ICTC), Jeju Island, 2012:219-220.
    [105]Elkotby H E, Elsayed K M F, Ismail M H. Exploiting interference alignment for sum rate enhancement in D2D-enabled cellular networks[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC2012), Pairs, 2012:1624-1629.
    [106]Van der Meulen E C. Transmission of information in a T-terminal discrete memoryless channel[D]. University of California,1968.
    [107]Cover T, Gamal A E L. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory,1979,25(5):572-584.
    [108]Sato H. Information transmission through a channel with relay[M].1976.
    [109]Reznik A, Kulkarni S R, Verdu S. Capacity and optimal resource allocation in the degraded Gaussian relay channel with multiple relays[C]//PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING. The University; 1998,2002,40(1):377-386.
    [110]Access EUTR. Further advancements for E-UTRA physical layer aspects (Release 9)[J].2010.
    [111]Bletsas A, Khisti A, Reed D P, et al. A simple cooperative diversity method based on network path selection[J]. IEEE Journal on Selected Areas in Communications,2006,24(3):659-672.
    [112]Hasna M O, Alouini M S. End-to-end performance of transmission systems with relays over Rayleigh-fading channels[J]. IEEE Transactions on Wireless Communications,2003,2(6):1126-1131.
    [113]Host-Madsen A, Zhang J. Capacity bounds and power allocation for wireless relay channels[J]. IEEE transactions on Information Theory,2005,51(6): 2020-2040.
    [114]Hasna M O, Alouini M S. Optimal power allocation for relayed transmissions over Rayleigh-fading channels [J]. IEEE Transactions on Wireless Communications,2004,3(6):1999-2004.
    [115]Zhao Y, Adve R, Lim T J. Improving amplify-and-forward relay networks: optimal power allocation versus selection[C]//2006 IEEE International Symposium on Information Theory, Seattle, WA,2006:1234-1238.
    [116]Vanganuru K, Ferrante S, Sternberg G System capacity and coverage of a cellular network with D2D mobile relays[C]//IEEE MILITARY COMMUNICATIONS CONFERENCE 2012 (MILCOM 2012), Orlando, FL,2012:1-6.
    [117]Vanganuru K, Puzio M, Sternberg G, et al. Uplink system capacity of a cellular network with cooperative mobile relay[C]//2011. IEEE Wireless Telecommunications Symposium (WTS), New York City, NY,2011:1-7.
    [118]Lee D, Kim S I, Lee J, et al. Performance of multihop decode-and-forward relaying assisted device-to-device communication underlaying cellular networks[C]//2012 International Symposium on Information Theory and its Applications (ISITA2012), Honolulu, HI,2012:455-459.
    [119]Ma X, Yin R, Yu G, et al. A distributed relay selection method for relay assisted Device-to-Device communication system[C]//2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Pairs,2012:1020-1024.
    [120]Zhou B, Hu H, Huang S, et al. Intra-Cluster Device-to-Device Relay Algorithm with Optimal Resource Utilization[J]. IEEE Transactions on Vehicular Technology,2013, PP(99),:1-10.
    [121]Urkowitz H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE,1967,55(4):523-531.
    [122]Liang Y C, Zeng Y, Peh E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008,7(4):1326-1337.
    [123]Digham F F, Alouini M S, Simon M K. On the energy detection of unknown signals over fading channels [J]. IEEE Transactions on Communications,2007, 55(1):21-24.
    [124]潘建国,翟旭平.基于能量检测的频谱感知方法[J].上海大学学报:自然科学版,2009,15(1):54-59.
    [125]Tandra R, Sahai A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(1):4-17.
    [126]Mariani A, Giorgetti A, Chiani M. SNR wall for energy detection with noise power estimation [C]//2011 IEEE International Conference on Communications (ICC), Kyoto,2011:1-6.
    [127]Tian Z, Sadler B M. Weighted energy detection of ultra-wideband signals[C]//2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, New York, NY, USA,2005:1068-1072.
    [128]Quan Z, Cui S, Sayed A H, et al. Wideband spectrum sensing in cognitive radio networks[C]//IEEE International Conference on Communications, 2008(ICC2008), Beijing,2008:901-906.
    [129]Joshi D R, Popescu D C, Dobre O A. Adaptive spectrum sensing with noise variance estimation for dynamic cognitive radio systems[C]//2010 44th Annual Conference on Information Sciences and Systems (CISS2010), Princeton, NJ, 2010:1-5.
    [130]Lopez-Benitez M, Casadevall F. Improved energy detection spectrum sensing for cognitive radio[J]. IET Communications,2012,6(8):785-796.
    [131]Ye Z, Memik G, Grosspietsch J. Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks [C]//IEEE Wireless Communications and Networking Conference 2008 (WCNC 2008), Las Vegas, NV,2008:711-716.
    [132]Huang K, Lau V K N, Chen Y. Spectrum sharing between cellular and mobile ad hoc networks:transmission-capacity trade-off[J]. IEEE Journal on Selected Areas in Communications,2009,27(7):1256-1267.
    [133]Lee J, Lim S, Andrews J G, et al. Achievable transmission capacity of secondary system in cognitive radio networks [C]//2010 IEEE International Conference on Communications (ICC2010), Cape Town,2010:1-5.
    [134]Vaze R, Truong K T, Weber S, et al. Two-way transmission capacity of wireless ad-hoc networks[J]. IEEE Transactions on Wireless Communications, 2011,10(6):1966-1975.
    [135]Jing Y, Jafarkhani H. Single and multiple relay selection schemes and their achievable diversity orders[J]. IEEE Transactions on Wireless Communications, 2009,8(3):1414-1423.
    [136]Ibrahim A S, Sadek A K, Su W, et al. Cooperative communications with relay-selection:when to cooperate and whom to cooperate with?[J]. IEEE Transactions on Wireless Communications,2008,7(7):2814-2827.
    [137]Krikidis I, Thompson J, McLaughlin S, et al. Amplify-and-forward with partial relay selection[J]. IEEE Communications Letters,2008,12(4):235-237.
    [138]Tannious R, Nosratinia A. Spectrally-efficient relay selection with limited feedback[J]. IEEE Journal on Selected Areas in Communications,2008,26(8): 1419-1428.
    [139]Wang Y, Pedersen K I, Sorensen T B, et al. Carrier load balancing and packet scheduling for multi-carrier systems[J]. IEEE Transactions on Wireless Communications,2010,9(5):1780-1789.
    [140]Sundaram R K. A first course in optimization theory[M]. Cambridge university press,1996.
    [141]Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge university press,2004.
    [142]Stroock D W, Woyczynski W A, Hettmansperger T P, et al. Random Networks for Communication[J]. Technometrics,2011,53(4):440.
    [143]Kingman J F C. Poisson processes[M]. Oxford University Press, USA,1993.
    [144]3GPP TR36.912 V10.0.0, "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 10)," 2011-03.
    [145]Interference Constrained Relay Selection of D2D Communication for Relay Purpose Underlaying Cellular Networks
    [146]Lu Q, Wang W, Wang W, et al. Asynchronous distributed power control under interference temperature constraints[C]//IEEE Global Telecommunications Conference,2008. IEEE GLOBECOM 2008.,2008:1-5.
    [147]Fu Z X, Hu C J, Peng T, et al. Quality of service aware admission control in cognitive device-to-device network[J]. The Journal of China Universities of Posts and Telecommunications,2011,18(5):22-36.
    [148]Wang L, Peng T, Yang Y, et al. Interference Constrained Relay Selection of D2D Communication for Relay Purpose Underlaying Cellular Networks[C]// 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Shanghai, China,2012:1-5.
    [149]Yu W, Ginis G, Cioffi J M. Distributed multiuser power control for digital subscriber lines[J]. IEEE Journal on Selected Areas in Communications,2002, 20(5):1105-1115.
    [150]Gjendemsjo A, Gesbert D, Oien G E, et al. Optimal power allocation and scheduling for two-cell capacity maximization[C]//IEEE 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Paderborn, Germany,2006:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700