用户名: 密码: 验证码:
认知无线电中的频谱感知技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信的高速发展使得无线业务对无线电频谱资源有着巨大的需求。而固定的频谱分配政策导致了频谱利用率的低下。认知无线电作为一种极具发展潜力的新技术,能够极大的提升了频谱利用效率。对目标频谱进行准确有效的感知是认知无线电技术实现的基础和前提。
     本文的研究工作基于国家自然科学基金(60672132、60872149)、国家重大专项(2009ZX03002-009-01)和华为基金(SKL-2012-01-07)中关于认知无线电的部分,以及“宽频认知无线电跳频通信平台的研究设计”项目。本文深入细致的研究了认知无线电中的频谱感知技术,主要工作及创新成果如下:
     (1)本文对似然率检测(LRT)算法在低信噪比(SNR)下进行了化简,并分别在渐进与非渐进的条件下对化简后的LRT算法进行了性能的分析和性能参数的推导,在两种情况下分别推导出了化简LRT算法的性能参数的闭合表达式,并进一步提出了一种新的联合检测算法,该算法在低SNR条件下采用先能量检测后简化LRT检测的二步检测算法,在其他条件下只采用能量检测算法;最后对联合检测算法的性能进行了分析对联合检测算法的性能参数进行了推导,理论分析和仿真都证明算法性能接近LRT算法,且有较低的复杂度。
     (2)认知无线网络中协方差检测算法,比如最大最小值算法(MME)和协方差全值算法(CAV),它们的虚警概率和漏测概率均采用假设认知无线电(CR)用户天线数趋向无穷的渐进方法得到性能参数的。而在实际中天线维度和采样点数均为有限的。本文中提出了一种改进的Cholesky的协方差盲检测算法,用非渐进方法推导了检测性能参数的闭合表达式。首先对接收协方差矩阵做Cholesky分解,然后利用主用户(PU)信号与噪声信号接收矩阵分解后的矩阵非对角元素的不同检测PU信号。最后根据随机矩阵理论,推导了非渐进条件下该算法性能参数的数学表达式。分析表明所提算法无需PU信号的先验信息和信道条件信息,对不确定噪声具有很强的适应能力。相对于原有的协方差盲检测算法性能有一定的提升。
     (3)认知无线网络中PU信号与噪声信号自相关性存在差异,现有的协方差盲检测算法均只利用了协方差矩阵元素本身或者特征值的性质,而并没有利用到特征向量的性质。本文考虑CR配置多天线且天线之间存在相关性的场景,建立了一个相关多大线认知网络频谱感知模型,只选择信道条件最好的两个CR参与检测算法。利用接收协方差矩阵和噪声协方差矩阵特征向量的相关性的不同,提出了基于特征向量的全盲检测方案和已知天线相关矩阵的半盲检测方案,全盲检测利用不同CR的接收协方差矩阵中特征向量的相关性,而半盲的检测算法则利用接收协方差矩阵与己知的特征向量的相关性。并对两种算法进行了性能分析,推导出了盲算法的虚警概率和门限值的闭合表达式。分析表明所提的检测算法相比于同类的检测算法均有所改进。
     (4)认知无线网络中的协作检测模型均假设各感知信道的噪声方差相同。但是考虑实际场景,感知信道的噪声协方差必然存在差异。而且目前大部分的认知无线网络中的频谱感知算法均假设PU为单天线,而实际中PU为多天线的场景是大量存在的。本文中考虑PU为多天线且感知信道的噪声协方差不同的场景,利用统计学中接收信号协方差矩阵的特征向量的性质和感知信道噪声协方差不同时接收协-方差矩阵特征向量的性质,以噪声协方差矩阵的主特征向量作为模板,提出了一种复杂场景下的协方差盲检测算法。分析表明该算法在感知信道噪声不同的场景下有着良好的性能。
     (5)正交频分复用(OFDM)技术作为4G移动通信中的关键技术,也是最适合CR系统的无线传输技术。目前针对OFDM信号的频谱感知算法研究只利用时域分集和频域分集提升检测性能,而没有考虑利用空间分集提升检测性能。本文提出了一种认知网络中的OFDM信号协作软合并检测算法,利用空间分集提升CR系统性能,将OFDM信号特征自相关检测算法和协作检测相结合,建立了OFDM信号协作检测模型,用最大化改进偏移系数的方法对多用户的软合并权值向量进行了优化,得到了最优权值向量的闭合表达式。分析表明该优化算法相比于其他优化算法具有较低的计算复杂度。
The rapid growth in wiles communications has contributed to a huge demand on the deployment of wireless services in the frequency spectrum. However, the fixed spectrum assignment policy enforced today results in poor spectrum utilization. Cognitive radio has emerged as a promising technology to improve the spectrum utilization dramatically, and it is the prerequisite and foundation of cognitive radio technology accurately and effectively to sensing the target spectrum.
     The paper is supported by Natural Science Foundation of China (60672132,60872149) and the project "the research on FH(Frequency Hopping) communication platform of wideband cognitive radio". The spectrum sensing technologies of cognitive radio are studied in detail in this paper, and the main works done by the author are listed below:
     (1) For the problem of the energy detection's inability of weak signals and the likelihood ratio test (LRT)'s high computational complexity in Cognitive radio, the paper simplifies LRT algorithm under low signal-to-noise ratio and calculates the performance parameters of the simplified LRT algorithm. And then presents a spectrum joint detection algorithm based on simplified LRT, which uses energy and the simplified LRT under low signal noise ratio (SNR), and uses energy detection only under the other condition. Both theoretical analysis and simulation results show that the algorithm detects the primary user signal effectively under low SNR condition, and the algorithm has lower complexity than the well-known LRT with close performance.
     (2) In cognitive wireless network, the Blind covariance detection algorithms, such as MME and CAV, have the shortcoming that the performance parameters are obtained using non-asymptotic method. To deal with this problem, the paper presented a new blind detection algorithm using Cholesky factorization. The algorithm utilizes the differences between the off-diagonal elements of PU signal and noise signal after decomposition of receiving covariance matrix to distinguish PU signal and noise. According to random matrix theory, the performance parameters are derived using non-asymptotic method. The proposed method overcomes the noise uncertainty problem and performs well without informations about the channel, primary user and noise. Numerical simulation results demonstrate that the performance parameters expressions are correct and the new detector outperforms the other blind covariance detectors.
     (3) The auto-correlation of PU signal is very different from noise in the cognitive wireless networks, and most existing covariance blind detector utilized only the nature of elements themselves or eigenvalues without the nature of eigenvectors. The cognitive relays with multiple correlated antennas in the multiuser cooperative sensing scenario are considered in this paper. Frist, a multi-user spectrum sensing model with multiple correlated antennas is established, and only two CR users with best sensing channel are selected to participate in the detection algorithm. Then a blind detection algorithm and a semi-blind detection algorithm based on eigenvector are presented utilizing the difference of auto-correlation between the primary user signal and noise signal. The blind algorithm is based on the correlation among the main eigenvectors of the receive covariance matrices from the different cognitive relays, whereas the semi-blind algorithm is based on the correlation of the main eigenvectors between the receive covariance matrix and the known covariance matrix. And the closed expression of false alarm probability and threshold are derived in the paper. Numerical simulations show that the proposed algorithms performs better than the similar detectors.
     (4) Multiuser covariance blind detection algorithms in cognitive wireless network usually assume that the noise covariance is equal in different sensing channels, but In a real scenario, the noise covariance in the sensing channels must be different. Moreover, most blind detection algorithms assume that the PU has single antenna only, but there are always multi-antennas on PU in practice. The PU with multi-antennas and the sensing channels with different covariances in the multiuser cooperative sensing scenario are considered in this paper. Utilizing the main eigenvector's nature in statistical covariance theory, BN-FTM (Feature Template Matching Based Noise) algorithm,which uses the main eigenvector as the feature template, is proposed for the complex noise scenario. The BN-FTM algorithm can detect PU signal in complex noise scenario without the priori information of PU and the sensing channel. Simulations are presented to show that the proposed algorithm is capable to achieve an improvement in detection performance.
     (5) As the key technology in4G mobile communications, OFDM is optimized for CR system wireless transmission technology. The research on OFDM spectrum sensing algorithm utilizes only the time diversity and frequency diversity to improve detection performance without utilizing spatial diversity. In this paper, a cooperative sensing algorithm for OFDM is proposed. this algorithm applies the OFDM feature detection algorithm to cooperative detection with utilizing the spatial diversity to enhance the system detection performance, then the system weight vector is optimized and the closed form expression of optimal weight vector is obtained using the maximum improved deflection coefficient. Theoretical analysis and simulation results demonstrate the remarkable improvement of proposed algorithm on detection performance compared with the classical cooperation detection algorithm.
引文
[1]Mitola III J, Maguire Jr GQ. Cognitive radio:making software radios more personal[J]. Personal Communications, IEEE,1999,6 (4):13-18.
    [2]Mitola J. Cognitive radio:An integrated agent architecture for software defined radio[J]. Doctor of Technology, Royal Inst Technol(KTH), Stockholm, Sweden,2000:271-350.
    [3]Haykin S. Cognitive radio:brain-empowered wireless communications [J]. Selected Areas in Communications, IEEE Journal on,2005,23 (2):201-220.
    [4]Devroye N, Mitran P, Tarokh V. Achievable rates in cognitive radio channels[J]. Information Theory, IEEE Transactions on,2006,52 (5): 1813-1827.
    [5]Group IW. IEEE P802.22/D1.0 draft standard for wireless regional area networks part 22:cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications:policies and procedures for operation in the TV bands[J]. IEEE docs,2008:22-06.
    [6]Stevenson C, Chouinard G, Lei Z, et al. IEEE 802.22:The first cognitive radio wireless regional area network standard[J]. Communications Magazine, IEEE, 2009,47(1):130-138.
    [7]Cordeiro C, Challapali K, Birru D, et al. IEEE 802.22:the first worldwide wireless standard based on cognitive radios[C]:IEEE,2005:328-337.
    [8]Shellhammer SJ, Tandra R, Tomcik J. Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs[C]:ACM,2006:4.
    [9]Berlemann L, Hoymann C, Hiertz G, et al. Unlicensed operation of IEEE 802.16:Coexistence with 802.11 (a) in shared frequency bands[C]:IEEE, 2006:1-5.
    [10]Eklund C, Marks RB, Stanwood KL, et al. IEEE standard 802.16:a technical overview of the WirelessMAN/sup TM/air interface for broadband wireless access[J]. Communications Magazine, IEEE,2002,40 (6):98-107.
    [11]Sherman M, Mody AN, Martinez R, et al. IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence[J]. Communications Magazine, IEEE,2008,46 (7):72-79.
    [12]Hiertz G, Denteneer D, Stibor L, et al. The IEEE 802.11 universe[J]. Communications Magazine, IEEE,2010,48 (1):62-70.
    [13]Weiss TA, Jondral FK. Spectrum pooling:an innovative strategy for the enhancement of spectrum efficiency [J]. Communications Magazine, IEEE, 2004,42 (3):S8-14.
    [14]Group XW. The XG vision[J]. Request For Comments, version,2007,1.
    [15]Brodersen RW, Wolisz A, Cabric D, et al. Corvus:a cognitive radio approach for usage of virtual unlicensed spectrum[J]. Berkeley Wireless Research Center (BWRC) White paper,2004.
    [16]Akyildiz I, Li Y. OCRA:OFDM-based cognitive radio networks[J]. Broadband and Wireless Networking Laboratory Technical Report,2006.
    [17]Buddhikot MM, Kolodzy P, Miller S, et al. DIMSUMnet:new directions in wireless networking using coordinated dynamic spectrum[C]:Ieee,2005: 78-85.
    [18]Clancy T. Interference temperature multiple access[J]. Proc Int'l Wksp on Technology and Policy for Accessing Spectrum (TAPAS 2006), Boston, MA, USA,2006.
    [19]Tandra R, Sahai A. SNR walls for signal detection[J]. Selected Topics in Signal Processing, IEEE Journal of,2008,2 (1):4-17.
    [20]Chen K-C, Prasad R. Cognitive radio networks[M]:Wiley,2009.
    [21]Ganesan G, Li Y. WC01.13 Agility Improvement through Cooperative Diversity in Cognitive Radio[J]. GLOBECOM-NEW YORK-,2005,5:2505.
    [22]Zou Y, Zhu J, Zheng B, et al. An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks[J]. Signal Processing, IEEE Transactions on,2010,58 (10):5438-5445.
    [23]Mishra SM, Sahai A, Brodersen RW. Cooperative sensing among cognitive radios[C]:IEEE,2006:1658-1663.
    [24]Akyildiz IF, Lee W-Y, Vuran MC, et al. NeXt generation/dynamic spectrum access/cognitive radio wireless networks:a survey[J]. Computer Networks, 2006,50 (13):2127-2159.
    [25]Wang W, Peng T, Wang W. Optimal power control under interference temperature constraints in cognitive radio network[C]:IEEE,2007:116-120.
    [26]Akyildiz IF, Lo BF, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks:A survey[J]. Physical Communication,2011,4 (1): 40-62.
    [27]Quan Z, Zhang WY, Shellhammer SJ, et al. Optimal Spectral Feature Detection for Spectrum Sensing at Very Low SNR[J]. Ieee Transactions on Communications,2011,59 (1):201-212.
    [28]Wang H, Yang E-H, Zhao Z, et al. Spectrum sensing in cognitive radio using goodness of fit testing [J]. Wireless Communications, IEEE Transactions on, 2009,8 (11):5427-5430.
    [29]Rostami S, Arshad K, Moessner K. Order-Statistic Based Spectrum Sensing for Cognitive Radio[J]. Communications Letters, IEEE,2012,16 (5):592-595.
    [30]Shen L, Wang H, Zhang W, et al. Blind spectrum sensing for cognitive radio channels with noise uncertainty[J]. Wireless Communications, IEEE Transactions on,2011,10 (6):1721-1724.
    [31]Liu S-Q, Hu B-J, Wang X-Y. Hierarchical Cooperative Spectrum Sensing Based on Double Thresholds Energy Detection[J]. Communications Letters, IEEE,2012,16(7):1096-1099.
    [32]Singh A, Bhatnagar MR, Mallik RK. Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector[J]. Communications Letters, IEEE,2012,16 (1):64-67.
    [33]Khalid L, Anpalagan A. Cooperative Sensing With Correlated Local Decisions in Cognitive Radio Networks[J]. Vehicular Technology, IEEE Transactions on, 2012,61 (2):843-849.
    [34]Luo L, Zhang P, Zhang G. et al. Spectrum sensing for cognitive radio networks with correlated multiple antennas[J]. Electronics Letters,2011,47 (23):1297-1298.
    [35]Tugnait JK. On multiple antenna spectrum sensing under noise variance uncertainty and flat fading[J]. Signal Processing, IEEE Transactions on,2012, 60(4):1823-1832.
    [36]Shen L, Wang H, Zhang W, et al. Multiple Antennas Assisted Blind Spectrum Sensing in Cognitive Radio Channels[J]. Communications Letters, IEEE,2012, 16(1):92-94.
    [37]Zeng YH, Liang YC. Maximum-minimum eigenvalue detection for cognitive radio[C],2007:403-407.
    [38]Ramirez D, Vazquez-Vilar G, Lopez-Valcarce R, et al. Detection of rank-p signals in cognitive radio networks with uncalibrated multiple antennas[J]. Ieee Transactions on Signal Processing,2011,59 (8):3764-3774.
    [39]Kim J, Chae C-B, Andrews JG. Cooperative Spectral Covariance Sensing under Correlated Shadowing[J]. Wireless Communications, IEEE Transactions on,2011,10 (11):3589-3593.
    [40]Penna F, Garello R, Spirito M. Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices[J]. Communications Letters, IEEE,2009,13 (7):507-509.
    [41]Zhang W, Abreu G, Inamori M, et al. Spectrum sensing algorithms via finite random matrices[J]. Communications, IEEE Transactions on,2012,60 (1): 164-175.
    [42]Zeng YH, Liang YC, Zhang R. Blindly Combined Energy Detection for Spectrum Sensing in Cognitive Radio[J]. Ieee Signal Processing Letters,2008, 15:649-652.
    [43]Bianchi P, Najim J, Maida M, et al. Performance analysis of some eigen-based hypothesis tests for collaborative sensing[C],2009:5-8.
    [44]Bianchi P, Debbah M, Maida M, et al. Performance of statistical tests for single-source detection using random matrix theory[J]. Information Theory, IEEE Transactions on,2011,57 (4):2400-2419.
    [45]Chaudhari S, Koivunen V, Poor HV. Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios[J]. Signal Processing, IEEE Transactions on,2009,57 (7):2690-2700.
    [46]Bokharaiee S, Nguyen HH, Shwedyk E. Blind Spectrum Sensing for OFDM-Based Cognitive Radio Systems[J]. Ieee Transactions on Vehicular Technology,2011,60 (3):858-871.
    [47]Hwang CH, Lai GL, Chen SC. Spectrum Sensing in Wideband OFDM Cognitive Radios[J]. Ieee Transactions on Signal Processing,2010,58 (2): 709-719.
    [48]Lei Z, Chin FP. Sensing OFDM systems under frequency-selective fading channels[J]. Vehicular Technology, IEEE Transactions on,2010,59 (4): 1960-1968.
    [49]Chen H-S, Gao W, Daut D. Spectrum sensing for OFDM systems employing pilot tones[J]. Wireless Communications, IEEE Transactions on,2009,8 (12): 5862-5870.
    [50]Socheleau F-X, Ciblat P, Houcke S. OFDM system identification for cognitive radio based on pilot-induced cyclostationarity[C]:IEEE,2009:1-6.
    [51]Han N, Zheng G, Sohn SH, et al. Cyclic autocorrelation based blind OFDM detection and identification for cognitive radio[C]:IEEE,2008:1-5.
    [52]Chen Z, Luan T, Zhang XD. Sensing orthogonal frequency division multiplexing systems for cognitive radio with cyclic prefix and pilot tones[J]. Iet Communications,2012,6 (1):97-106.
    [53]Axell E, Larsson EG. Optimal and Sub-Optimal Spectrum Sensing of OFDM Signals in Known and Unknown Noise Variance[J]. Ieee Journal on Selected Areas in Communications,2011,29 (2):290-304.
    [54]Haykin S. Cognitive radio:Brain-empowered wireless communications [J]. Ieee Journal on Selected Areas in Communications,2005,23 (2):201-220.
    [55]"Federal communications commission. FCC-08-260.2008.
    [56]Zeng YH, Liang YC, Hoang AT, et al. A Review on Spectrum Sensing for Cognitive Radio:Challenges and Solutions[J]. Eurasip Journal on Advances in Signal Processing,2010,2010:1-16.
    [57]Haykin S, Thomson DJ, Reed JH. Spectrum Sensing for Cognitive Radio [J]. Proceedings of the Ieee,2009,97 (5):849-877.
    [58]kay SM. Fundamentals of Statistical Signal Processing:Detection Theory [M]: Prentice Hall,1998.
    [59]Lim TJ, Zhang R, Liang YC, et al. GLRT-Based Spectrum Sensing for Cognitive Radio[J]. Globecom 2008-2008 Ieee Global Telecommunications Conference,2008.
    [60]Zeng YH, Liang YC. Spectrum-Sensing Algorithms for Cognitive Radio Based on Statistical Covariances[J]. Ieee Transactions on Vehicular Technology,2009,58 (4):1804-1815.
    [61]Zhang P, Qiu R, Guo N. Demonstration of Spectrum Sensing with Blindly Learned Features[J]. Ieee Communications Letters,2011,15 (5):548-550.
    [62]Pulsone N, Zatman M. A computationally-efficient two-step implementation of the GLRT detector[C],1999:1161-1164 vol.1163.
    [63]Hur Y, Park J, Woo W, et al. WLC05-1:A Cognitive Radio (CR) System Employing A Dual-Stage Spectrum Sensing Technique:A Multi-Resolution Spectrum Sensing (MRSS) and A Temporal Signature Detection (TSD) Technique[C],2006:1-5.
    [64]Abe H, Umeda Y, Takyu O, et al. Wideband, fast, and wide-dynamic-range spectrum sensing using dual-stage spectrum detection[C],2010:284-287.
    [65]Ma J, Zhao G, Li Y. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks[J]. Wireless Communications, IEEE Transactions on,2008.7 (11):4502-4507.
    [66]Nallagonda S, Roy SD, Kundu S. Cooperative spectrum sensing with censoring of cognitive radios and improved energy detector under LRT fusion[C],2012:493-498.
    [67]Zhi Q, Wenyi Z, Shellhammer SJ, et al. Optimal Spectral Feature Detection for Spectrum Sensing at Very Low SNR[J]. Communications, IEEE Transactions on,2011,59 (1):201-212.
    [68]P BS, L V. Convex Optimization[M]:Cambridge Univ. Press,2004.
    [69]Shen J, Liu S. Zeng L, et al. Optimisation of cooperative spectrum sensing in cognitive radio network[J]. let Communications,2009,3 (7):1170-1178.
    [70]Atapattu S, Tellambura C, Jiang H. Energy Detection Based Cooperative Spectrum Sensing in Cognitive Radio Networks[J]. Ieee Transactions on Wireless Communications,2011,10 (4):1232-1241.
    [71]Ma J, Zhao GD, Li Y. Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks[J]. Ieee Transactions on Wireless Communications,2008,7 (11):4502-4507.
    [72]Quan Z, Cui SG, Sayed AH. Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks[J]. Ieee Journal of Selected Topics in Signal Processing,2008,2(1):28-40.
    [73]Zhao YX, Song M, Xin CS. A weighted cooperative spectrum sensing framework for infrastructure-based cognitive radio networks[J]. Computer Communications,2011,34 (12):1510-1517.
    [74]Shen L, Wang HQ, Zhang W, et al. Multiple Antennas Assisted Blind Spectrum Sensing in Cognitive Radio Channels[J]. Ieee Communications Letters,2012,16 (1):92-94.
    [75]Cardoso LS, Debbah M, Bianchi P, et al. Cooperative spectrum sensing using random matrix theory[C],2008:334-338.
    [76]Yonghong Z, Ying-Chang L. Spectrum-Sensing Algorithms for Cognitive Radio Based on Statistical Covariances[J]. Vehicular Technology, IEEE Transactions on,2009,58 (4):1804-1815.
    [77]Ramirez D, Vazquez-Vilar G, Lopez-Valcarce R, et al. Detection of Rank-P Signals in Cognitive Radio Networks With Uncalibrated Multiple Antennas [J]. Ieee Transactions on Signal Processing,2011,59 (8):3764-3774.
    [78]Bianchi P, Najim J, Maida M, et al. Performance Analysis of Some Eigen-Based Hypothesis Tests for Collaborative Sensing[C],2009:5-8.
    [79]Bianchi P, Debbah M, Maida M, et al. Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory[J]. Ieee Transactions on Information Theory,2011,57 (4):2400-2419.
    [80]Wei L, Tirkkonen O. Spectrum Sensing in the Presence of Multiple Primary Users[J]. Ieee Transactions on Communications,2012,60 (5):1268-1277.
    [81]Zeng YH, Liang YC. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio[J], Ieee Transactions on Communications,2009,57 (6): 1784-1793.
    [82]Soshnikov A. A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices[J]. J Statistical Physics, 2002,108(4):1033-1056.
    [83]Yang X, Lei KJ, Peng SL, et al. Blind Detection for Primary User Based on the Sample Covariance Matrix in Cognitive Radio[J]. Ieee Communications Letters,2011,15(1):40-42.
    [84]Jiangzhou W, Milstein LB. CDMA overlay situations for microcellular mobile communications[J]. Communications, IEEE Transactions on,1995,43 (234): 603-614.
    [85]Wang J, Chen J. Performance of wideband CDMA systems with complex spreading and imperfect channel estimation[J]. Selected Areas in Communications, IEEE Journal on,2001,19 (1):152-163.
    [86]Yonghong Z, Ying-Chang L. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. Communications, IEEE Transactions on,2009,57 (6): 1784-1793.
    [87]Gupta AK, Nagar DK. Matrix variate distributions[M]:Chapman & Hall, 2000.
    [88]Simon MK. Probability Distributions Involving Gaussian Random Variables[M]:Springer-Verlag,2002.
    [89]Ghasemi A, Sousa ES. Collaborative spectrum sensing for opportunistic access in fading environments[C]. Baltimore, MD, United states:Institute of Electrical and Electronics Engineers Computer Society,2005:131-136.
    [90]Ghasemi A, Sousa ES. Opportunistic spectrum access in fading channels through collaborative sensing[J]. Journal of Communications,2007,2 (2): 71-82.
    [91]宋敬群,薛剑韬,冯志勇,et al.认知无线电网络中合作频谱感知参数优化[J].北京邮电大学学报,2011,(01):111-115.
    [92]Zhang W, Mallik RK, Letaief KB. Cooperative spectrum sensing optimization in cognitive radio networks[C]. Beijing, China:Institute of Electrical and Electronics Engineers Inc.,2008:3411-3415.
    [93]李美玲,袁超伟,李琳,et al.使次系统容量最大化的协作频谱感知性能分析及优化[J].通信学报,20 11,(02):53-60.
    [94]Zeng YH, Liang YC, Hoang AT, et al. A Review on Spectrum Sensing for Cognitive Radio:Challenges and Solutions[J]. Eurasip Journal on Advances in Signal Processing,2010.
    [95]Sharma RK, Wallace JW. Correlation-Based Sensing for Cognitive Radio Networks:Bounds and Experimental Assessment[J]. Ieee Sensors Journal, 2011,11 (3):657-666.
    [96]Zhang WS, Abreu G, Inamori M, et al. Spectrum Sensing Algorithms via Finite Random Matrices[J]. Ieee Transactions on Communications,2012,60 (1):164-175.
    [97]Zhang P, Qiu R. GLRT-based spectrum sensing with blindly learned feature under rank-1 assumption[J]. arXiv preprint arXiv:11030305.2011.
    [98]Takemura A, Sheena Y. Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix[J]. Journal of Multivariate Analysis,2005,94 (2):271-299.
    [99]Onatski A. Asymptotic distribution of the principal components estimator of large factor models when factors are relatively weak[J]. Manuscript, Columbia University,2006.
    [100]Mestre X. On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices[J]. Signal Processing, IEEE Transactions on,2008,56 (11):5353-5368.
    [101]Benaych-Georges F, Nadakuditi RR. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices [J]. Advances in Mathematics,2011,227 (1):494-521.
    [102]Anderson TW. An introduction to multivariate statistical analysis[M]:Wiley New York,2003.
    [103]Jolliffe I. Principal component analysis[M]:Wiley Online Library,2005.
    [104]Therrien CW. Discrete random signals and statistical signal processing[M]: Prentice Hall PTR,1992.
    [105]Durgin GD, Rappaport TS. Effects of multipath angular spread on the spatial cross-correlation of received voltage envelopes[C],1999:996-1000 vol.1002.
    [106]Penna F, Garello R, Spirito MA. Cooperative Spectrum Sensing Based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices[J]. Ieee Communications Letters,2009,13 (7):507-509.
    [107]张贤达.矩阵分析与应用[M]:清华大学出版社有限公司,2004.
    [108]Donati-Martin C, Rouault A. Truncations of Haar unitary matrices, traces and bivariate Brownian bridge [J]. Random Matrices Theory Appli,2012,1.
    [109]Kay SM. Fundamentals of Statistical signal processing, Volume 2:Detection theory[M]:Prentice Hall PTR,1998.
    [110]Peh E, Liang Y-C. Optimization for cooperative sensing in cognitive radio networks[C]:IEEE,2007:27-32.
    [111]Besson O, Kraut S, Scharf LL. Detection of an unknown rank-one component in white noise[J]. Signal Processing, IEEE Transactions on,2006,54 (7): 2835-2839.
    [112]Font-Segura J, Wang X. GLRT-based spectrum sensing for cognitive radio with prior information[J]. Communications, IEEE Transactions on,2010,58 (7):2137-2146.
    [113]Alamgir M, Faulkner M, Gao J, et al. Signal detection for cognitive radio using multiple antennas[C]:IEEE,2008:488-492.
    [114]Coding FSC. Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2)[J]. DVB Document A,2009,122.
    [115]Committee WGot. IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5:Enhancements for Higher Throughput[J]. IEEE Std,2009,802.
    [116]Lei W, Zheng B, Chao C. Cooperative spectrum sensing using free probability theory[J]. Ieice Transactions on Communications,2010,93 (6):1547-1554.
    [117]Leshem A, Van der Veen A-J. Multichannel detection and spatial signature estimation with uncalibrated receivers[C]:IEEE,2001:190-193.
    [118]Lwshem A, Van der Veen A-J. Multichannel detection of Gaussian signals with uncalibrated receivers[J]. Signal Processing Letters, IEEE,2001,8 (4): 120-122.
    [119]Anderson TW. An introduction to multivariate statistical analysis[M]. New York; London Chapman & Hall,2001.
    [120]Simon MK. Probability distributions involving Gaussian random variables:A handbook for engineers and scientists[M]:Springer Science+ Business Media, 2006.
    [121]Chen HS, Gao W, Daut DG. Spectrum Sensing for OFDM Systems Employing Pilot Tones[J], Ieee Transactions on Wireless Communications, 2009,8 (12):5862-5870.
    [122]Sebesta V, Marsalek R, Fedra Z. OFDM Signal Detector Based on Cyclic Autocorrelation Function and its Properties[J]. Radioengineering,2011,20 (4): 926-931.
    [123]Viswanathan R, Varshney PK. Distributed detection with multiple sensors I. Fundamentals[J]. Proceedings of the Ieee,1997,85 (1):54-63.
    [124]Aalo V, Viswanathan R. Asymptotic performance of a distributed detection system in correlated Gaussian noise[J]. Signal Processing, IEEE Transactions on,1992,40(1):211-213.
    [125]Ghasemi A, Sousa ES. Collaborative spectrum sensing for opportunistic access in fading environments[C]:IEEE,2005:131-136.
    [126]Visotsky E, Kuffner S, Peterson R. On collaborative detection of TV transmissions in support of dynamic spectrum sharing[C]:IEEE,2005: 338-345.
    [127]Chen R, Park J-M, Bian K. Robust distributed spectrum sensing in cognitive radio networks[C]:IEEE,2008:1876-1884.
    [128]Lunden J, Koivunen V, Huttunen A, et al. Collaborative cyclostationary spectrum sensing for cognitive radio systems[J]. Signal Processing, IEEE Transactions on,2009,57 (11):4182-4195.
    [129]Sadeghi H, Azmi P, Arezumand H. Cyclostationarity-based soft cooperative spectrum sensing for cognitive radio networks[J]. let Communications,2012, 6 (1):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700