用户名: 密码: 验证码:
组织工程用PLA纤维基支架的制备、成型及细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于静电纺丝技术,制备出PLA(polylactic acid)基支架材料:溶液静电纺PLA纤维支架,熔融静电纺PLA纤维支架及溶液静电纺PLA纱线支架。
     探讨了溶液静电纺成纤过程中纺丝液射流运动过程:超过临界电压后,纺丝液射流所受电相斥力与表面张力的相互作用,决定着射流从直线区域进入到鞭动区域时刻。而正是射流在鞭动区域的运动引起直径剧减,形成超细纤维。基于此,介入不同成分与组分的溶剂,以干涉纺丝液射流在运动过程所受的电相斥力对射流在运动过程,特别是鞭动区域的运动构成影响,成功调控制备出直径分布差异的溶液静电纺PLA纤维支架材料及溶液静电纺PLA纱线支架材料。分别借助Fridrikh S V模型与Rutledge G C模型,进一步探讨了不同溶剂成分与组分对溶液静电纺PLA纤维直径差异的调控机制。
     借助高速相机在纺丝过程中拍摄的射流照片,探讨了熔融静电纺成纤过程中聚合物射流的运动过程:超过临界电压后,喷丝口处聚合物熔滴从球形被拉伸成锥形,形成泰勒锥,射流向收集端作加速运动;射流运动过程中,表面张力与电相斥力之间的相互竞争作用决定了射流的鞭笞稳定性,进而决定了射流成纤时的细化程度。并基于熔融静电纺丝技术,制备出高度定向排列熔融静电纺PLA纤维支架材料。
     采用表面沉积的方法,分别对溶液静电纺PLA纤维支架和熔融静电纺PLA纤维支架进行表面Ti/Cu沉积处理。形貌观察发现:对于溶液静电纺PLA纤维支架,表面Ti/Cu沉积造成了纤维表面凹凸不平的类似多孔结构;而对于熔融静电纺PLA纤维支架,Ti/Cu以纳米级的颗粒沉积在纤维表面的部分区域,并在纤维表面呈岛状生长。接触角测试表明:溶液静电纺制备的PLA纤维支架具有一定的疏水性,而熔融静电纺PLA纤维支架则具有一定的亲水性;表面Ti/Cu沉积使溶液静电纺和熔融静电纺PLA纤维均具有较好的亲水性,特别是表面Ti沉积的熔融静电纺PLA纤维,亲水性大大增加,1s时间内,完全润湿。结合形貌观察结果,探讨Ti/Cu金属颗粒在PLA纤维基表面生长机理发现:在表面Ti/Cu沉积初始阶段,金属颗粒主要以核生长型在静电纺PLA纤维基表面进行生长。
     分别针对溶液静电纺PLA纤维支架材料,表面Ti/Cu沉积熔融静电纺PLA纤维支架材料以及静电纺PLA纱线支架材料的细胞相容性进行了研究。MTT (4-甲偶氮唑蓝)检测结果发现:NIH3T3细胞在表面Ti沉积的浸提液中,细胞活力随着培养时间的推移而增大,在72h时甚至超过未处理支架材料;体外毒性评定发现,表面Ti沉积样品,在24h时,具有轻微毒性,而到72h时,毒性逐渐消失至0级。而NIH3T3细胞在表面Cu沉积熔融静电纺PLA纤维支架材料浸提液中,细胞活力随培养时间推移稍有降低。体外毒性评定发现,24h,48h及72h时,Cu沉积熔融静电纺PLA纤维支架材料均表现出轻微毒性。
     对不同直径范围的溶液静电纺PLA纤维/纱线支架材料的增殖与粘附结果表明:纤维基支架材料均比浇铸膜支架材料更有利于NIH3T3细胞的粘附和增殖;培养72h后,NIH3T3细胞在所有PLA纤维基支架材料上以不同的增长率进行了增殖;纱线的加捻结构,对细胞在PLA纤维支架材料上的增殖有着较大影响;基于纤维之间孔隙结构差异,孔隙率等因素,无论是在不同直径分布的PLA纤维支架材料,还是纱线支架材料上,难以单独从细胞粘附和增殖,判断纤维直径对细胞生长情况的影响。
In our work, PLA fibrous scaffolds such as solution electrospinning(S-ES) PLA fibrousscaffolds melt-electrospinning(M-ES) PLA fibrous scaffolds as well as solutionelectrospun(S-ES) yarns were fabricated based on electrospinning.
     Jet motion in the fiber formation process of was investigated. As a voltage exceeds thecritical voltage, stability of the jet may be viewed as competition between surface tension andsurface charge repulsion. While it is jet motion that gives rise to a sharp decrease in diameter,forming ultra-fine fibers. With this in mind, solvents with different composition andproportion were introduced to affect the charge repulsion in jet motion, especially in thewhipping section. Hence, S-ES PLA fibrous scaffolds and S-ES PLA yarns with differentfiber diameter distribution were successfully prepared. Fridrikh S V model and Rutledge G Cmodel were applied for further investigation on the regulating mechanism.
     Motion of polymer jet in the fiber formation process during melt-elctrospinning wasinvestigated based on pictures recorded by a high-speed CCD camera. When a voltage abovethe critical voltage applied, the sphere polymer melt at the nozzle tip will be stretched to acone shaped droplet, forming the Taylor cone and jet will then be accelerated downfield. Andthe competition between surface tension and surface charge repulsion results in a jetinstability to whipping, as well as the jet thinning in fiber formation. In addition, M-ES PLAfibrous scaffolds with well aligned fiber structure were prepared by melt-electrospinning.
     Surface deposition was adopted for surface functionalization of both S-ES and M-ESPLA fibrous scaffolds. Morphology observation shows that surface Ti/Cu deposition on S-ESPLA fibrous scaffold created an uneven and porous structure on the fiber surface. And themetal Ti/Cu show a deposition of certain regions on the fiber surface of M-ES PLA fibrousscaffold in the form of nano-scale particles with an island growth model. Results of contactangle measurement indicate that S-ES fibrous scaffolds are hydrophobic to some extent, whileM-ES fibrous scaffolds are hydrophilic. Both Ti/Cu sputtered S-ES PLA and M-ES fibrousscaffolds exhibit a significant increasing of hydrophilicity as a result of the surface deposition,espesically for the Ti sputtered M-ES PLA fibrous scaffolds. In less than1s, fiber surface ofthe M-ES PLA fibrous scaffolds was entirely wetted. Considering with morphologyobservation results, it can be concluded that the metal particles exhibit a nucleation-growthmodel on the electrospun PLA fiber surface.
     Investigations on the cytocompatibility of S-ES PLA fibrous scaffold, Ti/Cu sputteredM-ES PLA fibrous scaffolds as well as S-ES PLA fibrous scaffolds were conducted. MTTresults indicate that NIH3T3fibroblasts show an increasing viability over time in theextraction of Ti sputtered scaffolds, even with a higher OD value when cultured for72h.Results of cytotoxicity in vitro show that the Ti sputtered PLA fibrous scaffolds exhibit aslight toxic effects when cultured for24h. However, the toxicity disappear to0degrade. Andviability of cells in the extract of Cu sputtered scaffolds show a slight decrease over time.Evaluation of cytotoxicity in vitro indicates that Cu sputtered scaffolds show a slight toxiceffects on NIH3T3fibroblasts when cultured for as long as72h.
     Adhesion and proliferation results of S-ES PLA fibrous/yarn scaffolds with differentdiameter distribution indicate that:1) compared with PLA casting film, all fibrous scaffoldsshow a better support both for adhesion and proliferation of NIH3T3fibroblasts;2) NIH3T3fibroblasts proliferated on all fibrous scaffolds at different levels;3) twists of yarnsignificantly affect the proliferation of NIH3T3fibroblasts;4) it is difficult to give aconclusion on the effects of fiber diameter on cell growth due to the complex structure offibrous scaffold.
引文
1. Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: Designing the nextgeneration of tissue engineering scaffolds[J]. Advanced Drug Delivery Reviews,2007,59(14):1413–1433.
    2.冯庆玲.生物材料概论[M].北京:清华大学出版社,2009.
    3.蔡志江.聚羟基丁酸酯的改性及其作为组织工程支架材料的研究[D]:[硕士学位论文].天津:天津大学材料科学与工程学院,2002.
    4. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds fortissue engineering[J]. Expert Rev. Med. Devices,2006,3(6):835-851.
    5. Papenburg B J. Design strategies for tissue engineering scaffolds[D]:[PhD thesis]. TheNetherlands: University of Twente,2009.
    6. Murugan R, Ramakrishna S. Design Strategies of Tissue Engineering Scaffolds withControlled Fiber Orientation[J].Tissue Engineering,2007,13(8):1845-1864.
    7. Venugopal J, Low S, Choon A T, et al. Interaction of Cells and Nanofiber Scaffolds inTissue Engineering[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2008,84B(1):34-48.
    8.徐佳.纤维组织工程支架的制备及性能研究[D]:[博士学位论文].吉林:吉林大学,
    2009.
    9. Prabhakaran M P, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun CompositeNanofibers for Tissue Regeneration[J].Journal of Nanoscience and Nanotechnology,2011,11(4):3039-3057.
    10. Antunes J C, Oliveira J M, Reis R L, et al. Novelpoly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization andassessment of cytotoxicity[J].Journal of Biomedical Materials Research PartA,94(3):856-869.
    11. Ji Y, Ghosh K, Shu X Zh. Electrospun three-dimensional hyaluronic acid nanofibrousscaffolds[J]. Biomaterials,2006,27(20):3782-3792.
    12. Zhang F, He Ch L, Cao L J, et al. Fabrication of gelatin-hyaluronic acid hybrid scaffoldswith tunable porous structures for soft tissue engineering[J].International Journal ofBiological Macromolecules,2011,48(3):474-481.
    13. Martel-Estrada S A, Olivas-Armendariz I, Martinez-Perez C A, et al.Chitosan/poly(DL,lactide-co-glycolide) scaffolds for tissue engineering[J]. Journal ofMaterials Science-Materials in Medicine,2012,23(12):2893-2901.
    14. Popowicz P, Kurzyca J, Dolinska B. Cultivation of MDCK epithelial cells on chitosanmembranes[J]. Biomed Biochem Acta,1985,44(9):329-331.
    15. Ma J, Wang H, He B, et al. A preliminary in vitro study on the fabrication and tissueengineering applications of a novel chitosan bilayer material as a scaffold of human neofetaldermal fibroblasts[J]. Biomaterials,2001,22(4):331-336.
    16. Yen C N, Lin Y R, Chang M D, et al. Use of Porous Alginate Sponges for SubstantialChondrocyte Expansion and Matrix Production: Effects of Seeding Density[J]. BiotechnologyProgress,2008,24(2):452-457.
    17. Cho S H, Oh S H, Lee J H. Fabrication and characterization of porous alginate/polyvinylalcohol hybrid scaffolds for3D cell culture[J]. Journal of Biomaterials Science, PolymerEdition,2005,16(8):933-947.
    18. Majima T, Funakosi T, Iwasaki N, et al. Alginate and chitosan polyion complex hybridfibers for scaffolds in ligament and tendon tissue engineering[J]. Journal of OrthopaedicScience,2005,10(3):302-307.
    19. Becerra-Bayona S, Guiza-Arguello V, Qu X, et al. Influence of select extracellular matrixproteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts[J].Acta Biomaterialia,2012,8(12):4397-4404.
    20. Saska S, Teixeira L N, Oliveira P T, et al. Bacterial cellulose-collagen nanocomposite forbone tissue engineering[J]. Journal of Materials Chemistry,2012,22(41):22102-22112.
    21. Min B M, Lee G, Kim S H, et al. Electrospinning of silk fibroin nanofibers and its effecton the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J].Biomaterials,2004,25(7-8):1289-1297.
    22. Karp J M, Sarraf F, Shoichet M S, et al. Fibrin-filled scaffolds for bone-tissueengineering: An in vivo study[J]. Journal of Biomedical Materials Research Part A,2004,71A(1):162-171.
    23. Liu Y, Ren L, Yao H, et al. Collagen films with suitable physical properties andbiocompatibility for corneal tissue engineering prepared by ion leaching technique[J].Materilas Letters,2012,87(15):1-4.
    24. Li Ch M, Vepari C, Jin H J, et al. Electrospun silk-BMP-2scaffolds for bone tissueengineering[J].Biomaterials,2006,27(16):3115-3124.
    25. Lin Y C, Thomas K H T, James C H G, et al. Synthesis and Characterization ofHydroxyapatite-Silk Composite Scaffold for Bone Tissue Engineering[J].CurrentNanoscience,2011,7(6):866-873.
    26. Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP forbone tissue engineering[J].BONE,2010,46(2):386-395.
    27.谢江徽.静电纺丝法制备成型PLGA/β-TCP纳米纤维支架及其生物学性能研究[D]:[硕士学位论文].西安:第四军医大学,2012.
    28. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview[J].Progress inPolymer Science,2007,32(4):455-482.
    29. Jiang T, Abdel-Fattah W I, Laurencin C T. In vitro evaluation of chitosan/poly(lacticacid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering[J].Biomaterials,2006:27(28):4894-4903.
    30. Shin H J, Lee C H, Cho I H, et al. Electrospun PLGA nanofiber scaffolds for articularcartilage reconstruction: mechanical stability, degradation and cellular responses undermechanical stimulation in vitro[J].Journal of Biomaterials Science-Polymer Edition,2006,17(1-2):103-119.
    31. Luis A L, Rodrigues J M, Amado S, et al. PLGA90/10and caprolactione biodegradablenerve guides for the reconstruction of the rat sciatic nerve[J]. Microsurgery,2007,27(2):125-137.
    32. Hu X X, Shen H, Yang F, et al. Preparation and cell affinity of microtubularorientation-structured PLGA(70/30) blood vessel scaffold[J]. Biomaterials,2008,29(21):3128-3136.
    33. Schmal H, Mehlhorn A T, Kurze C, et al. In vitro study on the influence of fibrin incartilage contructs based on PGA fleece materials[J]. Orthopade,2008,37(5):424-434.
    34. Reichardt A, Arshi A, Schuster P, et al. Custom-Made Generation of Three-DimensionalNonwovens Composed of Polyglycolide or Polylactide for the Cardiovascular TissueEngineering[J].Journal of Biomaterials and Tissue Engineering,2012,2(4):322-329.
    35. Liu S J, Hsueh C L, Ueng S W N, et al. Manufacture of solvent-free polylactic-glycolicacid (PLGA) scaffolds for tissue engineering[J]. Asia-Pacific Journal of ChemicalEngineering,2009,4(2):154-160.
    36. Sombatmankhong K, Sanchavanakit N, Pavasant P, et al. Bone scaffolds from electrospunfiber mats of poly (3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) andtheir blends[J].Polymer,2007,48(5):1419-1427.
    37. Volova T, Shishatskaya E, Sevastianov V, et al. Results of biomedical investigations ofPHB and PHB/PHV fibers[J]. Polymer Degradation and Stability,2003,16(2):125-133.
    38. Yu J, Plackett D, Chen L X L. Kinetics and mechanism of the monomeric products fromabiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions[J].Polymer Degradation and Stability,2005,89(2):289-299.
    39. Yu G, Marchessault R H. Characterization of low molecular weightpoly(β-hydroxybutyrate)s from alkaline and acid hydrolysis[J]. Polymer,2000,41(3):1087-1098.
    40. Vogel R, Ta¨ndler B, Jehnichen D, et al. Melt Spinning of Bacterial Aliphatic PolyesterUsing Reactive Extrusion for Improvement of Crystallization[J]. Macromol. Biosci,2007,7(6):820-828.
    41. Vogel R, Ta¨ndler B, Jehnichen D, et al. Melt Spinning of Poly-(3-hydroxybutyrate)Fibers for Tissue Engineering Using a-Cyclodextrin/Polymer Inclusion Complexes as theNucleation Agent[J]. Macromol. Biosci,2006,6(9):730-736.42Freier T, Kunze C, Nischan C,et al. In vitro and in vivo degradation studies fordevelopment of a biodegradable patch based on poly(3-hydroxybutyrate)[J]. Biomaterials,2002,23(13):2649-2657.
    43. Tanaka T, Yabe T, Teramachi S, et al. Mechanical properties and enzymatic degradation ofpoly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg[J].Polymer Degradation and Stability,2007,92(6):1016-1024.
    44. Woodruff M A, Hutmacher D W. The return of a forgotten polymer-Polycaprolactone inthe21st century[J].Progress in Polymer Science,2010,35(10):1217-1256.
    45. Wang Y K, Yong T, Ramakrishna S. Nanofibers and their influence on cells for tissueregenration[J].Australian Journal of Chemistry,2005,58(10):704-712.
    46. Jiang Q R, Reddy N, Yang Y Q. Cytocompatible cross-linking of electrospun zein fibersfor the development of water-stable tissue engineering scaffolds[J]. Acta Biomaterialia,2010,6(10):4042-4051.
    47. Pamula E, Bacakova L, Filova E, et al. The influence of pore size on colonization ofpoly(L-lactide-glycolide) scaffolds with human osteoblast-like MG63cells in vitro[J].Journalof Materials Science: Materials in Medicine,2008,19(1):425-435.
    48. Li X S, Yao Ch, Sun F Q, et al. Conjugate electrospinning of continuous nanofiber yarn ofpoly(l-lactide)/nanotricalcium phosphate nanocomposite[J].Journal of Applied PolymerScience,2008,107(6):3756-3764.
    49. Teo W E, Gopal R, Ramaseshan R, et al. A dynamic liquid support system for continuouselectrospun yarn fabrication[J]. Polymer,2007,48(12):3400-3405.
    50.刘红波.静电法纺制聚酰胺6/66纳米纤维纱及其结构和性能[D]:[硕士论文].苏州:苏州大学,2008.
    51. Khil M S, Bhattarai S R, Kim H Y, et al. Novel fabricated matrix via electrospinning fortissue engineering[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2005,72B(1):117-125.
    52. Dalton P D, Klee D, M ller M. Electrospinning with dual collection rings[J]. Polymer,2005,46(3):611-614.
    53. Wang X F, Zhang K, Zhu M F, et al. Continuous polymer nanofiber yarns prepared byself-bundling electrospinning method[J]. Polymer,2008,49(11):2755-2761.
    54. Liu C K, Sun R J, Lai K, et al. Preparation of short submicron-fiber yarn by an annularcollector through electrospinning[J]. Materials letters,2008,62(29):4467-4469.
    55.孙润军,刘呈坤,来侃,等.一种静电纺纳米纤维纱线系统及纳米纤维纱线的制备方法[P].中国专利:200810018267,2008.
    56. Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: synergistic effects ofnanotopography and chemical signaling on cell guidance[J]. Nano Letters,2007,7(7):2122-2128.
    57. Yoo H S, Ki T G, Park T G. Surface-functionalized electrospun nanofibers for tissueengineering and drug delivery[J]. Advanced Drug Delivery Reviews,2009,61(12):1033-1042.
    58. Choi J S, Leong K W, Yoo H S. In vivo wound healing of diabetic ulcers usingelectrospun nanofibers immobilized with human epidermal growth factor (EGF)[J].Biomaterials2008,29(5)587-596.
    59. Kim T G, Park T G. Biomimicking extracellular matrix: cell adhesive RGD peptidemodified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh[J]. Tissue Engineering,2006,12(2):221-233.
    60. Li W, Guo Y, Wang H, et al. Electrospun nanofibers immobilized with collagen for neuralstem cells culture[J]. Journal of Materials Science: Materials in Medicine.2008,19(2):847-854.
    61. Nakagawa M, Teraoka F, Fujimoto S, et al. Improvement of cell adhesion onpoly(L-lactide) by atmospheric plasma treatment[J]. Journal of Biomedical MaterialsResearch Part A,2006,77A(1):112-118.
    62. Alves C M, Yang Y, Marton D, et al. Plasma surface modification of poly(D,L-lactic acid)as a tool to enhance protein adsorption and the attachment of different cell types[J]. Journal ofBiomedical Materials Research Part B: Applied Biomaterials,2008,87B(1):59-66.
    63. Gugala Z, Gogolewski S. Attachment, growth, and activity of rat osteoblasts onpolylactide membranes treated with various low-temperature radiofrequency plasmas[J].Journal of Biomedical Materials Research Part A,2006,76A(2):288-299.
    64. Mwale F, Wang H T, Nelea V, et al. The effect of glow discharge plasma surfacemodification of polymers on the osteogenic differentiation of committed human mesenchymalstem cells[J]. Biomaterials,2006,27(10):2258-2264.
    65. Xu Z X, Tao L, Zhao M Zh, et al. Amide-linkage formed between ammonia plasmatreated poly(D,L-lactide acid) scaffolds and bio-peptides: Enhancement of cell adhesion andosteogenic differentiation in vitro[J]. Biopolymers,2011,95(10):682-693.
    66.赵治国,万怡灶,王玉林,等.生物材料的离子注入表面改性[J].金属热处理,2006,31(8):4-6.
    67. Chen X Y, Zhang X F, Zhu Y, et al. Surface modification of polyhydroxyalkanoates by ionimplantation, Characteriza tion and Cytocompatibility improvement[J]. Polymer journal,2003,35(2):148-154.
    68. Oezkucur N, Richter E, Wetzel C. et al. Biological relevance of ion energyin-performance of human endothelial cells on ion-implanted flexible polyurethane surfaces[J].Journal of Biomedical Materials Research Part A,2010,93A(1):258-268.
    69. Li, X R, Xie J W; Yuan X Y. Coating electrospun poly(ε-caprolactone) fibers with gelatinand calcium phosphate and their use as biomimetic scaffolds for bone[J]. Tissue Engineering,2008,24(24):14145-14150.
    70. Roohani-Esfahani S I, Lu Z F, Li J J, et al. Effect of self-assembled nanofibroussilk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasiccalcium phosphate scaffolds [J]. Acta Biomaterialia,2012,8(1):302-312.
    1. Lou Ch W, Yao Ch H, Chen Y Sh, et al. Manufacturing and Properties of PLA AbsorbableSurgical Suture[J].Textile Research Journal,2008,78(11):958-965.
    2. Ignatova M, Manolova N, Markova N, et al. Electrospun Non-Woven Nanofibrous HybridMats Based on Chitosan and PLA for Wound-Dressing Applications[J]. MacromolecularBioscience.2009,9(1):102-111.
    3. Howard D, Partridge K, Yang X B, et al. Immunoselection and adenoviral geneticmodulation of human osteoprogenitors: in vivo bone formation on PLAscaffold[J].Biochemical and Biophysical Research Communications,2002,299(2):208-215.
    4. Zhou D S, Zhao K B, Li Y, et al. Repair of segmental defects withnano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stemcells[J].Journal of Bioactive and Compatible Polymers,2006,21(5):373-384.
    5. Kim K, Luu Y K, Chang C, et al. Incorporation and controlled release of a hydrophilicantibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds[J].Journalof Controlled Release,2004,98(1):47-56.
    6. Xie J W, Marijnissen J C, Wang Ch H. Microparticles developed by electrohydrodynamicatomization for the local delivery of anticancer drug to treat C6glioma invitro[J].Biomaterials,2006,27(17):3321-3332.
    7. Ogata N, Shimada N, Yamaguchi S, et al. Melt-electrospinning of poly(ethyleneterephthalate) and polyalirate[J].Journal of Applied Polymer Science,2007,105(3):1127-1132.
    8. Zhmayev E, Cho D, Joo Y L. Nanofibers from gas-assisted polymer meltelectrospinning[J].Polymer,2010,51(18):4140-4144.
    9. Zhou H J, Green T B, Joo Y L. The thermal effects on electrospinning of polylactic acidmelts[J]. Polymer,2006,47(21):7497-7505.
    1. Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers[J]. Polymer,2008,49(10):2387-2425.
    2. Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameterdetermined from electrospinning model[J].Polymer,2007,48(23):6913-6922.
    3. Carroll C P, Zhmayev E, Kalra V, et al. Nanofibers from electrically driven viscoelasticjets: modeling and experiments[J].Korea-Australia Rheology Journal,2008,20(3):153-164.
    4. Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquidjets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87(9):4531-4547.
    5. Reneker D H, Yarin A L, Zussmanb E, et al. Electrospinning of Nanofibers from PolymerSolutions and Melts[J].Advances in Applied Mechanics,2007,41:43-195,345-346.
    6. Yarin A L, Zussman E. Electrospinning of nanofibers from polymer solutions[C].Mechanics of21st Century-ICTAM04Proceedings, Warsaw, Poland,2004,15-21.
    7. Wei Q F. Functional nanofibers and their applications[M]. Woodhead Publishing,2012.
    8. Li D, Xia Y N. Electrospinning of Nanofibers: Reinventing the Wheel?[J]. AdvancedMaterials,2004.16(14):1151-1170.
    9. Zheng M H, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers byelectrospinning and their applications in nanocomposites[J].Composites Science andTechnology,2003,63(15):2223-2253.
    10. Kulkarni A, Bambole V A, Mahanwar P A. Electrospinning of polymers, their modelingand applications[J]. Polymer-Plastics Technology and Engineering,2010,49(5):427-441.
    11. Fong H, Chun I, Reneker D H, et al. Beaded nanofibers during electrospinning[J].Polymer,1999,40(16):4585-4592.
    12. Taylor G I. Disintegration of water drops in an electric field[J]. Proceedings of The RoyalSociety of Medicine. A,1964,280:383.
    13. Rutledge G C, Fridrikh S V. Formation of fibers by electrospinning[J]. Advanced DrugDelivery Reviews,2007,59(14):1384-1391.
    14. Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. I.stability theory[J]. Physics of Fluids,2001,13(8):2201-2220.
    15. Shin Y M, Hohman M M, Brenner M P, Electrospinning: A whipping fluid jet generatessubmicron polymer fibers[J].Applied Physics Letters,2001,78(8):1149-1151.
    16. Lee K H, Kim H Y, La Y M, et al. Influence of a mixing solvent with tetrahydrofuran andN, N-dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats[J]. Journal ofPolymer Science Part B: Polymer Physics,2002,40(9):2259-2268.
    17. Lu L L, Wu D F, Zhang M, et al. Fabrication of Polylactide/Poly(ε-caprolactone) BlendFibers by Electrospinning: Morphology and Orientation Industrial&Engineering ChemistryResearch.2012,51(9),36823691.
    18. Wan Y Q, Guo Q, Pan N. Thermo-electro-hydrodynamic model for electrospinningprocess[J]. International Journal of Nonliner Science and Numerical Simulation,2004,5(1):5-8.
    19.李珍,王军.静电纺丝可纺性影响因素的研究成果[J].合成纤维,2008,5(9),6-11.
    20.柯扬船,何平笙.高分子物理教程[M].北京:化学工业出版社,2006,91.
    21.齐中华,俞昊,张瑜,等.三氯甲烷/乙醇混合溶剂对聚乳酸电纺成形影响的研究[J].合成纤维,2009,6(3):40-44.
    22. Byusse W M. A2D model for the electrospinning process[D]:[Master Thesis]. Eindhoven,Netherlands: Eindhoven University of Technology Department of Mechanical Engineering,
    2008.
    23. Yan F, Farouka B, Ko F. Numerical modeling of an electrostatically driven liquidmeniscus in the cone–jet mode[J].Journal of Aerosol Science,2003,34(1):99-116.
    24. Taylor G. Electrically Driven Jets[J]. Proceedings of The Royal Society ofMedicine.A,1969,313(1515):453-475.
    25. Fridrikh S V, Yu J H, Brenner M P, et al. Controlling the Fiber Diameter duringElectrospinning[J].Physical Review Letters,2003,90(14):144502-1-144502-4.
    26.李秀艳,刘建立,李从举.熔融静电纺丝技术在组织工程中的应用[J].化工新型材料,2012,40(4):31-33.
    27. Dalton P D, Joergensen N T, Groll J, et al. Patterned melt electrospun substrates for tissueengineering[J].Biomedical Materials,2008,3(3):034109-034120.
    28. Dalton P D, Klinkhammer K, Salber J, et al. Direct in Vitro Electrospinning with PolymerMelts[J].Biomacromolecules,2006,7(3),686-690.
    29. Kim S J, Jang D H, Park W H, et al. Fabrication and characterization of3-dimensionalPLGA nanofiber/microfiber composite scaffolds[J]. Polymer,2010,51(6):1320-1327.
    30. Deng R J, Liu Y, Ding Y M, et al. Melt electrospinning of low-density polyethylenehaving a low-melt flow index[J].Journal of Applied Polymer Science2009,114(1):166-175.
    31. Karchin A, Simonovsky F I, Ratner B D, et al. Melt electrospinning of biodegradablepolyurethane scaffolds[J]. Acta Biomaterialia,2011,7(9):3277-3284.
    32. Detta N, Brown T D, Edin F K, et al. Melt electrospinning of polycaprolactone and itsblends with poly(ethylene glycol)[J]. Polymer International,2010,59(11):1558-1562.
    33. Zhmayev E, Cho D, Joo Y L. Modeling of melt electrospinning for semi-crystallinepolymers[J]. Polymer,2010,51(1):274-290.
    34. Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. II.Applications[J].Physics of fluids,2001,13(8):2221-2236.
    35.邓荣坚.熔融静电纺丝法制备纳米纤维的实验研究[D]:[硕士学位论文].北京:北京化工大学,2006.
    36. Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal celldifferentiation using nanoscale symmetry and disorder[J]. Nature Materials.2007,6:997-1003.
    37. Lee C H, Shin H J, Cho I H, et al. Nanofiber alignment and direction of mechanical strainaffect the ECM production of human ACL fibroblast[J].Biomaterials,2005,26(11):1261-1270.
    38. Zong X H, Bien H, Chung C Y, et al. Electrospinning of Three-Dimensional NanofibrousTubes with Controllable Architectures[J].Biomaterials,2005,26:5330-5338.
    39.张静,梅芳,蔡晴,等.牙周膜细胞在网格型与无纺型聚乳酸纳米纤维支架材料上体外培养的研究比较[J].中国生物医学工程学报,2009,28(5):754-759.
    40. Zhang D M, Chang J. Electrospinning of Three-Dimensional Nanofibrous Tubes withControllable Architectures[J].Nano Letters,2008,8(10):3283-3287.
    41. Li D, Wang Y L, Xia Y N. Electrospinning of Polymeric and Ceramic Nanofibers asUniaxially Aligned Arrays[J].Nano Letters,2003,3(8):1167-1171.
    42. Zhang D, Chang J. Patterning of Electrospun Fibers Using ElectroconductiveTemplates[J]. Advanced Materials,2007,19(21):3664-3667.
    1.吴明月,何家才,侯爱兵,等.钛种植体表面原位包裹大鼠骨髓基质细胞的研究[J].安徽医药,2010,14(10):1157-1159.
    2. Vehof J W M, Ruijter A E D, Spauwen P H, et al. Influence of rhBMP-2on rat bonemarrow stromal cells cultured on titanium fiber mesh[J].Tissue Engineering,2001,7(4):373-383.
    3. Vehof J W M, Haus M T U, Ruijter A E D, et al. Bone formation in transforming growthfactor beta-1-loaded titanium fiber mesh implants[J].Clinical Oral Implants Research,2002,13(1):94-102.
    4. Tripathi A, Saravanan S, Pattnaika S et al. Bio-composite scaffolds containingchitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering[J]. InternationalJournal of Biological Macromolecules,2012,50:294-299.
    5. Tanaka Y, Matsuo Y, Komiya T, et al. Characterization of the spatial immobilizationmanner of poly(ethylene glycol) to a titanium surface with immersion and electrodepositionand its effects on platelet adhesio[J]. Journal of Biomedical Materials Research Part A,2010,92A(1):350-358.
    6.于伟东,储才元.纺织物理[M]:上海:东华大学出版社,2002,62.
    7.万震,刘嵩,陈小利.高亲水棉织物[J].广西纺织科技,2001,30(2):43-46.
    8.刘琴华,赵高凌,翁文剑等.羟基纤维素对二氧化钛薄膜亲水性和光催化性能的影响[J].硅酸盐学报,2004,32(10):1329-1303.
    9. Ensinger W. Low energy ion assist during deposition-an effective tool for controlling thinfilm microstructure[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1997,127-128:796-808.
    10.徐阳.表面沉积纳米二氧化钛纺织材料的制备及其性能研究[D]:[博士学位论文].无锡:江南大学,2009.
    11.王鸿博.非织造基纳米银薄膜的制备及性能研究[D]:[博士学位论文].无锡:江南大学,2007.
    1.冯庆玲.生物材料概论.[M]:北京:清华大学出版社,2009,257.
    2.马祖伟.聚乳酸软骨组织工程支架制备、改性及其细胞相容性研究[D]:[博士学位论文].杭州:浙江大学,2003.
    3. Badami A S, Kreke M R, Thompson M S, et al. Effect of fiber diameter on spreading,proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid)substrates[J]. Biomaterials,2006,27(4):596-606.
    4. Kwon I K, Kidoaki S, Matsuda T. Electrospun nano-to microfiber fabrics made ofbiodegradable copolyesters: structural characteristics, mechanical properties and cell adhesionpotential[J].Biomaterials2005,26(18):3929-3939.
    5. Boland E D, Telemeco T A, Simpson D G, et al. Utilizing acid pretreatment andelectrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2004,71B(1):144-152.
    6. Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulationscontaining carbon nanofibers[J].Biomaterials,2003,24(11):1877-1887.
    7. Bashur C A, Dahlgren L A, Goldstein A S. Effect of fiber diameter and orientation onfibroblast morphology and proliferation on electrospun poly (D,L-lactic-co-glycolicacid)meshes[J].Biomaterials,2006,27(33):5681-5688.
    8. Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulationscontaining carbon nanofibers[J].Biomaterials,2003,24(11):1877-1887.
    9. Xu C Y, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potentialscaffold for blood vessel engineering[J].Biomaterials,2004,25(5):877-886.
    10. Vaz C M, Van T S, Bouten C V, et al. Design of scaffolds for blood vessel tissueengineering using a multi-layering electrospinning technique[J].Acta Biomaterialia,2005,1(5):575-582.
    11. Kim C H, Khil M S, Kim H Y, et al. An improved hydrophilicity via electrospinning forenhanced cell attachment and proliferation[J].Journal of Biomedical Materials Research PartB: Applied Biomaterials,2006,78B(2):283-290.
    12. Lee J, Cuddihy M J, Kotov N A. Three-dimensional cell culture matrices: state of theart[J].Tissue Engineering Part B: Reviews,2008,14(1):61-86.
    13. Sisson K, Zhang C, Farach-Carson M C, et al. Evaluation of crosslinking methods forelectrospun gelatin on cell growth and viability[J].Biomacromolecules,2009,10(7):1675-1680.
    14. Jiang Q R, Reddy N, Yang Y Q. Cytocompatible cross-linking of electrospun zein fibersfor the development of water-stable tissue engineering scaffolds[J]. Acta Biomaterialia,2010,6(10):4042-4051.
    15.冯波,翁杰,屈树新,等.医用钛表面生物活性化研究[C].2005年功能材料学术年会论文集,2005,2(4):23-27.
    16.张金超,李亚平,杨康宁,等. Cu2+和Cu+对原代培养的小鼠成骨细胞增殖、分化和钙化的影响[J].无机化学学报,2010,26(12):2251-2258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700