用户名: 密码: 验证码:
脊柱图像引导放射治疗对脊髓生物安全性影响的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     第一部分:建立犬精确脊柱图像引导放射治疗(Image guided radiation therapy,IGRT)模型,筛选脊柱IGRT在确保脊髓生物安全性的前提下,最大的放疗总剂量。第二部分:基于正交设计原理,通过MRI、肌电图检测放疗后脊髓损伤,探讨脊柱IGRT计划中的:不同水平的放疗射野、分割剂量、剂量率、射线角度对脊髓损伤的影响程度,以优化组合出脊髓生物安全性最好的放疗方案。第三部分:基于正交设计原理,通过HE染色、透射电镜、TUNEL法、免疫组织化学法及RT-PCR法检测放疗后脊髓损伤,探讨脊柱IGRT计划中的:不同水平的放疗射野、分割剂量、剂量率、射线角度对脊髓损伤的影响程度,以优化组合出脊髓生物安全性最好的放疗方案。
     方法:
     第一部分:选用雄性成年比格犬6只,随机数字表法随机分组,模拟犬胸7~12椎体及附件转移瘤,以IGRT方式分别对6只比格犬胸7~12椎体及附件给予50、60、70、80、90和100Gy剂量的放疗,于放疗3个月后活杀取材,取相同部位、相同位置的胸7~12节段椎体骨组织、脊髓材料。采用HE染色观察不同放疗剂量组骨组织的形态学的改变,透射电镜观察不同放疗剂量骨细胞超微结构改变。采用HE染色观察不同放疗剂量组脊髓神经细胞形态学的改变,透射电镜观察脊髓神经元细胞、脊髓神经髓鞘超微结构改变,采用TUNEL法观察不同放疗剂量组脊髓神经元细胞凋亡情况。第二部分:脊柱IGRT计划中包括:放疗射野5、7、9野3水平;分割剂量16Gy、20Gy2水平;剂量率4Gy/min、6Gy/min2水平;射线角度等角度、不等角度2水平,采用L12(3×23)正交试验表对以上因素进行分配,共需12只比格犬。重复两次实验,共需36只比格犬。选用雄性成年比格犬36只,随机数字表法随机后,在5周内对其各犬胸7~12椎体行总剂量为80Gy的IGRT。并于放疗前、放疗开始后每2周进行常规MRI及弥散加权成像(diffusion-weighted imaging,DWI)检测;于放疗前、放疗后12小时、1天、1周、2周分别检测皮质体感诱发电位(corticalsomatosensory evoked potential,CSEP)和运动诱发电位(motorevoked potential,MEP)。采用spss19.0统计分析软件包进行数据处理,所测数据均以±s表示,采用正交实验的方差分析法,α=0.05,当P<0.05时认为差异有统计学意义。第三部分:脊柱IGRT计划中包括:放疗射野5、7、9野3水平;分割剂量16Gy、20Gy2水平;剂量率4Gy/min、6Gy/min2水平;射线角度等角度、不等角度2水平,采用L12(3×23)正交试验表对以上因素进行分配,共需12只比格犬。重复两次实验,共需36只比格犬。选用雄性成年比格犬36只,随机数字表法随机后,在5周内对其各犬胸7~12椎体行总剂量为80Gy的IGRT。并于放疗3个月后活杀取材,取各犬相同节段、相同部位(胸7~12)脊髓。采用HE染色观察脊髓神经细胞形态学的改变,透射电镜观察脊髓神经细胞超微结构改变,采用TUNEL法定量测定脊髓神经细胞凋亡情况,采用免疫组织化学法半定量测定脊髓组织中Caspase-3蛋白表达量,采用RT-PCR方法定量测定脊髓组织中Caspase-3mRNA基因表达量。采用spss19.0统计分析软件包进行数据处理,所测数据均以±s表示,采用正交实验的方差分析法,α=0.05,当P<0.05时认为差异有统计学意义。
     结果:
     第一部分:①本研究所应用的方法可以较好地模拟临床的脊柱图像引导放射治疗,各组犬实验顺利,效果良好;②HE染色、透射电镜、免疫组织化学法及RT-PCR法结果均提示:放疗总剂量如果达到80Gy,则达到骨坏死的病理标准,椎体骨不再具有再生能力。放疗总剂量如果大于80Gy,则脊髓生物安全性不能得到保证。第二部分:①DWI、CSEP和MEP均可敏感地检测脊柱IGRT后脊髓的损伤。②DWI、CSEP和MEP均提示:当单次放疗剂量为16Gy,剂量率为4Gy/min、射野数为9野及射线角度为等角度时,脊柱IGRT的脊髓生物安全性最好。第三部分:HE染色、透射电镜、TUNEL结果、免疫组织化学法及RT-PCR法检测Caspase-3蛋白及mRNA表达结果均提示:当单次放疗剂量为16Gy,剂量率为4Gy/min、射野数为9野及射线角度为等角度时,脊柱IGRT的脊髓生物安全性最好。
     结论:
     第一部分:①本研究提供了一种建立犬精确脊柱图像引导放射治疗模型的方法。②通过筛选犬脊柱IGRT放疗计划,在确保脊髓生物安全性的前提下,确定80Gy是最大的放疗总剂量。第二部分:①DWI、CSEP和MEP对放射性脊髓损伤检测敏感,可以在脊柱IGRT时定期检测,以预防放射性脊髓损伤的发生。②单次放疗剂量为16Gy,剂量率为4Gy/min、射野数为9野及射线角度为等角度的组合是脊柱IGRT的较优方案。第三部分:①HE染色、透射电镜、TUNEL结果、免疫组织化学法及RT-PCR法检测Caspase-3蛋白及mRNA表达结果与DWI、CSEP和MEP的结果相吻合。②单次放疗剂量为16Gy,剂量率为4Gy/min、射野数为9野及射线角度为等角度的组合是脊柱IGRT的较优方案。
Objective:
     Section One: Establishment the model of the image guided radiation therapy ofspinal in beagle, by comparing the the biological safety effect in spinal cord of differentprograms spine image guided radiation therapy in beagle, inorder to screen the highesttotal irradiation doses.Section Two: Based on the orthogonal design principle, throughthe MRI, electromyography detecting radiotherapy after spinal cord injury, this paperdiscusses the spine IGRT plan: different levels of radiation dose, radiation field,segmentation dose rate, radiation angle to the influence degree of the spinal cord injury,in order to optimize the combination the biological safety of spinal cord best radiationscheme. Section Three: Based on the orthogonal design principle, through the HEstaining and transmission electron microscope, TUNEL (terminal deoxynucleotidyltransferase mediated dUTP nick and labeling) method, immunohistochemistry methodsand RT-PCR method were used after spinal cord injury, this paper discusses the spineIGRT plan: different levels of radiation dose, radiation field, segmentation dose rate,radiation angle to the influence degree of the spinal cord injury, in order to optimize thecombination the biological safety of spinal cord best radiation scheme.
     Methods:
     Section One: Select purebred beagles and six were randomly divided: Six beagleswere irradiated by eight different models of IGRT, and the total irradiation doses were50Gy60Gy70Gy80Gy90Gy and100Gy. Mimic a beagle clinical model of tumor inthe seventh and twelveth thoracic vertebrae. The samples of spinal cord and vertebralbody bone tissue were taken out from the same locum of the seventh and twelveththoracic vertebrae on third month after radiation. The samples of the vertebral body bone tissue were observed by the hematoxylin and eosin stain and the electron microscop. Thesamples of the spinal cord were observed by the hematoxylin and eosin stain and theelectron microscopee, to observe the change of the spinal nerve cells, spinal vascularendothelial cell ultrastructure. Terminal deoxynucleotidyl transferase mediated dUTPnick and labeling (TUNEL) technique was used to examine the apoptotic cells in thespinal nerve cells. Section Two: Spine IGRT plan includes: radiation dose (16Gy,20Gy),radiation field (5,7,9wilds), segmentation dose rate (4Gy/min,6Gy/min), radiationangle (equal angle, unequal angle), using L12(3×23) orthogonal test table to the abovefactors on distribution, a total of12beagles needed. Repeat the experiment two times, atotal of36beagles needed. Choose36male adult beagles, random number table methodrandom, in5weeks on the each beagles chest7~12vertebral bodies for IGRT.Conventional MRI and diffusion-weighted imaging (DWI) were carried out every2weeks before radiotherapy and after began to radiotherapy. Cortical somatosensoryevoked potential (CSEP) and motorevoked potentialminimum-error-probability (MEP)were carried out before radiotherapy and radiotherapy after12hours,1day,1week,2weeks respectively.Section Three: Spine IGRT plan includes: radiation dose (16Gy,20Gy), radiation field (5,7,9wilds), segmentation dose rate (4Gy/min,6Gy/min),radiation angle (equal angle, unequal angle), using L12(3×23) orthogonal test table to theabove factors on distribution, a total of12beagles needed. Repeat the experiment twotimes, a total of36beagles needed. Choose36male adult beagles, random number tablemethod random, in5weeks on the each beagles chest7~12vertebral bodies for IGRT.The samples of spinal cord were taken out on the3th month after radiation. The sampleswere observed by the hematoxylin and eosin stain and the electron microscope. Terminaldeoxyn-ucleotidyl transferase mediated dUTP nick and labeling (TUNEL) technique wasused to examine the apoptotic cells in the spinal cord. The expression of Caspase-3andCaspase-3mRNA were evaluated in spine by immunohistochemistry and RT-PCR.
     Results:
     Section One:①This research application method can simulate the spine clinicalimage-guided radiation therapy, the dog experiment smoothly, and good effect.②Theresults of the the hematoxylin and eosin stain and the electron microscope, and theexpression of Caspase-3and Caspase-3mRNA evaluated in spine byimmunohistochemistry and RT-PCRprompted that: if the total radiation dose was80Gy,then achieved osteonecrosis pathological standard, vertebral body bone regeneration were no longer. The total radiation dose if more than80Gy, the spinal cord biological safetycouldnot be guaranteed. Section Two:①DWI, CSEP and MEP can sensitively detectspinal cord injury after spine IGRT.②DWI, CSEP and MEP suggested: when radiationdose was16Gy, segmentation dose rate was4Gy/min, radiation field was9wilds andradiation angle was equal angle, the biological safety of the spinal cord was thebest.Section Three:①The results of the the hematoxylin and eosin stain and the electronmicroscope, the terminal deoxynucleotidyl transferase mediated dUTP nick and labeling(TUNEL) technique, and the expression of Caspase-3and Caspase-3mRNA evaluated inspine by immunohistochemistry and RT-PCR prompted that: when radiation dose was16Gy, segmentation dose rate was4Gy/min, radiation field was9wilds and radiationangle was equal angle, the biological safety of the spinal cord was the best.
     Conclusions:
     Section One:①Research provides a beagle accurate spine image-guided radiationtherapy model establishment method.②Through the screening beagle spine IGRTradiotherapy planning, to ensure the safety of the spinal cord in biological premise, the80Gy is the biggest total dose radiation therapy. Section Two:①DWI, CSEP and MEPcan sensitively detect spinal cord injury after spine IGRT. DWI, CSEP and MEP could bedetected in the spine IGRT periodically to prevent the occurrence of radioactive spinalcord damage occurs.②The better spine IGRT program is radiation dose of16Gy,segmentation dose rate of4Gy/min, radiation field of9wilds and radiation angle of equalangle.Section Three:①HE staining and transmission electron microscope, TUNELresults, immune histochemical method and RT-PCR method to detect Caspase3proteinand mRNA expression results and DWI, is the result of MEP and CSEP can match.②The better spine IGRT program is radiation dose of16Gy, segmentation dose rate of4Gy/min, radiation field of9wilds and radiation angle of equal angle.
引文
[1]李晔,赵宏,王以朋.脊柱转移瘤的临床治疗进展[J].中华医学杂志,2009,89(33):2372-2374.
    [2]赵快乐.食管癌的精确放射治疗[J].中国癌症杂志,2008,18(5):350-353.
    [3]宫大鑫,孔垂泽. T3期前列腺癌的治疗进展[J].中华外科杂志,2009,47(10),740-741.
    [4]周志国,乔学英,高献书,等.食管癌三维适形放疗临床靶体积研究[J].中华放射肿瘤学杂志,2009,18(2):86-87.
    [5]张玉海,李月敏,夏火生,等.直肠癌术后调强放疗和三维适形放疗剂量学比较研究[J].肿瘤研究与临床,2009,21(8):450-452.
    [6] Lian J, Mackenzie M, Joseph K, et a1. Assessment of extended-field radiotherapyfor stage Ⅲc endometrial cancer using three-dimensional conformal radiotherapy,intensity modulated radiotherapy, and helical tomotherapy[J]. Int J Radiat OncolBiol Phys,2008,70(3):935-943.
    [7]冯平柏.实用肿瘤调强放射治疗[M].第2版,江苏科学技术出版社,2006,599-615.
    [8] Yamada Y, Lovelock DM, Bilsky MH. A review of image-guided intensity-modulated radiotherapy for spinal tumors[J]. Neurosurgery.2007,61(2):226-235.
    [9]锡林宝勒日,徐万龙,白靖平,等.脊柱IMRT和普通放疗脊髓生物安全性的比较[J].中华放射医学与防护杂志,2010,30(1):17-21.
    [10]朱广迎.放射肿瘤学[M].第2版.北京:科学技术文献出版社,2009:76-80.
    [11]史建平,薛景,包瑞康,等.前程适形+后程IMRT治疗局部晚期鼻咽癌临床分析[J].山东医药,2009,49(21):69-70.
    [12] Fenogliettoa P, Laliberteb B, Allawa P, et a1. Persistently better treatment planningresults of intensity-modulated(IMRT)over conformal radiotherapy(3D-CRT)inprostate cancer patients with significant variation of clinical target vdume and/ororgans-at-risk[J]. Radiother Oncol,2008,88(1):77-88.
    [13]周钢,田野,陆雪官,等.乳腺癌保乳术后适形及调强的三种放疗计划比较[J].中华放射医学与防护杂志,2009,29(4):412-413.
    [14]邢晓汾,郑亚琴,刘建庭,等.肺癌合并纵隔淋巴结转移的三维适形放疗和调强放疗的剂量学研究[J].肿瘤研究与临床,2010,21(3):180-182.
    [15]李建福,程天民,冉新泽,等.胫骨放射性损伤病理学改变的实验研究[J].中华放射医学与防护杂志,2002,22(6):426-428.
    [16] Birkner R, Consentius K. Demonstration of chronic radiation injures and theirsignificance[J]. Strahlenschutz Forsch Prax,1976,15(1):65-76.
    [17] Bujold A, Craig T, Jaffray D, et al. Image-guided radiotherapy:has it influencedpatient outcomes?[J]. Semin Radiat Oncol.2012;22(1):50-61.
    [18] Takahashi S, Sugimoto, Kotoura, Y, et al. Long-term changes in the Haversinasytem following high-does irradiation. An ultrastructural and quantitativehistomorpholgical study[J]. J Bone Joint Surg Am,2008,76(4):722-728.
    [19] Zhang Z, Zhong N, Gao H, et al. Inducing apoptosis and upregulation of Bax andFas ligand expression by allicin in hepatocellular carcinoma in Balblc nude mice[J].Chin Med J2006,119(5):422-425.
    [20]徐小雅,金慰芳,王洪复,等.电离辐射致股骨头坏死早期病理特点和机制的研究[J].中华放射医学与防护杂志,2009,29(3):264-267.
    [21] Xiong Y, Zhang D. Effect of retinoic acid on apoptosis and expression of Fasproteins in mouse blastocysts cultured in vitro[J]. J Huazhong Univ Sci TechnologMed Sci.2008;28(3):239-242.
    [22] Zhang ZM, Zhong N, Gao HQ, et al. Inducing apoptosis and upregulation of Baxand Fas ligand expression by allicin in hepatocellular carcinoma in Balb/c nudemice.[J]. Chin Med J(Engl).2006;119(5):422-425.
    [23]锡林宝勒日,徐万龙,陈刚,等.脊柱IMRT和普通放疗脊髓生物安全性的比较[J].中华放射医学与防护杂志,2010,30(1):17-21.
    [24] Schultheiss, Falcone T, Jeffrey M. Heat-shock proteins modulate the incidence ofapoptosis and oxidative stress in preimplantation mouse embryos[J]. Fertil Steril,2007,87(5):1214-1217.
    [25] Bijl P, van P, Coppes P, et al. Regional differences inRadiosensitivity across the ratcervicalspinal cord[J]. Int J RadiatOncol Biol Phys,2005,61(2):543-551.
    [26]祝淑钗,李娟,邱嵘,等.三维适形放射治疗计划评价食管癌根治术后预防性照射野[J].中华放射肿瘤学杂志,2004,13(1):21-25.
    [27]白志刚,潘腾升,徐坚,等.60Coγ线条件下食管癌三维适形放疗中脊髓受照量的分析[J].中国肿瘤临床与康复杂志,2009,16(1):15-18.
    [28]于金明,袁双虎.图像引导放射治疗研究及其发展[J].中华肿瘤杂志,2006,28(2):81-83.
    [29]戴建荣,胡逸民.图像引导放疗的实现方式[J].中华放射肿瘤学杂志,2006,15(2):132-135.
    [30]田菲,徐子海,王华峰.图像引导放射治疗技术的研究现状与发展[J].临床医学工程,2012,19(5):833-836.
    [31]秦永辉,黄莉,王若峥.图像引导放射治疗的临床应用[J].新疆医科大学学报,2012,35(3):297-300.
    [32] Den RB, Doemer A, Kubicek G, et al. Daily image guidance with cone-beamcomputed tomography for head-and-neck cancer intensity-modulated radiotherapy:aprospective study[J]. Int J Radiat Oncol Biol Phys,2010,76(5):1353-1359.
    [33]王瑾,许峰,柏森,等.千伏级锥形束断层扫描在鼻咽癌适形调强放射治疗中的初步应用[J].癌症,2008,27(5):761-765.
    [34] Ceizyk M, Nguyen NP, Vos P, et al. Effectiveness of imageguided radiotherapy forlaryngeal sparing in head and neck cancer[J]. Oral Oncol.2010,46(4):283-286.
    [35] Han CH, Chen YJ, Liu A, et al. Actual dose variation of parotid glands and spinalcord for nasopharyngeal cancer patients during radiotherapy[J]. Int J Radiat OncolBiol Phys,2008,70(4):1256-1262.
    [36] Yang BB, Wang J, Zhong RM, et al. Volumetric and geometric changes of parotidsoccurring during IMRT for nasopharyngeal carcinoma(NPC)using daily CBCT[J].Sichuan Da Xue Xue Bao Yi Xue Ban,2010,41(6):1024-1028.
    [37]李建成. CBCT配6D治疗床对食管癌放疗摆位偏差的纠正[J].肿瘤预防与治疗,2011,24(1):33-35.
    [38] Yamashita H, Haga A, Hayakawa Y, etal. Patient setup error and day-to-dayesophageal motion error analyzed by conebeam computed tomography inradiation therapy[J]. Acta Oncol,2010,49(4):485-490.
    [39] Renaud J, Yartsev S, Dar AR, et a1. Adaptive radiation therapy for localizedmesothelioma with mediastinal metastasis using helical tomotherapy[J]. MedDosim,2009,34(3):233-242.
    [40] Gottlieb KL, Hansen CR, Hansen O, et al. Investigation of respiration inducedintra-and inter-fractional tumour motion using a standard Cone Beam CT[J]. ActaOncol,2010,49(7):1192-1198.
    [41] Hawkins MA, Brooks C, Hansen VN, et al. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer[J]. Int JRadiat Oncol Biol Phys,2010,77(2):378-383.
    [42]张爱华,胡健. OBI系统CBCT引导下的腹部调强患者位置验证的应用分析[J].医疗卫生装备,2010,31(11):82-83.
    [43]李炯雁,郭小毛,姚伟强,等.在线千伏级锥形束CT引导前列腺癌调强放疗摆位误差研究[J].中华放射肿瘤学杂志,2010,19(6):541-543.
    [44] Al-Halabi H, Portelance L, Duclos M, et al. Cone beam CTbased three-dimensionalplanning in high-dose-rate brachytherapy for cervical cancer[J]. Int J Radiat OncolBiol Phys,2010,77(4):1092-1097.
    [45] Deng J, Chen Z, Yu JB, et al. Testicular doses in imageguided radiotherapy ofprostate cancer[J]. Int J Radiat OncolBiol Phys,2012,82(1):39-47.
    [46] Pawlowski JM, Yang ES, Malcolm AW, et al. Reduction ofdose delivered toorgans at risk in prostate cancer patients via image-guided radiation therapy[J]. IntJ Radiat Oncol Biol Phys,2010,76(3):924-934.
    [47] Olivera GH, Mackie TR, Ruchala K, et al. Adaptive radiationtherapy (ART)strategies using helical tomotherapy[M]. Bortfeld T, Schmidt Ullrich R, De NeveW, et al. Image-Guided IMRT. Heidelberg:Springer Press,2006:235-245.
    [48]巩合义,于金明,王仁本.四维放射治疗的研究现状[J].中华肿瘤杂志,2007,29(7):481-483.
    [49] Bortfeld T, Schmidt-Ullrich R, De Neve W, et al. Imageguided IMRT[M].Heidelberg:Springer Press,2006:97-116.
    [50] Yan D, Vicini F, Wrong J, et a1. Adaptive radiation therapy[J]. Phys Med Biol,1997,42(1):123-132.
    [51] Verallen D. Image Guided Patient Setup[M]. Bortfeld T, Schmidt Ullrich R, DeNeve W, et al. Image-Guided IMRT. Heidelberg:Springer Press,2006:97-116.
    [52] Yan D. Image-guided/adaptive radiotherapy[M]. Schlegal W, Bortfeld T, GrosuAL. New Technologies in Radiationtherapy. Heidelberg:Springer Press,2006:321-336.
    [53] Bergqvist AS, Killian G, Erikson D, et al. Detection of Fas ligand in the bovineoviduct[J]. Anim Reprod Sci.2005;86(1-2):71-88.
    [54] Millet P, Lages CS, Ha k S, et al. Amyloid-beta peptide triggers Fas-independentapoptosis and differentiation of neural progenitor cells[J]. Neurobiol Dis.2005;19(1-2):57-65.
    [55] Stützel J, Oelfke U, Nill S. A quantitative image quality comparison of fourdifferent image guided radiotherapy devices[J]. Radiother Oncol,2008,86(1):20-24.
    [56] Perks J R, Lehmann J, Chen AM, et al. Comparison of peripheral dose fromimage-guided radiation therapy(IGRT)using kV cone beam CT to intensitymodulated radiationtherapy(IMRT)[J]. Radiother Oncol,2008,89(3):304-310.
    [57]穆向魁,余子豪.质子治疗的优越性与发展前景[J].中华放射肿瘤学杂志,2007,16(1):772-781.
    [58] Liauw SL, Sylvester JE, Morris CG, et al. Second malignancies after prostatebrachytherapy:incidence of bladder and colorectal cancers in patients with15yearsof potential follow-up[J]. Int J Radiat Oncol Biol Phys,2006,66(3):669-673.
    [59] Tamura Y, Torigoe T, Kukita K, et al. Heat-shock proteins as endogenous ligandsbuilding a bridge between innate and adaptive immunity. Immunotherapy[J].2012;4(8):841-852.
    [60]鞠永健,王高仁,缪旭东,等.放疗中呼吸引起的组织深度波动对吸收剂量的影响[J].中华放射医学与防护杂志,2007,27(1):78-80.
    [61]李黎军,朱海军,李飞舟,等.头颈部肿瘤三维适形放射治疗中的质量保证[J].中华放射医学与防护杂志,2005,25(1):67-59.
    [62] Stadnik TW, Demaerel P, Luypaert RR, et al. Imaging tutorial:differential diagnosisof bright lesions on diffusion-weighted MR images[J]. Radiographics,2003,23:e7.
    [63] Ramsay, RG, Zacharias CE. MR imaging of the spine after radiation therapy:easilyrecongnizable effects[J]. AJR,2012,144(2):1131-1134.
    [64]郝建成,郝金钢,赵宁辉,等.正常犬脊髓MR弥散成像的初步研究[J].昆明医学院学报2011,27(5):4-6.
    [65] Weber T, Vroemen M, Behr V, et al. In Vivo High-Resolution MR Imaging ofNeuropathologic Changes in the Injured Rat Spinal Cord[J]. AJNR Am JNeuroradiol,2006;27(4):598–604.
    [66]张劲松,孙立军,宦怡等. DSA引导肋间动脉栓塞分度建立犬脊髓缺血模型及扩散加权成像初步研究[J].中华放射学杂志,2006,40(5):541-544.
    [67]王新良,李玉欣,周晓琳,等.颈髓MR扩散加权成像优化b值初步研究[J].放射学实践,2010,5(25):485-488.
    [68]杨正汉,冯逢,王霄英,等.磁共振成像技术指南[M].北京:人民军医出版社,2010:264-268.
    [69]冯平柏.实用肿瘤调强放射治疗[M].第二版,江苏科学技术出版社,2008,6-17.
    [70]谷铣之,殷蔚伯,余子豪,等.肿瘤放射治疗学[M].第4版,北京:中国协和医科大学联合出版社,2008,156-172.
    [71] Motoyama Y, Kaw aguchi M, YamadaS, etal. Evaluation of combined use of transcranial and direct corical motor evoked potential monitoring during unrupturedaneurysm surgery[J]. Neurol Med Chi r(Tokyo),2011,51(1):15-22.
    [72] AI Rawi MA. Hamdan FB, Abdul-Muttalib AK. Somatosetmory evoked potentialsas a predictor for functional recovery of the upper limb in patients with stroke[J].Journal of Stroke and Cerebrovascular Diseases,2009,18(2):262-268.
    [73] Amantini A, Grippo A, Fossi S. et a1. Prediction of awakening and outcome inprolonged acute coma from severe traumatic brain injury:evidence for validity ofshort latency SEPS[J]. Clin Neuro.2005,11(2):229-235.
    [74] Thuet ED, Winscher JC, Padberg AM, etal. Validity and reliability ofintraoperative monitoring in pediatric spinal deformitysurger[J]. Spine,2010,20(15):1880-1886.
    [75] Stecker MM, Robertshaw J. Factors affecting reliability of interpretations ofintraoperative evoked potentials[J]. Clin Monit Comput,2006,20(1):47-55.
    [76]沈宁江,王广积,王先安等.皮节体感诱发电位在诊断腰骶神经根损害中的临床研究[J].临床神经电生理学杂志,2008,17(6):334-339.
    [77] Endo T, Tominaga T, Olson L. Cortical changes following spinal cord injury withemphasis on the Nogo signaling system[J]Neuroscientist,2009,15(2):291-299.
    [78] Yeon JY, Seo DW, Hong SC, etal. T ranscranial motor evoked ptent ial monitoringduring the surgical clipping of unruptured intracranial aneurysms[J]. J Neurol Sci,2010,293(1):29-34.
    [79]蔡思,逸李书纲,邱贵兴.脊柱手术中关于运动传导束的术中神经电生理学监测[J].中国骨与关节外科.2012,5(4):173-176.
    [80]王少平.急性脊髓炎患者磁刺激运动诱发电位的临床观察[J].中国实用神经疾病杂志,2012,23(15):64-65.
    [81] Lee SY. Lira JY, Kang EK, et a1. Prediction of good functional recovery afterstroke based on combined motor and somatosensory evoked potential findings[J]. JRehabil Med,2010,42(1),16-20.
    [82] Schwartz DM, Auerbach JD, Dormans JP, et a1. Neurophysiological detection ofimpending spinal cord injury during scoliosis surgery[J]. Bone Joint Surg Am,2007,89(11):2440-2449.
    [83] Vitale MG, Moore DW, Matsumoto H, et a1. Risk factors for spinal cord injuryduring surgery for spinal deformity[J]. Bone Joint Surg Am,2010,92(1):64-71.
    [84] Kishimoto R, Mizoe JE, Komatsu S, et al. MR imaging of brain injury induced bycarbon ion radiotherapy for head and neck tumors[J]. Magn Reson Med Sci.2005,4(4):159-164.
    [85] Gerszten PC, Burton SA. Clinical assessment of stereotactic IGRT:spinalradiosurgery[J]. Med Dosim.2008,33(2):107-116.
    [86] Sokolovie D, Djindjic B, Nikolic J. Melatonin reduces oxidative stress induced bychronic exposure of microwave radiation from mobile pyhones in rat brain[J]. JRadiat Res(Tokyo),2008,49(6):579-586.
    [87] Tsai JT, Lin JW, Chiu WT, et al. Assessment of image-guided Cyber Kniferadiosurgery for metastatic spine tumors.[J]. J Neurooncol.2009,94(1):119-127.
    [88] Xilin BLR, Xu WL, Wang RZ, et al. The apoptosis of neurons after intensitymodulated radiotherapy and conventional radiation therapy of the spine[J].Xinjiang Yike Daxue Xuebao.2009,32(12):1645-1647.
    [89] Chen G, Xu WL, Xilin BLR, et al. Evaluation of radiation damages of vertebralbone cells after radiotherapy in dogs[J]. Jiangsu Yiyao.2011,37(16):1882-1884.
    [90] Dahele M, Fehlings MG, Sahgal A. Stereotactic radiotherapy:an emerging treatmentfor spinal metastases[J]. Can J Neurol Sci.2011,38(2):247-250.
    [91] Lee SY. Lira JY, Kang EK, et a1. Prediction of good functional recovery afterstroke based on combined motor and somatosensory evoked potential findings[J]. JRehabil Med,2010,42(1),16-20.
    [92] Tzvetanov P, Rousseff RT, Atanassova P, et a1. Prognostic value of median andtibial somatosensory evoked potentials in acute stroke[J]. Neurosci Lett,2005,380(1):99-104.
    [93] Lira JH, Byeon YE, Ryu HH, eta1. Transplantation of canine umbilical cordblood-derived mesenchymal stem cells in experimentally induced spinal cordinjured dogs[J]. J Vet Sei,2007,8(3):275-282.
    [94] Mountney A, Zahner MR, Lorenzini I, et al. Sialidase enhances recovery fromspinal cord contusion injury[J]. Proc Natl Acad SCI USA.2010,107(25):11561-11566.
    [95] Roy FD, Yang JF, Gorassini MA. Afferent regulation of leg motor cortexexcitability after incomplete spinal cord injury[J]. J Neurophysiol.2010,103(4):2222-2233.
    [96]周成福.牛德刚.马小茹等.脊髓损伤早期凋亡调控蛋白的表达与电生理变化的关系[J].中华病理学杂志,2009,25(9),1762-1767.
    [97] Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cordmonitoring in thoracolumbar burst fractures[J]. Spinal(Phila Pa,1976)2009,34(24):2662-2668.
    [98] Wanlong Xu, Xilinbaoleri, Hao Liu, et a1. Spinal cord biological safety ofimage-guidedradiation therapy versus conventional radiation therapy[J]. Neuralregeneration research,2012,7(35):2755-2760.
    [99] Yamada Y, Lovelock DM, Bilsky MH. A review of image-guided intensitymodulated radiotherapy for spinal tumors [J]. Neurosurgery2007,61(2):226-235.
    [100]]Yamada Y, Bilsky H, Zatcky J:Single fraction image guided intensity modulatedradiotherapy(IG IMRT)for metastatic lesions of the spinal column[J]. Int J RadiatBiol.2005,63(1):155-157.
    [101]]Maranzano E, Latini P, Perrucci E. Short course radiotherapy(8Gy×2)inmetastatic spinal cord compression:an effective and feasible treatment[J]. Int JRadiat Oncol Biol Phys,1997,38(2):1037-1044.
    [102]冯文峰,黄理金,漆松涛,等.放射诱导大鼠神经元和胶质细胞凋亡及敏感性的比较研究[J].中华放射医学与防护杂志,2004,2(24):856-859.
    [103] Esfandiari N, Falcone T, Goldberg JM, et al. Heat-shock proteins modulate theincidence of apoptosis and oxidative stress in preimplantation mouse embryos[J].Fertil Steril.2007;87(5):1214-1217.
    [104] Xu WL, Bai JP, Xilin BLR, et al. The distribution of Fas, FasL and HSP70in spinalcord after intensity modulated radiotherapy. Xinjiang Yike Daxue Xuebao[J].2009;32(5):549-551.
    [105] Hevezi JM. Current IGRT, SBRT, and SRS procedures and reimbursement[J].Journal of the American College of Radiology:JACR,2010,7(9):739-740.
    [106] Chari M, Huang I, Blakemoer E Dysfunctional oligodendrocyte Porgentorcell(OPC)populations may inhibit repopulation of OPC depleted tissue[J]. JNeuorsci Res,2003,73(6):787-793.
    [107]冯文峰,黄理金,漆松涛,等.放射诱导大鼠神经元和胶质细胞凋亡及敏感性的比较研究[J].中华放射医学与防护杂志,2004,2(24):856-859.
    [108]王霄英,谭可,倪石磊等.用MR扩散张量成像评价急性犬脊髓损伤后神经前体细胞移植的作用[J].中华放射学杂志,2006,40(l):17-21.
    [109] Deo AA, Grill U, Hasan KM, et al. In vivo serial diffusion tensor imaging ofexperimental spinal cord injury[J]. Neurosci Res,2006,83(5):801-810.
    [110] AkaiH, MoriH, Aoki S, etal. Diffusion tensor tractograhy of gliomatosiscerebri:fiber tracking through the tumor[J]. J Com Put Assist Tomogr,2005,29(l):127-129.
    [111]初同伟,吴梅英,马树枝,等.不完全性急性脊髓损伤后脊髓病理改变脊髓灰质血流量和运动诱发电位变化的实验研究[J].第三军医大学学报,2000,22(8):750-753.
    [1] Stock M, Palm A, Altendorfer A, et al. IGRTinduced dose burden for a variety ofimaging protocols at two different anatomical sites[J]. Radiotherapy andoncology:journal of the European Society for Therapeutic Radiology and Oncology,2012,102(3):355-363.
    [2]于金明,袁双虎.图像引导放射治疗研究及其发展[J].中华肿瘤杂志,2006,28(2):81-83.
    [3] Kliton J, Agoston P, Major T, et al. Patient positioning using in-room kV CTforimage-guided radiotherapy(IGRT)of prostate cancer[J]. Magyar onkologia,2012,56(3):193-198.
    [4]巩合义,于金明,王仁本.四维放射治疗的研究现状[J].中华肿瘤杂志,2007,29(7):481-483.
    [5] Kry SF, Jones J, Childress NL. Implementation and evaluation of an end-to-endIGRTtest[J]. Journal of applied clinical medical physics/American College ofMedical Physics.2012,13(5):3939.
    [6] Chang Z, Bowsher J, Cai J, et al. Imaging system QA of a medical accelerator,Novalis Tx, for IGRT per TG142:our1year experience[J]. Journal of XinjiangMedical University. Journal of applied clinical medical physics/American Collegeof Medical Physics,2012,13(4):3754.
    [7] Stoiber EM, Schwarz M, Huber PE, et al. Comparison of two IGRTcorrectionstrategies in postoperative head-and-neck IMRT patients[J]. Acta oncologica(Stockholm, Sweden),2013,52(1):183-186.
    [8] Shi C, Tazi A, Fang DX, et al. Fast compressed sensing-based CBCTreconstructionusing Barzilai-Borwein formulation for application to on-line IGRT[J]. Medicalphysics,2012,39(3):1207-1217.
    [9] Stützel J, Oelfke U, Nill S. A quantitative image quality comparison offour differentimage guided radiotherapy devices[J]. Radiother Oncol,2008,86(1):20-24.
    [10] Perks J R, Lehmann J, Chen AM, et al. Comparison of peripheral dosefromimage-guided radiation therapy(IGRT)using kV cone beam CTto intensitymodulated radiationtherapy (IMRT)[J]. Radiother Oncol,2008,89(3):304-310.
    [11] Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-doseimage guided radiotherapy compared with non-IGRTfor the treatment of clinicallylocalized prostate cancer[J]. International journal of radiation oncology, biology,physics,2012,84(1):125-129.
    [12] Wang L, Kielar KN, Mok E, et al. An end-to-end examination of geometric accuracyof IGRTusing a new digital accelerator equipped with onboard imaging system[J].Physics in medicine and biology,2012,57(3):757-769.
    [13] Park SS, Yan D, McGrath S, et al. Adaptive image-guided radiotherapy (IGRT)eliminates the risk of biochemical failure caused by the bias of rectal distension inprostate cancer treatment planning:clinical evidence[J]. International journal ofradiation oncology, biology, physics.2012,83(3):947-952.
    [14] Teke T, Gill B, Duzenli C, et al. A Monte Carlo model of the Varian IGRTcouch topfor RapidArc QA[J]. Physics in medicine and biology,2011,56(24):N295-305.
    [15] Valeriani M, Monaco F, Osti MF, et al. Hypofractionated radiotherapy with orwithout IGRTin prostate cancer:preliminary report of acute toxicity[J]. Anticancerresearch,2011,31(10):3555-3558.
    [16] Peng JL, Kahler D, Li JG, et al. Feasibility study of performing IGRTsystem dailyQA using a commercial QA device[J]. Journal of applied clinical medicalphysics/American College of Medical Physics,2011,12(3):3535.
    [17] Mohammed N, Kestin L, Grills I, et al. Comparison of IGRTregistration strategiesfor optimal coverage of primary lung tumors and involved nodes based on multiplefour-dimensional CTscans obtained throughout the radiotherapy course[J].International journal of radiation oncology, biology, physics,2012,15;82(4):1541-1548.
    [18] Li T, Thongphiew D, Zhu X, et al. Adaptive prostate IGRTcombining onlinere-optimization and re-positioning:a feasibility study[J]. Physics in medicine andbiology,2011,56(5):1243-1258.
    [19] Shi W, Li JG, Zlotecki RA, et al. Evaluation of kV cone-beam CTperformance forprostate IGRT:a comparison of automatic grey-value alignment to implantedfiducial-marker alignment[J]. Nuklearmedizin. Nuclear medicine,2010, Suppl(1):S50-52.
    [20] Barney BM, Lee RJ, Handrahan D, et al. Image-guided radiotherapy (IGRT) forprostate cancer comparing kV imaging of fiducial markers with cone beamcomputed tomography(CBCT)[J]. International journal of radiation oncology,biology, physics,2011,80(1):301-305.
    [21] Nagesha DK, Tada DB, Stambaugh CK, et al. Radiosensitizer-eluting nanocoatingson gold fiducials for biological in-situ image-guided radio therapy(BIS-IGRT)[J].Physics in medicine and biology,2010,55(20):6039-6052.
    [22] Hevezi JM. Current IGRT, SBRT, and SRS procedures and reimbursement[J].Journal of the American College of Radiology:JACR,2010,7(9):739-740.
    [23] Lisbona A, Averbeck D, Supiot S, et al. IMRT combined to IGRT:increase of theirradiated volume. Consequences?[J]. Cancer radiotherapie:journal de la Societefrancaise de radiotherapie oncologique,2010,14(6):563-570.
    [24] Cho B, Poulsen PR, Keall PJ. Real-time tumor tracking using sequential kVimaging combined with respiratory monitoring:a general framework applicable tocommonly used IGRTsystems[J]. Physics in medicine and biology,2010,55(12):3299-3316.
    [25] Sangalli G, Passoni P, Cattaneo GM, et al. Planning design of locally advancedpancreatic carcinoma using4DCTand IMRT/IGRTtechnologies[J]. Acta oncologica(Stockholm, Sweden),2011,50(1):72-80.
    [26] Graff P, Hu W, Yom SS, et al. Does IGRTensure target dose coverage of head andneck IMRT patients?[J]. Radiotherapy and oncology:journal of the EuropeanSociety for Therapeutic Radiology and Oncology,2012,104(1):83-90.
    [27] Liauw SL, Sylvester JE, Morris CG, et al. Second malignancies afterprostatebrachytherapy:incidence of bladder and colorectal cancers inpatients with15yearsof potential follow-up[J]. Int J Radiat OncolBiol Phys,2006,66(3):669-673.
    [28] Handsfield LL, Yue NJ, Zhou J, et al. Determination of optimal fiducial markeracross image-guided radiation therapy(IGRT)modalities:visibility and artifa CTanalysis of gold, carbon, and polymer fiducial markers[J]. Journal of applied clinicalmedical physics/American College of Medical Physics.2012,13(5):3976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700