用户名: 密码: 验证码:
耳甲区电针调节ZDF大鼠血浆褪黑素缓解神经痛及降糖效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褪黑素(Melatonin,MLT)又称为褪黑激素,在哺乳动物中,一般认为主要由松果体分泌,其分泌具有昼夜节律特点。从褪黑素被发现到现在已有近100年的时间。随着研究的深入,人们对它作用的认识愈加广泛,除了与昼夜、季节、光照、生理周期、甚至生命周期相关的一些生理反应与生理功能外,褪黑素还在缓解疼痛、调节血糖、减肥、抗抑郁等方面被深入地探究,且研究者对褪黑素的研究热情经久不衰。
     相对于人类对于褪黑素近百年的研究,中国的传统医学理论可以被追溯至两千年前,而针刺疗法则更加久远。在中医理论形成后,针刺的作用机制被概括为“调和阴阳”,而究竟如何“调和”,传统理论并未给出一个令人信服的答案,而“阴、阳”二字的由来确是因为古人对光的观察,继而推演到对自然界昼夜、季节的更替阐释并联系到人自身的生理、病理。褪黑素作为一种跟光调节密切联系的生物信号载体,并可以产生广泛作用的激素,成为联系自然光照变化节律与人体生物节律的一个纽带。针刺的一些适应病症也恰与褪黑素缺乏类的病症相重合,这不由的让我们大胆联想,调节褪黑素分泌可能是产生针刺复合效应的机制之一。
     我们前期的实验发现,耳甲区存在迷走神经耳支传入纤维的分布,恰当的电刺激能够产生迷走神经刺激的效果(VNS),继而产生镇痛、调节血糖、抗癫痫、抗抑郁、抗炎、降血压等功效,并观察到刺激耳甲区所产生的中枢神经核团的放电及神经递质和相关蛋白的改变。另外,文献记载了研究者对针刺疗法和外源褪黑素协同作用的研究,认为外源褪黑素与针刺效应有相互促进的作用。我们的预实验重复了耳甲区电刺激对于病理模型大鼠镇痛、降糖及抗抑郁效应的观察,发现耳甲区电刺激后,病理模型大鼠血浆褪黑素浓度的提高。这些线索让我们联想到,耳迷走神经电刺激可以缓解病理疼痛模型大鼠的痛阈,降低糖尿病大鼠模型的血糖并促进其胰岛素分泌,缓解慢性应激大鼠模型的抑郁症状,这些情形可能有褪黑素的参与,并且耳迷走神经电刺激促进了褪黑素的分泌,提高了血浆褪黑素的浓度,从而产生或者加强了上述效应。
     本实验中,我们选用了Zucker Diabetes Fat (ZDF)大鼠作为模型。这种模型大鼠具有(fa/fa)肥胖基因,并有遗传性,在特殊饲料诱导下逐渐自发高血糖、高血脂、胰岛素抵抗等2型糖尿病(T2DM)的典型症状,肥胖,并发感觉神经痛等T2DM并发症,在国际上广泛用于T2DM及其并发症以及肥胖、代谢类疾病的研究,比传统胰岛β细胞损毁或部分损毁配合高脂饲料诱导的T2DM模型有着无可比拟的优势。这种模型在我们耳-迷走反射针刺效应系列研究中的应用尚属首次,耳迷走神经调节褪黑素分泌来产生针刺效应也是一个较新的研究思路。
     实验流程:
     1耳甲区电针对ZDF大鼠体重、摄食的影响
     1.1动物分组
     实验采用雄性6-8周龄Zucker Diabetes Fat (ZDF)大鼠及Zucker Lean(ZL)。ZL大鼠予以普通颗粒大鼠维持饲料喂养,ZDF大鼠予以Purina#5008(粗蛋白23.5%、粗脂肪6.5%)颗粒料饲养以诱导T2DM。所有大鼠自由饮水,维持8:00-20:00光照、20:00-8:00黑暗交替的行为学实验独立动物房中适应性饲养3天,实验室温度22±1℃,湿度50±5%,每笼4-6只。
     分组情况如下:
     1.2实验结果
     1.2.1体重与内脏脂肪比
     1)体重
     同周龄ZL大鼠与ZDF大鼠在实验前相比较,ZL大鼠平均比ZDF大鼠体重轻9%左右(P<0.05)。经过30天电针干预后,ZL大鼠和ZDF大鼠分别与各自的空白对照组相比,耳甲区电针组(EA-ACR)体重增长较低,MLT腹腔注射组.(MTL-ZDF)与N-ZDF组相比较也较轻(P<0.05),而耳缘电刺激组(EA-AE)与其空白对照组(Naive, N)相比无统计学差异(P>0.05)。从趋势上来看,ZL与ZDF对照组在体重增长率上(κ=(y-b)/x)有差异(P<0.05),N-ZDF体重增长较N-ZL组要快,N-ZDF与N-ZL末次体重测量有极显著差异(P<0.01)。
     1.2.2摄食量
     与N-ZL组相比,ZDF组30日均摄食量显著较大(P<0.01),而在ZL组的电针干预的两组组(EA-AE, EA-ACR)其摄食量较低(P>0.05),但这两组间没有统计学差异(P>0.05);与N-ZDF组比较,MLT-ZDF组30日均摄食量较低(P<0.05),而ZDF电针干预的两组(EA-AE-ZDF, EA-ACR-ZDF)与N-ZDF之间没有统计学差异(P>0.05)
     2耳甲区电针对ZDF大鼠疼痛行为的影响
     2.1动物分组
     2.2实验结果
     2.2.1机械痛阈
     在手术前,各组比较均无显著差异(P>0.05);手术及电针刺激30天后,与N-ZL组相比,ZDF大鼠各组机械刺激收爪时间显著下降(P<0.01),与N-ZDF相比,C-ZDF(?)且收抓时间更低(P<0.05);而ZDF耳甲区电刺激(EA-ACR-C-ZDF)与MLT干预组(MLT-C-ZDF)较N-ZD和C-ZDF组高(P>0.05)。从各组变化趋势上来看,N-ZL组前后变化无显著差异(P>0.05),N-ZDF组30天后较之前相比显著降低(P<0.01),ZDF的3个CCI手术组在术后机械刺激收爪时间显著下降(P<0.01),EA-ACR-C-ZDF与MLT-C-ZDF丙组干预后械刺激收爪时间有持续稳定的回升,且高于N-ZDF组(P<0.05),MLT-C-ZDF组与EA-ACR-C-ZDF组之间无统计学差异(P>0.05)。
     2.2.2热痛阈
     在手术前,各组比较均无显著差异(P>0.05);手术及电针刺激30天后,与N-ZL组相比,ZDF大鼠各组机械刺激收爪时间下降(P<0.05;C-ZDF P<0.01) MLT-C-ZDF(?)且无统计学差异(P>0.05):与N-ZDF相比,C-ZDF组收抓时间较低(P<0.05),MTL-C-ZDF组较高(P>0.05),EA-ACR-C-ZDF组无统计学差异(P>0.05);与C-ZDF组相比,EA-ACR-C-ZDF组较高(P<0.05),MTL-C-ZDF组显著升高(P<0.01);MTL-C-ZDF组与EA-ACR-C-ZDF组比较,MTL-C-ZDF组较高(P>0.05)。从各组变化趋势上来看,N-ZL组前后变化无显著差异(P>0.05),Z-ZDF组30天后较之前相比降低(P<0.05),ZDF的3个CCI手术组在术后机械刺激收爪时间下降(P<0.05;C-ZDF, MLT-C-ZDF P<0.01), EA-ACR-C-ZDF与MLT-C-ZDF两组干预后械刺激收爪时间有所回升,MLT-C-ZDF组与C-ZDF组(P<0.05)与EA-ACR-C-ZDF组(P<0.01)相比回升较为显著。
     3耳甲区电针对ZDF大鼠血浆相关生化指标的影响
     3.1动物分组
     3.2实验结果
     3.2.1血糖
     实验前同周龄的ZDF大鼠与ZL大鼠相比血糖水平已有差异,ZDF大鼠血糖显著高于ZL大鼠血糖水平(P<0.01);与ZDF空白对照组相比(N-ZDF), ZDF其余三个干预组的血糖均有下降(P<0.05),且EA-ACR-ZDF组与MLT-ZDF组的血糖下降尤为显著(P<0.01);ZL各组间血糖比较未见明显差异(P>0.05);从前后变化趋势上来看,ZL大鼠血糖较为平稳,ZDF大鼠血糖实验前后比较均显著增高(P<0.01),MLT-ZDF组在第2周时表现了较好的血糖控制作用(P<0.05),但在第4周时血糖有所回升,而EA-ACR-ZDF与EA-AE-ZDF组在第3周和第4周时表现了较好的血糖控制作用(P<0.05)。
     3.2.2褪黑素
     实验后各组大鼠血浆褪黑素水平与N-ZL组比较,ZDF各组均有显著差异,ZDF组中N.EA-AE、M、X褪黑素水平显著较低(P<0.01),EA-ACR、EA-ACR-C、M-C褪黑素较低(P<0.05);ZL组中EA-ACR褪黑素较N组高(P>0.05),EA-AE组无显著差异。ZDF组中,与N-ZDF组比较,EA-ACR、EA-ACR-C、M-C组褪黑素水平升高(P<0.05),C组褪黑素水平下降(P<0.05)。ZDF组中,EA-ACR与EA-AE、M组比较褪黑素水平较高(P<0.05); EA-ACR-C、M-C组较C组显著较高(P<0.01)。ZL组中,N与EA-AE组无显著差异(P>0.05);ZDF组中,N、AE-EA、M组之间无显著差异(P>0.05),EA-ACR-C与M-C之间无显著差异(P>0.05)。
     3.2.3糖化血红蛋白(Glycosylated hemoglobin, Gh)
     实验后各组间大鼠血浆糖化血红蛋白水平,与N-ZL组比较,ZDF组中N、EA-AE、M组糖化血红蛋白血浆浓度较高(P<0.05),其中ZDF中N、EA-AE显著较高(P<0.01),ZL组中EA-AE、EA-ACR组无显著差异,EA-ACR-ZDF组亦无显著差异;EA-ACR-ZDF组与N-ZDF、EA-AE-ZDF比较显著较低(P<0.01),与M-ZDF比较较高(P<0.05)。
     3.2.4胰岛素
     实验后大鼠各组血浆胰岛素水平变化,与N-ZL相比,EA-ACR-ZL组、N-ZDF组、EA-ZCR-ZDF组、M-ZDF组较高(P<0.05),其中EA-ACR干预的两组血浆胰岛素水平显著较高(P<0.01);ZL组中,EA-ACR干预组血浆胰岛素水平较EA-AE组显著增高(P<0.01);ZDF组中,EA-ACR干预组较其余各组均显著增高(P<0.01);而N-ZL与EA-AE组相比无统计学差异(P>0.05), N-ZDF组、EA-AE组、M-ZDF组之间亦无统计学差异(P>0.05)。
     3.2.5五羟色胺(5-HT)
     实验后各组血浆5-HT水平,与N-ZL、N-ZDF、C-ZDF组相比,EA-ACR-C-ZDF组(P<0.01)与M-C-ZDF组(P<0.05)显著升高;EA-ACR-C-ZDF与M-C-ZDF组相比较高(P<0.05); N-ZL、N-ZDF、C-ZDF之间没有显著差异(P>0.05)。
     4电针刺激对ZDF大鼠中枢相关受体表达的影响
     4.1动物分组
     同“3.1动物分组”。
     4.2实验结果
     4.2.1免疫荧光
     从图11、12中可以观察到,N-ZL、EA-ACR-ZL、EA-ACR-ZDF、M-ZDF组mt1受体与INSRβ受体在下丘脑部共同表达;EA-AE-ZL、EA-AE-ZDF组仅见mt1受体表达;N-ZDF组未见mt1受体与INSRP受体表达。N-ZL、 EA-ACR-C-ZDF、M-C-ZDF组mt1受体与5-HT1AR受体在脊髓腰膨大共同表达;N-ZDF组与C-ZDF组未见mt1受体与5-HT1AR受体表达。
     4.2.1Western blot
     mt1在下丘脑部的表达水平,与N-ZL相比,N-ZDF组较低(P<0.05),EA-ACR-ZL组,EA-AE-ZDF组,EA-ACR-ZDF组,M-ZDF组显著升高;与Z-ZDF相比,EA-ACR-ZL组,EA-AE-ZDF组,EA-ACR-ZDF组,M-ZDF组升高(P<0.05),其中EA-ACR-ZL组显著提高(P<0.01),ZL组中EA-ACR组比EA-AE组亦有显著提高;而N-ZL组与EA-AE-ZL组无统计学差异,ZDF干预组之间亦无统计学差异。mt1在脊髓腰膨大部的表达水平,与N-ZL相比EA-ACR-C-ZDF(P<0.01)显著提高, N-ZDF与C-ZDF表达降低(P<0.05);与N-ZDF相比,EA-ACR-C-ZDF显著提高(P<0.01), N-ZDF与C-ZDF表达降低(P<0.05);与M-C-ZDF相比,EA-ACR-C-ZDF亦有显著提高(P<0.01)。
     INSRβ在下丘脑处的表达水平,与N-ZL和N-ZDF相比,EA-ACR-ZL, EA-ACR-ZDF, M-ZDF组显著提高(P<0.05),而EA-ACR与EA-AE组相比亦分别有显著提高。
     5-HT1AR在脊髓腰膨大部的表达水平,N-ZL水平与其他组相比有较高表达(P<0.05);与C-ZDF和N-ZDF组相比EA-ACR-C-ZDF和M-C-ZDF组较高(P<0.05)。
     5结论
     本研究基于前期大量的临床及基础研究,从耳甲区-迷走神经联系学说入手,提出耳甲区电刺激促进褪黑素分泌,继而产生缓解慢性神经痛、调节血糖、降低体重等褪黑素缺乏类相关疾病的假说,并采用了Zucker Diabetes Fat (ZDF)大鼠(fa/fa)基因突变模型,进行了从行为学到生物化学到分子生物学不同层面的系统研究。
     通过数据统计整理分析可以发现,耳甲区电针刺激(EA-ACR),可以有效控制ZDF肥胖大鼠模型的体重,抑制高血糖,提高血浆胰岛素水平,降低了血浆糖化血红蛋白水平,提高胰岛素受体INSRP在下丘脑的表达;且缓解了ZDF慢性神经痛模型大鼠的机械刺激疼痛和热刺激疼痛,提高了血浆五羟色胺水平(5-HT),以及5-HT受体在脊髓腰膨大处的表达;上述效果以EA-ACR提高了血浆褪黑素浓度、调高了褪黑素受体(mt1)在中枢神经系统表达水平为基础,并可能通过EA-ACR兴奋了副交感神经神经促进褪黑素分泌来实现,这可能是针刺复合效应的共同机制之一。可以展望,许多褪黑素缺乏类疾病与症状,可以用EA-ACR的方法进行干预和治疗。
Introduction
     As a kind of hormone, melatonin (MLT) is known that is secreted from pineal in circadian rhythm in mammal. There is nearly a centry from MLT being found to now. With further research, the understanding of MLT become more widespread in addition to the day and night, seasons, light, menstrual cycles, and even the life cycle of some physiological reactionand physiological function, the function of melatonin is also relieve pain, regulate blood sugar, weight loss, anti-depressants and other aspects of in-depth inquiry, and researchers melatonin enduring passion for research. With the very small toxic side effects, MLT is widely used in the research and development of health care products, and MLT drugs are also in-depth research and development. Someone believe MLT is not just the hormone, but a vitamin.
     Comparing with a centry history of MLT research, traditional Chinese medicine could be traced to2000years ago, and acupuncture therapy may be older. After the formation of the traditional Chinese medicine theory, the mechanism acupuncture is summarized as "Reconciling Yin and Yang", and how to reconcile the traditional theory did not give a convincing answer, and the "Yin and Yang" of the origin of the word is indeedthe ancient observation of light, followed by deduction to interpret and linked to people's own physiological and pathological nature day and night, the seasons. Melatonin in close contact with the light adjustment as a biological signal carrier, and can produce a wide range of the role of hormones, becomes a natural rhythm of illumination change and human biological rhythms of a bond. Adapt to conditions acupuncture just a lack of class and melatonin illness coincide, this can not let bold Lenovo, regulating melatonin secretion may be one of the mechanisms that produce the composite effect of acupuncture.
     Our previous experiments found that the concha region of the vagus nerve ear support the distribution of afferent fibers, an appropriate level of electrical stimulation can produce the effect of vagus nerve stimulation (VNS), and then produce analgesia, regulate blood sugar, anti-epileptic, anti-depressants, anti-inflammatory,effect of lowering blood pressure, and observed the change of the nuclei stimulate conchaplasty area of central nervous system discharge and neurotransmitters and related proteins. Literature researchers Acupuncture and exogenous melatonin synergy, that exogenous melatonin and acupuncture effect mutually reinforcing. Our pre-experiment was repeated electrical stimulation of the concha area observed for the the pathological rat model analgesic, hypoglycemic and anti-depressant effects, and observed that electrical stimulation of the concha area, pathological model of rat plasma melatonin concentration increased. These clues let us think of the ear vagus nerve stimulation can ease the pain threshold of the rat model of pathological pain, lower blood sugar in diabetic rat model and promote insulin secretion, relieve the symptoms of chronic stress rat model of depression, these cases may have the participation of melatonin, and the ears of the vagus nerve electrical stimulation to promote the secretion of melatonin, to improve the plasma melatonin concentrations, thereby generating or enhancing the above-mentioned effects.
     In this experiment, we chose Zucker, of Diabetes Fat (ZDF) rats as a model. This rat model has obese (fa/fa) gene and hereditary gradually special feed induced spontaneous typical symptoms of high blood sugar, high cholesterol, insulin resistance and type2diabetes mellitus (T2DM), obesity, concurrent sensory nerve type2diabetic complications such as pain in the international community widely used in T2DM and its complications, as well as obesity, metabolic diseases, than traditional islet beta cells destroyed or partially damaged with high fat diet-induced type2diabetic model has an unparalleled advantage. This model reflection acupuncture effect in a series of studies in our ears-fans go the first time, ear vagus nerve regulate melatonin secretion acupuncture effect is a relatively new research ideas.
     Methods
     Experimental Animals
     Male Zucker diabetic fatty (ZDF) rats andZucker lean (ZL) littermates were purchased from VitalRiver Laboratories International Inc.(Beijing, China). The animal room was artificially lighted from7:00A.M. to7:00P.M. Littermates from the same or foster mother were housed in one large cage until they were ready to enter the experiment procedure at8weeks of age and were separated into Zucker diabetic fatty (ZDF) and Zucker lean (ZL) groups. We used only mature (8weeks of age at the beginning of experiment) male ZDF rats for further detailed study and some ZL littermates for controlto avoid a possible confounding effect from gender differences on the endogenous melatonin level and other possible hormone variation. The experimental protocol was approved by the Institutional Animal Care and Use Committee in China Academy of Chinese Medical Sciences.
     Measurements of Tactile and Thermal Withdrawal Latency
     Animals were habituated to the test environment daily (a60min session) for2d before baseline testing. The testing procedure for thermal hyperalgesia was performed according to a previously published method. Temperature was set to have the baseline latency of12-14sec and a cutoff of30sec. Mechanical allodynia was examined by applying a set of von Frey filaments to the plantar surface of each hindpaw, up and down depending on the withdrawal responses of the paw. The cutoff force was26gm. All behavior testing was conducted between8:00A.M. and12P.M. before any daily treatment.
     Electroacupuncture
     Rats were exposed to daily treatments for28day continuously according to the experimental design. For electroacupuncture,under2%isoflurane inhalation anesthesia, a procedure of30min electroacupuncture at a frequency of2/15Hz alternately in a second and an intensity of2mA was administered to a rat via an electrical stimulator (HANS-100, Nanjing, China) daily in the afternoon, beginning from day0. The acupoint selected in this study was auricular conchaof both sidesand the auricular edge was used as the sham acupoint.
     Collection of plasma
     For analyzing the concentration of melatonin in plasma,0.1ml blood samples were collectedat eachtime pointbetween4:00PM and5:00PM (before daily treatment) to minimize the variations of melatonin level.Rats were anesthetized by inhalation of2%isoflurane in oxygen. All blood samples were collected before daily treatment (acupuncture, injection) fromone of the tail veins. The blood sample was centrifuged for10min at1000rpm, and plasma was collected. All plasma were stored at-80℃until use. The animals were sacrificed after the last collection of blood, brain samples were harvested for immunostaining and Western blot analysis.
     ELISA
     The concentration of plasma melatonin was analyzed using enzyme linked immunosorbent assay (ELISA) kit (Lot#DZE30014,R&D System, Beijing, China) by Huanya Biomedicine Technology Co. LTD. The results were read using a microplate reader (MULTISKAN MK3, Thermo Scientific, Beijing, China) at wavelengths of450nm. The plasma melatonin concentration was calculated based on the standard curve and presented in nanogramsper liter (ng/L).
     Immunohistochemical staining
     Half of the rats from each group (n=3) were anesthetized with pentobarbital (60mg/kg, i.p.) and transcardially perfused with200ml of saline followed by400ml of4%paraformaldehyde in0.1m phosphate buffer (PB). The brainswere dissected, postfixed for2hr, and kept in30%sucrose in0.1m PBin cold room until sank to the bottom. Tissues were then mounted in OCT compound and frozen on dry ice. The brain (30μm) sections were cut on a cryostat, mounted serially onto microscope slides, and stored at-80℃. Immunohistochemical staining was used to detect5-HT1A R (1:500, mousemonoclonal; EMD Millipore Corporation, Billerica, MA, USA). Sections were blocked with1%goat serum in0.3%Triton x100for1hr at room temperature and incubated overnight at4℃with the primary antibody. For controls, the primary antibody was omitted. The sections were then incubated for1hr at room temperature with corresponding Cy3-conjugated secondary antibody (1:200; JacksonlmmunoResearch, West Grove, PA). Brain sections were read using a LEXT OLS40003D Laser Measuring Microscope(Olympus), recorded using a digital camera, and processed using Adobe Photoshop.
     Western blot
     Rats (n=3-4each group) were decapitated under anesthesia. Hypothalamuswas collected separately. The segments were homogenized in SDS sample buffer containing a mixture of proteinase inhibitors (Sigma). Protein samples were separated on SDS-PAGE gel (4-15%gradient gel; Bio-Rad, Hercules, CA) and transferred to polyvinylidenedifluoride filters (Millipore, Bedford, MA). The filters were blocked with3%milk and incubated overnight at4℃with MT1primary antibody (40kD, rabbit polyclonal,1:500, Millipore, Billerica, MA) and lhr at room temperature with HRP-conjugated secondary antibody (1:7000; Abcam, Cambridge, MA). The blots were visualized in ECL solution (NEN, Boston, MA) for lmin and exposed onto hyperfilms (Amersham Biosciences) for1-10min. The blots were then incubated in a stripping buffer (67.5mMTris, pH6.8,2%SDS, and0.7%β-mercaptoethanol) for30min at50℃and reprobed with a polyclonal rabbit anti-β-actin antibody (1:20,000; Alpha Diagnostic International, San Antonio, TX) as loading control. The Western analysis was made in triplicates. The density of the bands was measured with a computer-assisted imaging analysis system and normalized against loading controls.
     Statistical analysis
     By running IBM SPSS Statistics v20.0for Windows(SSPS Inc., Chicago, IL, USA), raw data from behavior tests, ELISA and Western blots were analyzed by using repeated measures ANOVA across testing time points to detect overall differences among treatment groups and across treatment groups to examine overall differences among testing time points. Differences were considered to be statistically significant at the level of a=0.05.
     Conclusion
     This study is based on pre-clinical and basic research, starting from the the concha area-vagus nerve contact theory, proposed the concha District electrical stimulation to promote the secretion of melatonin, which in turn produce the relief of chronic neuropathic pain, regulate blood sugar, reduce weight, lack of melatoninthe hypothesis of class-related diseases, and the use of Zucker, of Diabetes Fat (ZDF) rats (fa/fa) gene mutation model, learned from the behavior of the system study of biochemistry to molecular biology at different levels.
     Compiles data analysis can be found, concha area electro-acupuncture (EA-ACR), can effectively reduce the weight of the ZDF rat model of obesity, improve the symptoms of high blood sugar, increased plasma insulin levels, reduced plasma glycated hemoglobin level to improve expression of the insulin receptor INSRβ" the hypothalamus; and ease of ZDF rats with chronic neuropathic pain model of mechanical stimulation of pain and thermal stimulation pain, increased plasma serotonin level (5-HT) and5-HT receptors in the spinal cord at the lumbar enlargementexpression of; the effect EA-ACR plasma melatonin levels, an increase in melatonin receptor (MT1) expression levels in the central nervous system, and may be excited by the EA-ACR parasympathetic nervous promote fadedmelanin secretion, which may be one of the mechanisms of acupuncture combined effects of common. Looking Many lack of melatonin-like illness symptoms, EA-ACR's intervention and treatment.
引文
1 IPPEN H. The pineal body hormone melatonin and the central pigment regulation. Dtsch Med
    2 LERNER AB, CASE JD, TAKAHASHI Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem.1960 Jul;235:1992-7.
    3 LERNER AB, CASE JD, MORI W, WRIGHT MR.Melatonin in peripheral nerve. Nature.1959 Jun 27; 183:1821.
    4 Brzezinski A. Melatonin in humans. N Engl J Med.1997 Jan 16;336(3):186-95. Review.
    5 Reiter RJ.The mammalian pineal gland:structure and function. Am J Anat.1981 Dec;162(4):287-313.
    6 Motta M, Fraschini F, Martini L.Endocrine effects of pineal gland and of melatonin. Proc Soc Exp Biol Med.1967 Nov;126(2):431-5.
    7 Pace-Schott EF, Spencer RM.Age-related changes in the cognitive function of sleep. Prog Brain Res.2011;191:75-89.
    8 Synaptic-like microvesicles, synaptic vesicle counterparts in endocrine cells, are involved in a novel regulatory mechanism for the synthesis and secretion of hormones.Moriyama Y, Hayashi M, Yamada H, Yatsushiro S, Ishio S, Yamamoto A.J Exp Biol.2000 Jan;203(Pt 1):117-25.
    9 Griefahn B, Kuenemund C, Robens S.Shifts of the hormonal rhythms of melatonin and cortisol after a 4 h bright-light pulse in different diurnal types. Chronobiol Int. 2006;23(3):659-73.
    10 Mihara T, Kikuchi T, Kamiya Y, Koga M, Uchimoto K, Kurahashi K, Goto T.Day or night administration of ketamine and pentobarbital differentially affect circadian rhythms of pineal melatonin secretion and locomotor activity in rats. Anesth Analg. 2012 Oct;115(4):805-13. Epub 2012 Aug 10.
    11 Ma X, Chen C, Krausz KW, Idle JR, Gonzalez FJ. A metabolomic perspective of melatonin metabolism in the mouse. Endocrinology.2008 Apr; 149(4):1869-79. doi: 10.1210/en.2007-1412. Epub 2008 Jan 10.
    12 Lerchl A, Reiter RJ.Treatment of sleep disorders with melatonin. BMJ.2012 Nov 5;345:e6968
    13 Pace-Schott EF, Spencer RM. Age-related changes in the cognitive function of sleep. Prog Brain Res.2011; 191:75-89.
    14 Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Pilot investigation of the circadian plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. PLoS One.2012;7(12):e51929.
    15 Knight JA, Thompson S, Raboud JM, Hoffman BR. Light and exercise and melatonin production in women. Am J Epidemiol.2005 Dec 1;162(11):1114-22.
    16 Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP. Jet lag, circadian rhythm sleep disturbances, and depression:the role of melatonin and its analogs. Adv Ther.2010 Nov;27(11):796-813.
    17 Borjigin J, Zhang LS, Calinescu AA.Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol.2012 Feb 5;349(1):13-9.
    18 Klein DC, Weller JL, Moore RY. Melatonin metabolism:neural regulation of pineal serotonin:acetyl coenzyme A N-acetyltransferase activity. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3107-10.
    19 Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing.
    20 Oertel R, Goltz L, Kirch W.Elucidation of Neu-P11 metabolism in urine of volunteers by liquid chromatography-tandem mass spectrometry. J Chromatogr A.2013 Feb 22; 1278:69-75.
    21 KOPIN IJ, PARE CM, AXELROD J, WEISSBACH H.The fate of melatonin in animals. J Biol Chem.1961 Nov;236:3072-5.
    22 Anton-Tay F, Wurtman RJ.Nature. Regional uptake of 3H-melatonin from blood or cerebrospinal fluid by rat brain.1969 Feb 1;221(5179):474-5.
    23 Anton-Tay F, Chou C, Anton S, Wurtman RJ. Brain serotonin concentration:elevation following intraperitoneal administration of melatonin. Science.1968 Oct 11;162(3850):277-8.
    24 Vakkuri O, Leppaluoto J, Vuolteenaho O, Jarvensivu P, Karjalainen A, Kurkela K.Radioimmunoassay for MPV-295, a new antihypertensive drug. Scand J Clin Lab Invest.1984Nov;44(7):603-9.
    25 Vanecek J, Pavlik A, Illnerova H. Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res.1987 Dec 1;435(1-2):359-62.
    26 Poon AM, Chow PH, Mak AS, Pang SF. Autoradiographic localization of 2[125]iodomelatonin binding sites in the gastrointestinal tract of mammals including humans and birds. J Pineal Res.1997 Aug;23(1):5-14.
    27刘志民;邹俊杰;沈玉美;陆祖谦;何淑芬;彭树勋.人胚胎外周组织褪黑素受体的鉴定.第二军医大学学报,2001 Jan 22(1):8-11
    28赵瑛;邵福源;何淑芬;彭树勋.人胚胎中枢神经系统褪黑素受体的鉴定及生物学特性.第二军医大学学报,2001 Jan;22(1)12-14
    29 Liu F, Yuan H, Sugamori KS, Hamadanizadeh A, Lee FJ, Pang SF, Brown GM, Pristupa ZB, Niznik HB. Molecular and functional characterization of a partial cDNA encoding a novel chicken brain melatonin receptor. FEBS Lett.1995 Oct 30;374(2):273-8.
    30陆祖谦;刘志民;何金;刘会敏;赵瑛;彭树勋.人胚胎肾上腺皮质褪黑素受体亚型蛋白的分布.第二军医大学学报,2001 Jan; 22(1)18-20
    31 孙中安;刘志民;黄超.人胚胎甲状腺褪黑素受体mRNA的检测.第二军医大学学报,2000 Nov;21(11)1062-1064
    32刘冬萍;王国权;刘志民.用免疫组化及原位杂交方法探测人胚胎卵巢褪黑素受体.江西医学院学报,2002,42(3)18-21
    33 Dubocovich ML, Cardinali DP, Guardiola-Lemaitre B et al. In:The IUPHAR compendium of receptor characterisation and classification. IUPHAR Media 1998, London.187-193.
    34 Shilo L, Sabbah H, Hadari R, Kovatz S, Weinberg U, Dolev S, Dagan Y, Shenkman L. The effects of coffee consumption on sleep and melatonin secretion. Sleep Med.2002 May;3(3):271-3.
    35 Beier EV, Arushanian EB. The effect of different anxiolytics on the anxiety state occurring in rats after stopping the electrical stimulation of the dorsal hippocampus. Eksp Klin Farmakol.1999 Sep-Oct;62(5):7-10. Russian.
    36 Tosini G, Dirden JC. Dopamine inhibits melatonin release in the mammalian retina:in vitro evidence. Neurosci Lett.2000 Jun 2;286(2):119-22.
    37 Southgate G, Daya S. Melatonin reduces quinolinic acid-induced lipid peroxidation in rat brain homogenate.Metab Brain Dis.1999 Sep; 14(3):165-71.
    38 Peschke E, Peschke D.Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia.1998 Sep;41(9):1085-92.
    39 Shima T, Chun SJ, Niijima A, Bizot-Espiard JG, Guardiola-Lemaitre B, Hosokawa M, Nagai K.Melatonin suppresses hyperglycemia caused by intracerebroventricular injection of 2-deoxy-D-glucose in rats. Neurosci Lett.1997 Apr 25;226(2):119-22.
    40 Aldegunde M, Andres MD, Soengas JL.Uptake of 3-O-methyl-D-[U-14C]glucose into brain of rainbow trout:possible effects of melatonin. J Comp Physiol B.2000 May;170(3):237-43.
    41 Diaz B, Blazquez E. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm Metab Res.1986 Apr; 18(4):225-9.
    42 Rodriguez M, Petitclerc D, Nguyen DH, Block E, Burchard JF. Effect of electric and magnetic fields (60 Hz) on production, and levels of growth hormone and insulin-like growth factor 1, in lactating, pregnant cows subjected to short days. J Dairy Sci.2002 Nov;85(11):2843-9.
    43 Dhar M, Dayal SS, Ramesh Babu CS, Arora SR. Effect of melatonin on glucose tolerance and blood glucose circadian rhythm in rabbits. Indian J Physiol Pharmacol. 1983 Apr-Jun;27(2):109-17.
    44 Frankel BJ, Strandberg MJ. Insulin release from isolated mouse islets in vitro:no effect of physiological levels of melatonin or arginine vasotocin. J Pineal Res.1991 Oct-Nov;11(3-4):145-8.
    45 Ng TB.Morning administration of melatonin antagonizes the antigonadotrophic effect of afternoon injections of melatonin,5-methoxytryptophol and arginine vasotocin in intact mice.J Neural Transm.1987;68(1-2):145-52.
    46 Lima FB, Matsushita DH, Hell NS, Dolnikoff MS, Okamoto MM, Cipolla Neto J.The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin. Braz J Med Biol Res.1994 Apr;27(4):995-1000.
    47 Mori N, Aoyama H, Murase T, Mori W. Anti-hypercholesterolemic effect of melatonin in rats. Acta Pathol Jpn.1989 Oct;39(10):613-8.
    48 Wakatsuki A, Okatani Y, Ikenoue N, Kaneda C, Fukaya T. Effects of short-term melatonin administration on lipoprotein metabolism in normolipidemic postmenopausal women. Maturitas.2001 Apr 20;38(2):171-7.
    49 Conti A, Maestroni GJ. Role of the pineal gland and melatonin in the development of autoimmune diabetes in non-obese diabetic mice. J Pineal Res.1996 Apr;20(3):164-72.
    50 Ha H, Yu MR, Kim KH. Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic Biol Med.1999 Apr;26(7-8):944-50.
    51 Mori N, Aoyama H, Murase T, Mori W. Anti-hypercholesterolemic effect of melatonin in rats. Acta Pathol Jpn.1989 Oct;39(10):613-8.
    52 Chan TY, Tang PL. Effect of melatonin on the maintenance of cholesterol homeostasis in the rat. Endocr Res.1995 Aug;21(3):681-96.
    53 Hoyos M, Guerrero JM, Perez-Cano R, Olivan J, Fabiani F, Garcia-Perganeda A, Osuna C.Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J Pineal Res.2000 Apr;28(3):150-5.
    54 Wakatsuki A, Okatani Y, Ikenoue N, Shinohara K, Watanabe K, Fukaya T. Melatonin protects against oxidized low-density lipoprotein-induced inhibition of nitric oxide production in human umbilical artery. J Pineal Res.2001 Oct;31(3):281-8.
    55 Rindone JP, Achacoso R. Effect of melatonin on serum lipids in patients with hypercholesterolemia:a pilot study. Am J Ther.1997 Nov-Dec;4(11-12):409-11.
    56 Sandyk R, Awerbuch GI. The relationship between melatonin secretion and serum cholesterol in patients with multiple sclerosis. Int J Neurosci.1994 May;76(1-2):81-6.
    57 Rastmanesh R, de Bruin PF. Potential of melatonin for the treatment or prevention of obesity:an urgent need to include weight reduction as a secondary outcome in clinical trials of melatonin in obese patients with sleep disorders. Contemp Clin Trials.2012 Jul;33(4):574-5. doi:10.1016/j.cct.2012.03.018. Epub 2012 Apr 5.
    58 Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry.1984 Jan;41(1):72-80.
    59 Thalen BE, Kjellman BF, Mφrkrid L, Wetterberg L. Melatonin in light treatment of patients with seasonal and nonseasonal depression. Acta Psychiatr Scand.1995 Oct;92(4):274-84.
    60 Childs PA, Rodin I, Martin NJ, Allen NH, Plaskett L, Smythe PJ, Thompson C. Effect of fluoxetine on melatonin in patients with seasonal affective disorder and matched controls. Br J Psychiatry.1995 Feb; 166(2):196-8.
    61 Wirz-Justice A, Krauchi K, Graw P. An underlying circannual rhythm in seasonal affective disorder? Chronobiol Int.2001 Mar;18(2):309-13.
    62 Lee TM, Chan CC. Dose-response relationship of phototherapy for seasonal affective disorder:a meta-analysis. Acta Psychiatr Scand.1999 May;99(5):315-23.
    63 Eastman CI, Young MA, Fogg LF, Liu L, Meaden PM. Bright light treatment of winter depression:a placebo-controlled trial. Arch Gen Psychiatry.1998 Oct;55(10):883-9.
    64 Lewy AJ, Bauer VK, Cutler NL, Sack RL, Ahmed S, Thomas KH, Blood ML, Jackson JM. Arch Gen Psychiatry. Morning vs evening light treatment of patients with winter depression.1998 Oct; 55(10):890-6.
    65 Beck-Friis J, Ljunggren JG, Thoren M, von Rosen D, Kjellman BF, Wetterberg L. Melatonin, cortisol and ACTH in patients with major depressive disorder and healthy humans with special reference to the outcome of the dexamethasone suppression test. Psychoneuroendocrinology.1985; 10(2):173-86.
    66 Wetterberg L. Clinical importance of melatonin. Prog Brain Res.1979;52:539-47.
    67 Cavallo A, Holt KG, Hejazi MS, Richards GE, Meyer WJ 3rd. Melatonin circadian rhythm in childhood depression. J Am Acad Child Adolesc Psychiatry.1987 May;26(3):395-9.
    68 Steiner M, Brown GM, Goldman S. Nocturnal melatonin and cortisol secretion in newly admitted psychiatric inpatients. Implications for affective disorders. Eur Arch Psychiatry Clin Neurosci.1990;240(1):21-7.
    69 Zimmermann RC, McDougle CJ, Schumacher M, Olcese J, Mason JW, Heninger GR, Price LH. Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab.1993 May;76(5):1160-4.
    70 Beck-Friis J, Kjellman BF, Aperia B, Unden F, von Rosen D, Ljunggren JG, Wetterberg L. Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand.1985 Apr;71(4):319-30.
    71 Rubin RT, Heist EK, McGeoy SS, Hanada K, Lesser IM. Neuroendocrine aspects of primary endogenous depression. XI. Serum melatonin measures in patients and matched control subjects. Arch Gen Psychiatry.1992 Jul;49(7):558-67.
    72 Waterman GS, Ryan ND, Perel JM, Dahl RE, Birmaher B, Williamson DE, Thomas CR, Puig-Antich J. Nocturnal urinary excretion of 6-hydroxymelatonin sulfate in prepubertal major depressive disorder. Biol Psychiatry.1992 Mar 15;31(6):582-90.
    73 Loving RT, Kripke DF, Elliott JA, Knickerbocker NC, Grandner MA.Bright light treatment of depression for older adults [ISRCTN55452501]. BMC Psychiatry.2005 Nov9;5:41.
    74 Yamada H, Chiba H, Amano M, Iigo M, Iwata M. Rainbow trout eyed-stage embryos demonstrate melatonin rhythms under light-dark conditions as measured by a newly developed time-resolved fluoroimmunoassay. Gen Comp Endocrinol.2002 Jan;125(1):41-6.
    75 Beauchemin KM, Hays P. Phototherapy is a useful adjunct in the treatment of depressed in-patients. Acta Psychiatr Scand.1997 May;95(5):424-7.
    76 Lewy AJ. Melatonin as a marker and phase-resetter of circadian rhythms in humans. Adv Exp Med Biol.1999;460:425-34.
    77 Nurnberger JI Jr, Berrettini W, Tamarkin L, Hamovit J, Norton J, Gershon E. Supersensitivity to melatonin suppression by light in young people at high risk for affective disorder. A preliminary report. Neuropsychopharmacology.1988 Sep;1(3):217-23.
    78 Lam RW, Song C, Yatham LN. Does neuroimmune dysfunction mediate seasonal mood changes in winter depression? Med Hypotheses.2004;63(4):567-73.
    79 Whalley LJ, Perini T, Shering A, Bennie J.Melatonin response to bright light in recovered, drug-free, bipolar patients. Psychiatry Res.1991 JuI;38(1):13-9.
    80 Nathan PJ, Burrows GD, Norman TR. Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology.1999 Sep;21(3):408-13.
    81 Nurnberger Jl Jr, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A, Miller A, Bowman ES, Miller MJ, Rau L, Smiley C, Davis-Singh D.Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry.2000 Jun;57(6):572-9.
    82 Parfitt A, Klein DC. Increase caused by desmethylimipramine in the production of [3H]melatonin by isolated pineal glands. Biochem Pharmacol.1977 May 1;26(9):904-5.
    83 Halbreich U, Weinberg U, Stewart J, Klein DF, Weitzman ED, Quitkin FM. An inverse correlation between serum levels of desmethylimipramine and melatonin-like immunoreactivity in DMI-responsive depressives. Psychiatry Res.1981 Feb;4(1):109-13.
    84 Palazidou E, Papadopoulos A, Ratcliff H, Dawling S, Checkley SA. Noradrenaline uptake inhibition increases melatonin secretion, a measure of noradrenergic neurotransmission, in depressed patients. Psychol Med.1992 May;22(2):309-15.
    85 辛玲,应激性高血压大鼠针刺前后下丘脑前核褪黑素及其受体的变化,复旦大学,硕士学位论文,2003.
    86 Xia CM, Shao CH, Xin L,Effects of melatonin on blood pressure in stress-induced hypertension in rats
    87王延荣,王锦,李莉,沈霖霖,曹银祥,朱大年.针刺或褪黑素的中枢降压作用与延髓氨基酸递质改变的关系.上海针灸杂志.2007,26(6):41-45
    88黄碧兰,余良主,李佳,刘寿仙,王帮华.电针与褪黑素合用对大鼠应激性胃溃疡的影响.中国临床康复.2006,10(15):132-134
    89黄颖苏,姜建伟,吴根诚,曹小定.褪黑素和电针对创伤大鼠免疫功能的影响.针刺研究.2001,26(3):233-234
    90黄颖苏,姜建伟,吴根诚,曹小定.褪黑素和电针对创伤大鼠淋巴细胞转化功能、IL-2活性及ACTH水平的影响.针刺研究.2003,28(1):42-47
    91周敏明;俞昌喜;曹小定;吴根诚.褪黑素对大鼠电针镇痛效应的影响.针刺研究,2000,25(2):93-95
    92周敏明等,褪黑素合用电针时大鼠脑内p-内啡肽的变化,中国中西医结合杂志,2001,21(2):115-118
    93 Nordio M, Romanelli F. Efficacy of wrists overnight compression (HT 7 point) on insomniacs:possible role of melatonin?.Minerva Med.2008 Dec;99(6):539-47.
    94 Fassoulaki A, Paraskeva A, Kostopanagiotou G, Tsakalozou E, Markantonis S.Acupressure on the extra 1 acupoint:the effect on bispectral index, serum melatonin, plasma beta-endorphin, and stress. Anesth Analg.2007 Feb;104(2):312-7.
    95 Spence DW, Kayumov L, Chen A, Lowe A, Jain U, Katzman MA, Shen J, Perelman B, Shapiro CM. Acupuncture increases nocturnal melatonin secretion and reduces insomnia and anxiety:a preliminary report. J Neuropsychiatry Clin Neurosci.2004 Winter; 16(1):19-28.
    96 Li ZR, Shen MH, Niu WM. Involvement of melatonin in the adjusting effect of electroacupuncture in resisting oxygen stress in cerebral ischemia-reperfusion injury rats. Zhen Ci Yan Jiu.2008 Jun;33(3):164-8.
    97晁东满.褪黑激素对青霉素所致痫样发作的预防作用.复旦大学.博士学位论文.2001
    1 Ruth Kava, M. R. C. Greenwood, P. R. Johnson. Zucker (fa/fa) RatILAR J (1990) 32 (3): 4-8. doi:10.1093/ilar.32.3.4
    2 Zucker, L. M., and T. F. Zucker.1961. Fatty, a new mutation in the rat. J. Hered. 52:275-278.
    3 Zucker, T. F., and L. M. Zucker.1963. Fat accretion and growth in the rat. J. Nutr.80:6-19.
    4 Zucker, T. F., and L. M. Zucker.1962. Hereditary obesity in the rat associated with high serum fat and cholesterol. Proc. Soc. Exp. Biol. Med.110:165-171.
    5 Zucker, L. M., and H. N. Antoniades.1972. Insulin and obesity in the Zucker genetically obese rat "fatty." Endocrinology 90:1320-1330.
    6 Guy B. Mulder, Steve Luo, Peggy Gramlich. The Zucker Diabetic Fatty (ZDF) Rat Diet Evaluation Study for the Induction of Type 2 Diabetes in Obese Female ZDF Rats. Charles River technical sheet.
    7 Richard G. Peterson, Walter N. Shaw, Mary-Ann Neel, Leah A. Little, and J. Eichberg. Zucker Diabetic Fatty Rat as a Model for Non-insulin-dependent Diabetes Mellitus.ILAR J (1990)32(3):16-19. doi:10.1093/ilar.32.3.16
    8 Hemmes, R. B., S. Hubsch, and H. M. Pack.1978. High dosage of testosterone propionate increases litter production of the genetically obese male Zucker rat. Proc. Soc. Exp. Biol. Med.159:424-427.
    9 Bray, G. A., and D. A. York.1971. Genetically transmitted obesity in rodents. Physiol. Rev. 51(3):598-646.
    10 Bray, G. A., and D. A. York.1979. Hypothalamic and genetic obesity in experimental animals:An autonomic and endocrine hypothesis. Physiol. Rev.59(3):719-809.
    11 York, D. A., J. Steinke, and G. A. Bray.1972. Hyperinsulinemia and insulin resistance in genetically obese rats. Metabolism 221(4):277-284.
    12 Stern, J. S., and P. R. Johnson.1977. Spontaneous activity and adipose cellularity in the genetically obese Zucker rat (fafa). Metabolism 26:371-380.
    13 Vasselli, J. R., M. P. Cleary, K. L. C. Jen, and M. R. C. Greenwood.1980. Development of food motivated behavior in free feeding and food restricted Zucker fatty (fa/fa) rats. Physiol. Behav.25(4):565-573.
    14 Thornhill, J. A., B. Taylor, W. Marshall, and K. Parent.1982. Central,as well as peripheral naloxone administration suppresses feeding in food-deprived Sprague-Dawley and genetically obese (Zucker) rats. Physiol. Behav.29(5):841-846.
    15 Grinker, J. A., A. Drewnowski, M. Enns, and H. Kissileff.1980. Effects of d-amphetamine and fenfluramine on feeding patterns and activity of obese and lean Zucker rats. Phartm. Biochem. Behav.12(2):265-275.
    16 Vasselli, J. R., E. Haraczkiewicz, C. A. Maggio, and M. R. C. Greenwood.1983. Effects of a glucosidase inhibitor (acarbose, BAY g5421) on the development of obesity and food motivated behavior in obese Zucker (fafa) rats. Pharm. Biochem. Behav.19(1):85-95.
    17 Maggio, C. A., E. Haraczkiewicz, and J. R. Vasselli.1988. Diet composition alters the satiety effect of cholecystokinin in lean and obese Zucker rats. Physiol. Behav.43(4):485-491.
    18 Turkenkopf, I. J., C. A. Maggio, and M. R. C. Greenwood.1982.Effect of high fat weanling diets containing either medium-chain triglycerides or long-chain triglycerides on the development of obesity in the Zucker rat. J. Nutr.112(7):1254-1263.
    19 Greenwood, M. R. C, C. A. Maggio, H. S. Koopmans, and A. Sclafani.1982. Zucker fafa rats maintain their obese body composition ten months after jejunoileal bypass surgery. Int. J. Obesity 6:513-525.
    20 Cleary, M. P., J. R. Vasselli, and M. R. C. Greenwood.1980. Development of obesity in Zucker obese (fafa) rat in absence of hyperphagia. Am. J. Physiol.238:E284-E292.
    21 Maggio, C. A., and M. R. C. Greenwood.1982. Adipose tissue lipoprotein lipase (LPL) and triglyceride uptake in Zucker rats. Physiol. Behav.29(6):1147-1152.
    22 Gruen, R. K., E. Hietanen, and M. R. C. Greenwood.1978. Increased adipose tissue lipoprotein lipase activity during the development of the genetically obese rat (fa/fa). Metabolism 7(12)(suppl.2):1955-1966.
    23 Turkenkopf, I. J., J. L. Olsen, L. Moray, M. R. C. Greenwood, and P. R. Johnson.1980. Hepatic lipogenesis in the preobese Zucker rat. Proc. Soc. Exp. Biol. Med.164:530-533.
    24 Cleary, M. P., J. R. Vasselli, and M. R. C. Greenwood.1980. Development of obesity in Zucker obese (fafa) rat in absence of hyperphagia. Am. J. Physiol.238:E284-E292.
    25 Greenwood, M. R. C, C. A. Maggio, H. S. Koopmans, and A. Sclafani.1982. Zucker fafa rats maintain their obese body composition ten months after jejunoileal bypass surgery. Int. J. Obesity 6:513-525.
    26 Gray, J. M., and M. R. C. Greenwood.1984. Effect of estrogen on lipoprotein lipase activity and cytoplasmic progestin binding sites in lean and obese Zucker rats. Proc. Soc. Exp. Biol. Med.175:374-379.
    27 Greenwood, M. R. C, and J. R. Vasselli.1981. The effects of nitrogen and caloric restriction on adipose tissue, lean body mass, and food intake of genetically obese rats:The LPL hypothesis. Pp.323-335 in Nutritional Factors:Modulating Effects on Metabolic Processes, R. F. Beers, Jr. and E. G. Bassett, eds. New York:Raven Press.
    28 Greenwood, M. R. C, M. Cleary, L. Steingrimsdottir, and J. R. Vasselli.1981. Adipose tissue metabolism and genetic obesity:The LPL hypothesis. Pp.75-79 in Recent Advances in Obesity Research III, P. Bjorntorp, M. Cairella, and A. N. Howard, eds. London:John Libbey.
    29 Greenwood, M. R. C.1985. Relationship of enzyme activity to feeding behavior in rats: Lipoprotein lipase as the metabolic gatekeeper. Int. J. Obesity 9(suppl. 1):67-70.
    30 Fried, S. K., I. J. Turkenkopf, I. J. Goldberg, M. Doolittle, O. Ben-Zeev, M. C. Schotz, and M. R. C. Greenwood.1990. Lipoprotein lipase synthesis and degradation in adipocytes from lean and bese Zucker rats. FASEB J.4(4):A917.
    31 Cook, K. S., H. Y. Min, D. Johnson, R. J. Chaplinsky, J. S. Flier, C. R. Hunt, and B. M. Spiegelman.1987. Adipsin:A circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237:402-405.
    32 Flier, J. S., K. S. Cook, P. Usher, and B. M. Spiegelman.1987. Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405-408.
    33 Ree, H. K., I. Turkenkopf, M. Tacinelli, R. Kava, P. R. Johnson, and M. R. C. Greenwood, In press. Adrenalectomy increases level of adipsin mRNA in adipose tissue of obese Zucker rats. Int. J. Obesity(abstr.).
    34 Rosen, B. S., K. S. Cook, J. Yaglom, D. L. Groves, J. E. Volanakis, D. Damm, T. White, and B. M. Spiegelman.1989. Adipsin and complement factor D activity:An immune-related defect in besity. Science 244:1483-1487.
    35 Baskin, D. G., L. J. Stein, H. Ikeda, S. C. Woods, D. P. Figlewicz, D.Porte, Jr., M. R. C. Greenwood, and D. M. Dorsa.1985. Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci.36:627-633.
    36 Ikeda, H., D. B. West, J. J. Pustek, D. P. Figlewicz, M. R. C. Greenwood, D. Porte, and S. C. Woods.1986. Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 7:381-386.
    37 Latteman, D. P.1989. Insulin sensitivity is decreased in vitro in the obese Zucker rat brain. Appetite 12(3):221
    38 Goldstein, A. L., and P. R. Johnson.1980. Primary cultures of fetal hepatocytes from the genetically obese Zucker rat:Characterization and total lipogenesis. In Vitro 16:288-296.
    39 Goldstein, A. L., J. E. Palmer, and P. R. Johnson.1981. Primary cultures of fetal hepatocytes from the genetically obese Zucker rat:Protein synthesis. In Vitro 17(8):651-655.
    40 Bourgeois, F., A. L. Goldstein, and P. R. Johnson.1983. Lipogenesis in primary culture of adipoblasts derived from genetically obese Zucker rats. Metabolism 32(7):673-680.
    41 Goldstein, A. L., M. R. C. Greenwood, P. R. Johnson, J. E. Palmer, I. J. Turkenkopf, and A. rancendese.1985. Adipoblasts from the Zucker fafa rat. Int. J. Obesity 9(suppl. 1):55-60.
    42 Turkenkopf, I. J., G. Chow, J. East-Palmer, M. R. C. Greenwood, and P. R. Johnson.1988. Regional and genotypic differences in stromalvascular cells from obese and lean Zucker rats. Int. J. besity 12:515-524.
    43 Zucker, L. M., and T. F. Zucker.1961. Fatty, a new mutation in the rat. J. Hered. 52:275-278.
    44 Stern, J., P. R. Johnson, M. R. C. Greenwood, L. M. Zucker, and J. Hirsch.1972. Insulin resistance and pancreatic insulin release in the genetically obese Zucker rat. Proc. Soc. Exp. Biol. Med.139(1):66-69.
    45 Bryce, G. F., P. R. Johnson, A. C. Sullivan, and J. S. Stern.1977.Insulin and glucagon: Plasma levels and pancreatic release in the genetically obese Zucker rat. Horm. Metab. Res. 9(5):366-370.
    46 Ionescu, E., J. F. Sauter, and B. Jeanrenaud.1985. Abnormal glucose tolerance in genetically obese (fa/fa) rats. Am. J. Physiol.248:E500-E506.
    47 Muller, S., and M. P. Cleary.1988. Glucose metabolism in isolated adipocytes from ad libitum-and restricted-fed lean and obese Zucker rats at two different ages. Proc. Soc. Exp. Biol. Med.187:398-407.
    48 Clark, J. B., C. J. Palmer, and W. N. Shaw.1983. The diabetic Zucker fatty rat. Proc. Soc. Exp. Biol. Med.173:68-75.
    49 Peterson, R. G., W. N. Shaw, M.-A. Neel, L. A. Little, and J. Eichberg.1990. Zucker Diabetic Fatty Rat as a Model for Non-Insulin-Dependent Diabetes Mellitus. ILAR News 32(3): 16-19.
    50 Ionescu, E., J. F. Sauter, and B. Jeanrenaud.1985. Abnormal glucose tolerance in genetically obese (fa/fa) rats. Am. J. Physiol.248:E500-E506.
    51 Kava, R., C. Horowitz, Z. Wojnar, I. Turkenkopf, P. R. Johnson, and M. R. C. Greenwood. 1989. Short-term effects of adrenalectomy on adiposity, glycemia and glucose tolerance in obese and lean Zucker rats. FASEB J.3(3):356A.
    52 Amy, R. M., P. J. Dolphin, R. A. Pederson, and J. C. Russell.1988. Atherogenesis in two strains of obese rats, the fatty Zucker and LA/N-corpulent. Atherosclerosis 69:199-209.
    53 Ionescu, E., J. F. Sauter, and B. Jeanrenaud.1985. Abnormal glucose tolerance in genetically obese (fa/fa) rats. Am. J. Physiol.248:E500-E506.
    54 Kava, R., C. Horowitz, Z. Wojnar, I. Turkenkopf, P. R. Johnson, and M. R. C. Greenwood. 1989. Short-term effects of adrenalectomy on adiposity, glycemia and glucose tolerance in obese and lean Zucker rats. FASEB J.3(3):356A.
    55 Stern, J., P. R. Johnson, M. R. C. Greenwood, L. M. Zucker, and J. Hirsch.1972. Insulin resistance and pancreatic insulin release in the genetically obese Zucker rat. Proc. Soc. Exp. Biol. Med.39(1):66-69.
    56 York, D. A., J. Steinke, and G. A. Bray.1972. Hyperinsulinemia and insulin resistance in enetically obese rats. Metabolism 221(4):277-284.
    57 Smith, O. L. K., and M. P. Czech.1983. Insulin sensitivity and response in eviscerated obese Zucker rats. Metabolism 32(6):597-602.
    58 Sherman, W. M., A. L. Katz, C. L. Cutler, R. T. Withers, and J. L. Ivy.1988. Glucose transport:ocus of muscle insulin resistance in obese Zucker rats. Am. J. Physiol. 255:E374-E382.
    59 Terrettaz, J., F. Assimacopoulos-Jeannet, and B. Jeanrenaud.1986a. Inhibition of hepatic glucose production by insulin in vivo in rats:Contribution of glycolysis. Am. J. Physiol. 250:E346-E351.
    60 Terrettaz, J., F. Assimacopoulos-Jeannet, and B. Jeanrenaud.1986b. Severe hepatic and peripheral insulin resistance as evidenced by euglycemic clamps in genetically obese fa/fa rats. Endocrinology 118:674-678.
    61 Lash, J. M., W. M. Sherman, and R. L. Hamlin.1989. Capillary basement membrane thickness and capillary density in sedentary and trained obese Zucker rats. Diabetes 38:854-860.
    62 Piercy V, Banner SE, Bhattacharyya A, Parsons AA, Sanger GJ, Smith SA, Bingham S. Thermal, but not mechanical, nociceptive behavior is altered in the Zucker Diabetic Fatty rat and is independent of glycemic status. J Diabetes Complications.1999 May-Jun; 13(3):163-9.
    63 Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model.Brussee V, Guo G, Dong Y, Cheng C, Martinez JA, Smith D, Glazner GW, Fernyhough P, Zochodne DW.Diabetes.2008 Jun;57(6):1664-73. doi:10.2337/db07-1737. Epub 2008 Mar 10.
    64 Vera G, Lopez-Miranda V, Herradon E, Martin MI, Abalo R. Characterization of cannabinoid-induced relief of neuropathic pain in rat models of type 1 and type 2 diabetes. Pharmacol Biochem Behav.2012 Aug;102(2):335-43. doi:10.1016/j.pbb.2012.05.008. Epub 2012 May 17.
    65 Longitudinal study of painful diabetic neuropathy in the Zucker diabetic fatty rat model of type 2 diabetes:impaired basal G-protein activity appears to underpin marked morphine hyposensitivity at 6 months. Otto KJ, Wyse BD, Cabot PJ, Smith MT.Pain Med.2011 Mar;12(3):437-50. doi:10.1111/j.1526-4637.2011.01067.x. Epub 2011 Feb 18.
    66 Sugimoto K, Rashid IB, Kojima K, Shoji M, Tanabe J, Tamasawa N, Suda T, Yasujima M.Time course of pain sensation in rat models of insulin resistance, type 2 diabetes, and exogenous hyperinsulinaemia. Diabetes Metab Res Rev.2008 Nov-Dec;24(8):642-50. doi: 10.1002/dmrr.903.
    67 Romanovsky D, Walker JC, Dobretsov M. Pressure pain precedes development of type 2 disease in Zucker rat model of diabetes. Neurosci Lett.2008 Nov 21;445(3):220-3. doi: 10.1016/j.neulet.2008.08.087. Epub 2008 Sep 5.
    68 Navarro-Alarcon M, Ruiz-Ojeda FJ, Blanca-Herrera RM, Agil A. Antioxidant activity of melatonin in diabetes in relation to the regulation and levels of plasma Cu, Zn, Fe, Mn, and Se in Zucker diabetic fatty rats. Nutrition.2013 Jan 24. pii:S0899-9007(12)00427-3.
    69 Agil A, Navarro-Alarc6n M, Ruiz R, Abuhamadah S, El-Mir MY, Vazquez GF. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J Pineal Res.2011 Mar;50(2):207-12. doi:10.1111/j.1600-079X.2010.00830.x. Epub 2010 Nov 19.
    70 Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernandez-Vazquez G. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. J Pineal Res.2012 Mar;52(2):203-10.
    71 Agil A, Reiter RJ, Jimenez-Aranda A, Iban-Arias R, Navarro-Alarc6n M, Marchal JA, Adem A, Fernandez-Vazquez G. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J Pineal Res.2012 Aug 23. doi: 10.1111/jpi.12012.
    72 Rong PJ, Ma SX. Electroacupuncture Zusanli (ST36) on Release of Nitric Oxide in the Gracile Nucleus and Improvement of Sensory Neuropathies in Zucker Diabetic Fatty Rats.Evid Based Complement Alternat Med.2011;2011:134545. doi:10.1093/ecam/nep103. Epub 2011 Jun8.
    1 Bennett GJ, Xie YK.A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.Pain.1988; 33:87-107.
    2 Frese T, Bach AG, Miihlbauer E, Ponicke K, Bromme HJ, Welp A, Peschke E. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats. Life Sci.2009;85:526-533.
    3 Tutuncu NB, Batur MK, Yildirir A, Tutuncu T, Deger A, Koray Z, Erbas B, Kabakci G, Aksoyek S, Erbas T. Melatonin levels decrease in type 2 diabetic patients with cardiac autonomic neuropathy. J Pineal Res.2005 Aug;39(1):43-9.
    4 辛玲,应激性高血压大鼠针刺前后下丘脑前核褪黑素及其受体的变化,复旦大学,硕士学位论文,2003.
    5 Xia CM, Shao CH, Xin L, Wang YR, Ding CN, Wang J, Shen LL, Li L, Cao YX, Zhu DN.Effects of melatonin on blood pressure in stress-induced hypertension in rats.Clin Exp Pharmacol Physiol.2008 Oct;35(10):1258-64.
    6 王延荣,王锦,李莉,沈霖霖,曹银祥,朱大年.针刺或褪黑素的中枢降压作用与延髓氨基酸递质改变的关系.上海针灸杂志.2007,26(6):41-45
    7 黄碧兰,余良主,李佳,刘寿仙,王帮华.电针与褪黑素合用对大鼠应激性胃溃疡的影响.中国临床康复.2006,10(15):132-134
    8 Sui Y, Zhao HL, Wong VC, Brown N, Li XL, Kwan AK, Hui HL, Ziea ET, Chan JC. A systematic review on use of Chinese medicine and acupuncture for treatment of obesity.Obes Rev. 2012 May;13(5):409-30.
    9 Bibliometrics study on indications of acupuncture therapy based on foreign acupuncture clinical trials.He W, Tong YY, Zhao YK, Rong PJ, Wang HC.Zhen Ci Yan Jiu.2012 Oct;37(5):428-30.
    10 Rong PJ, Fang JL, Wang LP, Meng H, Liu J, Ma YG, Ben H, Li L, Liu RP, Huang ZX, Zhao YF, Li X, Zhu B, Kong J.Transcutaneous vagus nerve stimulation for the treatment of depression:a study protocol for a double blinded randomized clinical trial.BMC Complement Altern Med.2012 Dec 14;12:255.
    11 Gong M, Wang X, Mao Z, Shao Q, Xiang X, Xu B. Effect of electroacupuncture on leptin resistance in rats with diet-induced obesity. Am J Chin Med.2012;40(3):511-20.
    12 Fei Wang, Tian de R, Tso P, Han JS. Arcuate nucleus of hypothalamus is involved in mediating the satiety effect of electroacupuncture in obese rats. Peptides.2011 Dec;32(12):2394-9.
    13 Gao L, Kong XJ, Shi X.Effects of electroacupuncture and acupoint catgut-embedding on mRNA expression of lipid metabolism gene PPAR-gamma and related lipase of rats with simple obesity. Zhongguo Zhen Jiu.2011 Jun;31(6):535-8.
    14 Ruth Kava, M. R. C. Greenwood, P. R. Johnson. Zucker (fa/fa) RatlLAR J (1990) 32 (3):4-8.
    15 Schmid PM, Heid I, Buechler C, Steege A, Resch M, Birner C, Endemann DH, Riegger GA, Luchner A. Expression of fourteen novel obesity-related genes in Zucker diabetic fatty rats. Cardiovasc Diabetol.2012 Jul 13; 11-48.
    16 Shin AC, Zheng H, Berthoud HR:An expanded view of energy homeostasis:neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009,97:572-580.
    17 Rastmanesh R, de Bruin PF. Potential of melatonin for the treatment or prevention of obesity:an urgent need to include weight reduction as a secondary outcome in clinical trials of melatonin in obese patients with sleep disorders. Contemp Clin Trials.2012 Jul;33(4):574-5.
    18 Agil A, Navarro-Alarcon M, Ruiz R, Abuhamadah S, El-Mir MY, Vazquez GF. Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J Pineal Res.2011 Mar;50(2):207-12.
    19 高昕妍,梅志刚,张世平,朱兵.耳针作用机制与耳甲区支配及中枢联系的形态学研究.世界针灸学会联合会成立20周年暨世界针灸学术大会论文.北京.2007
    20 Abdi H, Abbasi-Parizad P, Zhao B, Ghayour-Mobarhan M, Tavallaie S, Rahsepar AA, Parizadeh SM, Safariyan M, Nemati M, Mohammadi M, Darbandi M, Darbandi S, Ferns GA.Effects of auricular acupuncture on anthropometric, lipid profile, inflammatory, and immunologic markers: a randomized controlled trial study.J Altem Complement Med.2012 Jul;18(7):668-77.
    21 Abdi H, Zhao B, Darbandi M, Ghayour-Mobarhan M, Tavallaie S, Rahsepar AA, Parizadeh SM, Safariyan M, Nemati M, Mohammadi M, Abbasi-Parizad P, Darbandi S, Akhlaghi S, Ferns GA.The effects of body acupuncture on obesity:anthropometric parameters, lipid profile, and inflammatory and immunologic markers. ScientificWorldJournal.2012;012:603539.
    22 Hsieh CH, Su TJ, Fang YW, Chou PH.Effects of auricular acupressure on weight reduction and abdominal obesity in Asian young adults:a randomized controlled trial. Am J Chin Med. 2011;39(3):433-40.
    23 Gucel F, Bahar B, Demirtas C, Mit S, Cevik C.Influence of acupuncture on leptin, ghrelin, insulin and cholecystokinin in obese women:a randomised, sham-controlled preliminary trial. Acupunct Med.2012 Sep;30(3):203-7.
    24 Rerksuppaphol L.Efficacy of auricular acupressure combined with transcutaneous electrical acupoint stimulation for weight reduction in obese women.J Med Assoc Thai.2012 Dec;95 Suppl 12:S32-9.
    25 [Effect of acupuncture therapy on appetite of obesity patients].Yao H, Chen JX, Zhang ZQ, Pan Y, Zheng J, Tong J.Zhen Ci Yan Jiu.2012 Dec;37(6):497-501.
    26 Influence of catgut implantation at acupoints on leptin and insulin resistance in simple obesity rats.Yan R, Liu X, Bai J, Yu J, Gu J.J Tradit Chin Med.2012 Sep;32(3):477-81.
    27 Desantana JM, Santana-Filho VJ, Sluka KA. Modulation between high-and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats. Arch Phys Med Rehabil.2008 Apr;89(4):754-60.
    28 Belivani M, Dimitroula C, Katsiki N, Apostolopoulou M, Cummings M, Hatzitolios AI.Acupuncture in the treatment of obesity:a narrative review of the literature. Acupunct Med. 2013 Mar;31(1):88-97.
    29 赵志国;肖红玲;孙立虹;吴中秋;张书义;不同频率电针对实验性肥胖大鼠脂代谢的影响.中华中医药杂志,2011,26(1):183-186
    30 Yu M, Xiao XQ, Tang CL, Liu ZL, Hou YX, Gao J, Liu RJ. Effect of different intensities of electroacupuncture on expression of monocyte chemoattractant protein-1 and TNF-alpha in adipose tissue in obesity rats. Zhen Ci Yan Jiu.2011 Apr;36(2):79-84.
    31 翟煦;荣培晶;王宏才;李少源;孟宏;何孟冬;黄风;王霞;宋杰,电针刺激对2型糖尿病大鼠皮肤屏障及色泽的影响,针刺研究,2013,38(1):7-13
    32 翟煦;荣培晶;王宏才;孟宏;李少源;何孟冬;黄风;王霞;宋杰,色诊的客观化研究在STZ介导的2型糖尿病模型大鼠皮肤相关指标改变中的应用.中国中医基础医学杂志,2013.19(3):148-150
    33 黄凤;荣培晶;王宏才;孟宏;朱兵;耳甲迷走神经刺激干预35例糖耐量受损患者临床观察.中华中医药杂志,2010,25(12):2185-2186
    34 Afonso RA, Fernandes AB, Santos C, Ligeiro D, Ribeiro RT, Lima IS, Patarrao RS, Videira PA, Caldeira J, Macedo MP.Postprandial insulin resistance in Zucker diabetic fatty rats is associated with parasympathetic-nitric oxide axis deficiencies.J Neuroendocrinol.2012 Oct;24(10):1346-55. doi:10.1111/J.1365-2826.2012.02341.x.
    35 梅志刚.耳-迷走反射与耳针降糖效应机制的研究.中国中医科学院.博士学位论文.2007
    36 Peschke E, Peschke D.Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets.Diabetologia.1998 Sep;41(9):1085-92.
    37 Kvetnoy IM.Extrapineal melatonin:location and role within diffuse neuroendocrine system.Histochem J.1999 Jan;31(1):1-12. Review.
    38 Shima T, Chun SJ, Niijima A, Bizot-Espiard JG, Guardiola-Lemaitre B, Hosokawa M, Nagai K.Melatonin suppresses hyperglycemia caused by intracerebroventricular injection of 2-deoxy-D-glucose in rats.Neurosci Lett.1997 Apr 25;226(2):119-22.
    39 Aldegunde M, Andres MD, Soengas JL.Uptake of 3-O-methyl-D-[U-14C]glucose into brain of rainbow trout:possible effects of melatonin.J Comp Physiol B.2000 May;170(3):237-43.
    40 Diaz B, Blazquez E.Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat.Horm Metab Res.1986 Apr;18(4):225-9.
    41 Rodriguez V, Mellado C, Alvarez E, De Diego JG, Blazquez E.Effect of pinealectomy on liver insulin and glucagon receptor concentrations in the rat.J Pineal Res.1989;6(1):77-88.
    42 Peschke E, Peschke D, Hammer T, Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res.1997 Oct;23(3):156-63.
    43 Dhar M, Dayal SS, Ramesh Babu CS, Arora SR. Indian J Physiol Pharmacol.1983 Apr-Jun;27(2):109-17.Effect of melatonin on glucose tolerance and blood glucose circadian rhythm in rabbits.
    44 John TM, Viswanathan M, George JC, Scanes CG.Gen Comp Endocrinol. Influence of chronic melatonin implantation on circulating levels of catecholamines, growth hormone, thyroid hormones, glucose, and free fatty acids in the pigeon.1990 Aug;79(2):226-32.
    45 Cagnacci A, Arangino S, Renzi A, Paoletti AM, Melis GB, Cagnacci P, Volpe A.Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clin Endocrinol (Oxf).2001 Mar;54(3):339-46.
    46 Frankel BJ, Strandberg MJ.Insulin release from isolated mouse islets in vitro:no effect of physiological levels of melatonin or arginine vasotocin. J Pineal Res.1991 Oct-Nov;11(3-4):145-8.
    47 Bizon JG, Sprague FR, Wilhelm D. Physician community involvement. Working within your area to promote better health. Mich Med.1998 Jun;97(6):14-6.
    48 Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernandez-Vazquez G. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. J Pineal Res.2012 Mar;52(2):203-10.
    49 高昕妍.耳针疗法与耳-迷走-内脏反射.中国中医科学院.博士学位论文.2005
    50 郑真真;夏玉卿;朱兵;王宏才.针刺耳迷走神经点降低高血糖即时效应的临床观察.中国针灸,2008,28(9):702
    51 黄凤;荣培晶;工宏才;孟宏;朱兵;耳甲迷走神经刺激干预35例糖耐量受损患者临床观察.中华中医药杂志,2010,25(12):2185-2186
    52 Garrison CJ, Dougherty PM, Kajander KC, Carlton SM.Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury.Brain Res. 1991 Nov 22;565(1):1-7.
    53 Rong PJ, Ma SX.Evid Based Complement Alternat Med. Electroacupuncture Zusanli (ST36) on Release of Nitric Oxide in the Gracile Nucleus and Improvement of Sensory Neuropathies in Zucker Diabetic Fatty Rats.2011;2011:134545.
    54 Kumar A, Meena S, Kalonia H, Gupta A, Kumar P. Effect of nitric oxide in protective effect of melatonin against chronic constriction sciatic nerve injury induced neuropathic pain in rats. Indian J Exp Biol.2011 Sep;49(9):664-71.
    55 Wilhelmsen M, Amirian I, Reiter RJ, Rosenberg J, Gogenur I. Analgesic effects of melatonin:a review of current evidence from experimental and clinical studies. J Pineal Res.2011 Oct;51(3):270-7.
    56 Raghavendra V, Agrewala JN, Kulkarni SK. Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice. Eur J Pharmacol.2000 Apr 21;395(1):15-21.
    57 Sugden D..Psychopharmacological effects of melatonin in mouse and rat. J Pharmacol Exp Ther. 1983 Dec;227(3):587-91
    58 Golombek DA, Escolar E, Burin LJ, De Brito Sanchez MG, Cardinali DP.Time-dependent melatonin analgesia in mice:inhibition by opiate or benzodiazepine antagonism.Eur J Pharmacol. 1991 Feb 26;194(1):25-30.
    59 Golombek DA, Escolar E, Burin LJ, De Brito Sanchez MG, Fernandez Duque D, Cardinali DP.Chronopharmacology of melatonin:inhibition by benzodiazepine antagonism.Chronobiol Int. 1992 Apr;9(2):124-31.
    60 Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice.Raghavendra V, Agrewala JN, Kulkarni SK.Eur J Pharmacol.2000 Apr 21;395(1):15-21.
    61 Pohanka M, Bandouchova H, Pikula J.Melatonin influences antioxidant homeostasis and basal metabolism in the BALB/c mouse model. Neuro Endocrinol Lett.2012;33 Suppl 3:183-9.
    62 Butterweck V, Brattstroem A, Grundmann O, Koetter U.Hypothermic effects of hops are antagonized with the competitive melatonin receptor antagonist luzindole in mice. J Pharm Pharmacol.2007 Apr;59(4):549-52.
    63 Pringsheim T, Magnoux E, Dobson CF, Hamel E, Aube M.Melatonin as adjunctive therapy in the prophylaxis of cluster headache:a pilot study. Headache.2002 Sep;42(8):787-92.
    64 Korszun A, Sackett-Lundeen L, Papadopoulos E, Brucksch C, Masterson L, Engelberg NC, Haus E, Demitrack MA, Crofford L. J Rheumatol. Melatonin levels in women with fibromyalgia and chronic fatigue syndrome.1999 Dec;26(12):2675-80.
    65 Klimek A, Sklodowski P. Night headache:report of 2 cases. Neurol Neurochir Pol.1999;33 Suppl 5:49-54.
    66 Vanecek J, Watanabe K. Mechanisms of melatonin action in the pituitary and SCN. Adv Exp Med Biol.1999;460:191-8.
    67 Schapel GJ, Beran RG, Kennaway DL, McLoughney J, Matthews CD. Melatonin response in active epilepsy. Epilepsia.1995 Jan;36(1):75-8.
    68 Wakatsuki A, Okatani Y. Melatonin protects against the free radical-induced impairment of nitric oxide production in the human umbilical artery. J Pineal Res.2000 Apr;28(3):172-8.
    69 Luboshitzky R, Levi M, Shen-Orr Z, Blumenfeld Z, Herer P, Lavie P. Long-term melatonin administration does not alter pituitary-gonadal hormone secretion in normal men. Hum Reprod. 2000 Jan;15(1):60-5.
    70 周敏明;俞昌喜;曹小定;吴根诚.褪黑素对大鼠电针镇痛效应的影响.针刺研究, 2000,25(2):93-95
    71 周敏明等,褪黑素合用电针时大鼠脑内β-内啡肽的变化,中国中西医结合杂志,2001,21(2):115-118
    72 黄颖苏,姜建伟,吴根诚,曹小定.褪黑素和电针对创伤大鼠免疫功能的影响.针刺研究.2001,26(3):233-234
    73 黄颖苏,姜建伟,吴根诚,曹小定.褪黑素和电针对创伤大鼠淋巴细胞转化功能、IL-2活性及ACTH水平的影响.针刺研究.2003,28(1):42-47
    74 Rong P, Fang J, Liu R, Huang Z, Ben H, Li L, Zhu B. Study on regulation on depressive status of CUMS composite model rats by electrostimulation to auricular concha. Evid Based Complement Alternat Med.2012; 2012:789674
    75 Gooneratne NS. Complementary and alternative medicine for sleep disturbances in older adults.ClinGeriatr Med.2008;24:121-138.
    76 Nordio M, Romanelli F. Efficacy of wrists overnight compression (HT 7 point) on insomniacs: possible role of melatonin? Minerva Med.2008; 99:539-547.
    77 Turkistani A, Abdullah KM, Al-Shaer AA, Mazen KF, Alkatheri K. Melatonin premedication and the induction dose of propofol. Eur J Anaesthesiol.2007;24:399-402
    78 Naguib M, Hammond DL, Schmid PG 3rd, Baker MT, Cutkomp J, Queral L, Smith T. Pharmacological effects of intravenous melatonin:comparative studies with thiopental and propofol. Br J Anaesth.2003;90:504-507.
    79 Spence DW, Kayumov L, Chen A, Lowe A, Jain U, Katzman MA, Shen J, Perelman B, Shapiro CM. Acupuncture increases nocturnal melatonin secretion and reduces insomnia and anxiety:a preliminary report. J Neuropsychiatry ClinNeurosci.2004; 16:19-28.
    80 Samuels N. Integration of hypnosis with acupuncture:possible benefits and case examples. Am J ClinHypn.2005;47:243-248.
    81 DeBenedittis G, Cigada M, Bianchi A, Signorini MG, Cerutti S. Autonomic changes during hypnosis:a heart rate variability power spectrum analysis as a marker of sympatho-vagal balance. Int J ClinExpHypn.1994;42:140-152.
    82 Brzezinski A. Melatonin in humans. N Engl J Med.1997; 336:186-195.
    83 La Marca R, Nedeljkovic M, Yuan L, Maercker A, Elhert U. Effects of auricular electrical stimulation on vagal activity in healthy men:evidence from a three-armed randomized trial. ClinSci (Lond).2010;118:537-546.
    84 Mutoh T, Shibata S, Korf H W, Okamura H.Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J Physiol.2003;547:317-332.
    85 Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. CurrNeuropharmacol.2010;8:228-242.
    86 Bubenik GA. Gastrointestinal melatonin:localization, function, and clinical relevance. Dig Dis Sci.2002;47:2336-2348.
    87 Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res.2000;28:193-202.
    88 Werbach MR.Melatonin for the treatment of gastroesophageal reflux disease. AlternTher Health Med.2008; 14:54-58.
    89 Kniaz'kin IV.Extrapineal melatonin in processes of accelerated and premature aging in rats.AdvGerontol.2008;21:80-82.
    90 Kim HM, Cho SY, Park SU, Sohn IS, Jung WS, Moon SK, Park JM, Ko CN, Cho KH. Can acupuncture affect the circadian rhythm of blood pressure? A randomized, double-blind, controlled trial. J Altern Complement Med.2012;18:918-923.
    91 Paul P, Lahaye C, Delagrange P, Nicolas JP, Canet E, Boutin JA. Characterization of 2-[i25l]iodomelatonin binding sites in Syrian hamster peripheral organs. J PharmacolExpTher.1999; 290:334-340.
    92 Iguchi H, Kato KI, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J ClinEndocrinolMetab.1982; 254:1025-1027.
    93 Rong PJ, Ma SX.Electroacupuncture Zusanli (ST36) on Release of Nitric Oxide in the Gracile Nucleus and Improvement of Sensory Neuropathies in Zucker Diabetic Fatty Rats. Evid Based Complement Alternat Med.2011;2011:134545.
    94 Tian Y, Wang S, Ma Y, Lim G, Kim H, Mao J. Leptin enhances NMDA-induced spinal excitation in rats:A functional link between adipocytokine and neuropathic pain. Pain.2011;152:1263-1271.
    95 Sone M, Osamura RY. Leptin and the pituitary. Pituitary.2001;4:15-23.
    96 Rios-Lugo MJ, Cano P, Jimenez-Ortega V, Fernandez-Mateos MP, Scacchi PA, Cardinali DP, Esquifino AI. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J Pineal Res.2010;49:342-348.
    97 Wang S, Tian Y, Song L, Lim G, Tan Y, You Z, Chen L, Mao J. Exacerbated mechanical hyperalgesia in rats with genetically predisposed depressive behavior:Role of melatonin and NMDA receptors. Pain.2012; 153:2448-2457.
    98 Wang S, Zhang L, Lim G, Sung B, Tian Y, Chou CW, Hernstadt H, Rusanescu G, Ma Y, Mao J. A combined effect of dextromethorphan and melatonin on neuropathic pain behavior in rats.Brain Res.2009; 1288:42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700