用户名: 密码: 验证码:
两种高产麻疯树(Jatropha curcas L.)适应盐胁迫的生理生化机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,麻疯树(Jatropha curcas L.)由于具有种子含油量高且油质优良,作为生物柴油原料得到特别关注,引发了大规模的投资和扩张种植,但如果麻疯树与粮食竞争用地或利用高碳土地,它便失去可持续发展的优势。目前,麻疯树作为新兴生物能源资源,当前对其研究主要集中在种子含油量、籽油特性、籽油成份以及用籽油生产生物柴油方面,而其基本农艺性状、该物种对生物和非生物胁迫的响应方面知识了解甚少。例如,麻疯树对盐胁迫的响应。
     尚未了解这些知识,意味着大规模种植不是没有社会经济和生态方面的风险。为了选出高产、耐盐的麻疯树生态型,我们测定了从十五个不同麻疯树生态型中初筛出的三个蒴果产量较高的生态型(南油1,2和3号)的种子及其籽油的理化特性,评估其作为生物柴油原料的潜力。然后,探讨不同生态型麻疯树对NaCl胁迫的生长和生理生化响应,以阐明麻疯树的耐盐性及其耐盐机理。继而进一步探讨了麻疯树对不同海水浓度的耐受性以及海水处理对麻疯树生长和籽油含油率和脂肪酸成份的影响。这些基础研究有助于筛选优质高产、耐盐麻疯树品系,为以后培育麻疯树耐盐品种奠定基础。主要研究结果如下:
     1、三种生态型麻疯树的种仁含油量均在60%以上,且籽油的脂肪酸主要由油酸(C18:1)、棕榈酸(C16:0)、亚油酸(C18:2)、硬脂酸(C18:0)和十七碳酸(C17:0)组成,三者的碳链长度均主要集中在C16-18,皆以不饱和脂肪酸为主,具有较好的生物柴油原料利用价值。其中,以南油3号种仁含油量和生物产量最高,其作为生物柴油原料的潜力最大。南油1、2号间的种仁含油量与生物产量无显著差异,但2号麻疯树的种子具有优良的结实性状、物理和遗传特性,利于降低生物柴油生产的成本。因此,其作为生物柴油原料的潜力比1号麻疯树的相对大。
     2、南油2、3号苗用不同浓度NaCl (0,50,100和200mmol-L"1)处理24天,叶片RWC皆与对照无显著差异,表明盐胁迫下麻疯树具有较强的保持水分平衡的能力。50mmol·L'1NaCl处理,南油2、3号麻疯树净光合速率Pn,PS Ⅱ的最大光化学效率(Fv/Fm)、叶片光合总面积与对照无显著差异,光合性能维持稳定,全株干重不受影响。100、200mmol·L-1NaCl处理,南油2、3号苗的全株干重皆比对照显著降低,3号苗降低的幅度较大,表明低盐50mmol·L-1NaCl对麻疯树生长无明显影响,中高盐胁迫下,南油2号抵抗盐胁迫的能力较3号苗强。
     3、南油2号麻疯树苗SOD活性在50mmol·L-1NaCl处理下,比对照显著增加,200mmol·L-1NaCl处理,比对照显著降低,而3号苗的SOD活性随着盐度的增加显著降低。南油2、3号苗的POD活性在50mmol·L-1NaCl处理,皆与对照无显著差异。随着盐度增加,2号苗的POD活性比对照显著增加,而3号苗的比对照显著减小但维持相对稳定。南油2、3号树苗的CAT活性在50mmol·L-1NaCl处理下,分别比对照显著增加58%和24%,随后变化趋势如SOD活性。以上结果表明,盐胁迫激活麻疯树叶片中抗氧化酶活性,与南油3号相比,2号苗抗氧化酶活性能更好地协调增加和维持得相对高。
     4、随着盐度的增加,两种麻疯树根、茎和叶中的Na+和Cl-含量呈递增趋势。50mmol·L-1NaCl处理,Na+和Cl-在茎和根中增加的幅度明显大于叶中的,且Na+和Cl-主要分布在茎和根的皮层以及茎的髓部,表明低盐胁迫下,麻疯树能将Na+和Cl-区域到茎和根的皮层和髓部细胞中,降低Na+和Cl-对叶片的伤害.200mmol·L-1NaCl处理,Na+和Cl-在叶片和茎中增加的幅度比根中的大,并主要把Na+和Cl-区隔到叶片主脉的皮层和木质部,降低Na+和Cl-对叶片栅栏和海绵织织的伤害,维持叶片光合能力。与南油3号相比,2号苗K+、Ca2+浓度降低的幅度相对小,因此能维持相对高的K+/Na+和Ca2+/Na+比,维持离子平衡的能力较3号苗强。
     5、50、200mmol·L-1NaCl处理麻疯树苗5天后,根中PM-H+-ATPase的水解活性、Vmax, Km、质子泵活性和pH梯度比对照显著增高,尤其在低盐处理。以翻译水平为主激活根部PM-H+-ATPase,很好地维持根部对N、P营养的吸收以及糖类的获取,促进根部生长和提高根冠比,提高麻疯树的抗盐性。盐处理下,叶片PM-H+-ATPase的Km值显著降低,提示盐胁迫下,麻疯树叶片PM-H+-ATPase明显增加了对底物ATP的亲和性,50mmol-L-1NaCl处理,质子泵活性维持稳定,主要归于脂质膜的改变,而200mmol-L-1NaCl处理质子泵活性的增加,则可能是由于弱酸介导激活质子转运。盐胁迫下,根和叶片中的V-H+-ATPase和V-H+-PPase也不同程度被激活。盐胁迫下,麻疯树根和叶中质膜H+-ATPase、V-H+-ATPase和V-H+-PPase的这些改变,是其对盐胁迫的一套适应机制。与南油3号苗相比,2号苗根和叶中的PM-H+-ATPase. V-H+-ATPase5V-H+-PPase活性被激活和维持得相对高,间接表明盐胁迫下,南油2号维持离子和营养平衡的能力、将Na+和Cl-区隔到液泡里的能力相对强,从而抵抗盐胁迫的能力相对强。
     2~5的结果表明,盐胁迫下,麻疯树能通过维持稳定的光化学活性和叶片水分状况以维持稳定的Pn;激活较高的抗氧化酶活性以维持膜稳定性;以翻译调控为主,激活根部PM-H+-ATPase以维持根部N、P和糖类等营养吸收和转运以及离子平衡;激活叶片V-H+-ATPase和V-H+-PPase以区域有毒离子到液泡里等策略来抵抗盐胁迫。与南油3号相比,南油2号具有较好的响应策略,故其耐盐性相对强。
     6、10%海水处理对南油2号麻疯树苗期生长无明显影响,但显著促进其营养期生长和单株结果产量;20%海水处理对营养期生和单株结果无明显影响,但降低其脂肪酸中亚麻酸含量,利于减少籽油酸败程度,从而提高生物柴油原料的品质。
     总而言之,三个高产麻疯树生态型(南油1、2和3号)的种仁含油量均在60%以上,具有较好的生物柴油原料利用价值。其中,以南油3、2号作为生物柴油原料的潜力相对大。南油2号麻疯树抗盐能力比3号的强。麻疯树能适应10%~20%海水处理,具有适应滩涂栽培的潜力,可进一步培育耐盐麻疯树品种,以作为海岸基干林带混交林中的生态经济型树种。
In recent years, the physic nut (Jatropha curcas L.) has received special attention as a biodiesel feedstock, because of its high seed oil content and quality. Large-scale investments and expansions of physic nut plantations have been triggered. If the physic nut competes for land with food crops or high carbon stocks, its acclaimed sustainability advantages are lost. The seeds of physic nut plants represent a promising bio-energy source and current research is mainly focused on their oil content, characteristics and composition and their use and application to biodiesel production. Knowledge of the physic nut agronomic properties and the plant's physiological responses to biotic and abiotic stress are not thoroughly understood. For example, there is limited information on how the physic nut responds to salt stress.
     These knowledge gaps imply that developing large scale plantations is not without socio-economic and ecological risk. In order to selected salt-tolerant, high yield physic nut ecotypes, we analyzed the chemical and physical characteristics of seeds and seed oils of three physic nut ecotypes (Nanyou1,2and3) with relatively high capsule yield, which were initially screened from fifteen physic nut ecotypes. Furthermore, In order to clarify the salt tolerance of physic nut and its salt tolerance mechanisms, we analyzed the growth and physiological and biochemical responses to salt stress between the Nanyou2and3. The Nanyou2was also exposed to different concentrations of seawater to clarify the seawater-tolerance in physic nut and the effect of sea water on physic nut growth, seed oil content and the fatty acid compositions. All these basic reasearch would help to develop strategies for improving understanding the physic nut plants response to salt stress, screen high yield and salt-tolerant strains of physic nut, cultivate for salt-tolerant cultivars in the future. The main results obtained were shown as follows:
     1. The kernel oil content of three physic nut ecotypes was more than60%. Moreover, the fatty acid compositions in three physic nut seed oils were mainly oleic acid (C18:1), palm itic acid (C16:0), linoleic acid (C18:2), stearic acid (C18:0) and margaric acid (C17:0), and were dominated by unsaturated fatty acids. Thus, they were all good biodiesel feedstocks. Among these three physic nut ecotypes, the kernel oil content and biological yield of the Nanyou3was highest. Therefore, it had the greatest potential for biodiesel feedstock. There was no significant difference in kernel oil content and biological yield between the Nanyou1and2. However, the Nanyou2was with excellent fruit characters and excellent physical and genetic characteristics, which were helpful for reducing the cost of biodiesel production. Thus, compared with the Nanyou1, the Nanyou2had a greater potential for biodiesel feedstock.
     2. Seedlings of Nanyou2and Nanyou3were subjected to different concentrations of NaCl (0,50,100and200mmol-L"1) treatment for24days. Compared with the control leaves, both the leaf RWC had no significant difference in two ecotypes, suggested that physic nut plants has a strong capacity to maintain cell water balance under salt stress. Under50mmol-L-1NaCl treatment, compared with the control, the Pn,Fv/Fm and the totally photosynthetic area had no significant difference, indicated the photosynthetic performance remained stable. Thus, the whole plant dry weight was not affected by50mmol-L"1NaCl in both Nanyou2and Nanyou3. Under100and200mmol·L-1NaCl treatment, both the dry weights of Nanyou2and Nanyou3were reduced significantly, especially that of Nanyou3, indicated50mmol·L-1NaCl had no significant effect on the physic nut growth. The Nanyou2had a strong capacity of resistance to salt stress than the Nanyou3under mid-high salt stress.
     3. The SOD activity of Nanyou2increased under50mmol-L-1NaCl treatment and decreased significantly under200mmol-L-1NaCl treatment, while that of Nanyou3decreased continuously with a significant degree. The POD activity in both Nanyou2and3maintained stable under50mmol-L"1NaCl treatment, with the increasing NaCl treatment, the POD activity in Nanyou2increased significantly, while that in Nanyou3significantly decreased but maitained stable. The CAT activities of both ecotypes increased significantly when treated with50mmol-L'1NaCl, and then showed similar trend as the SOD activities did in both ecotypes. These results suggested that the activity of antioxidant enzymes in physic nut seedling leaves could be activated under salt stress. Compared with the Nanyou3, the Nanyou2could maitain higher antioxidant enzyme activities and had a better ability to increase coordinately and remain higher activity.
     4.With the increasing NaCl concentration, the increasing trend of Na+and Cl-content in physic nut roots, stems and leaves was observed. The increase of Na+and Cl-content in physic nut shoots and roots was more conspicuous than that in leaves under50mmol-L-1NaCl treatment. Moreover, the Na+and Cl-were mainly distributed in the cortex of root and stem as well stem pith, so it could reduce the damage to the leaf. Under200mmol-L-1NaCl treatment, the increasing rate of Na+and Cl-content in leaves and stems was higher than that of roots, and the Na+and Cl-were mianly distributed to the cortex and xylem of the leaf main vein to reduce the injury for palisade and spongy tissue. Thus, the leaf could maintain photosynthetic capacity. Compared with the Nanyou3, the decreasing rate of K+and Ca2+in Nanyou2was lower, so it could maitain higher K+/Na+andCa2+/Na+ratio than the Nanyou3did. Thus, its ability to maintain ion balance was stronger than that of the Nanyou3.
     5. This study investigates the acclimation of PM-H+-ATPase of Nanyou2physic nut roots and leaves treated with0,50and200mmol-L-1NaCl for5days. Upon comparison with control roots, the PM H+-ATPase hydrolytic activity, Vmax, Km, H+-pumping activity and pH gradient potential across the plasma membrane were significantly higher in roots treated with NaCl, especially under mild salt stress. The translational activation of PM-H+-ATPase of physic nut roots helped to maintain nitrogen and phosphorus uptake as well as soluble sugar acquisition in root, thus promoting root growth and increasing root shoot ratio and increasing the salt tolerance of physic nut. Compared with the control leaves, with NaCl treatment, lower Km values for the PM H+-ATPase of leaves were observed, suggested that the affinity of PM H+-ATPase towards ATP increases as a function of salt treatment. The maintenance of H+transport under50mmol-L"1NaCl was attributed to a modification of the lipid membrane, and the increase in H+transport under200mmol-L-1NaCl could be because of an acid-mediated activation. Under salt stress, the activity of V-H+-ATPase and V-H+-PPase of roots and leaves was also activated in varying degrees in two physic nut ecotypes.These modulations of PM H+-ATPase, V-H+-ATPase and V-H+-PPase in the roots and leaves of physic nut, could represent a set of adaptive mechanisms to salinity. Compared with the Nanyou3, the Nanyou2maintained higher activity of theses enzymes in roots and leaves under salt stress, indirectly suggested that the ability of ionic and nutritional balance and the compartmentation Na+and Cl-into the vacuole was relatively stronger than that of the Nanyou3. Thus its ability to resist salt stress was relatively stronger than that of the Nanyou3.
     The results (2-5) indicate that young physic nut plants are able to cope with salt stress by maintaining stable integrity of the photochemical activity and stable leaf water status associated with stable Pn, maintaining higher antioxidant enzyme activities associated with stable membrane, activating root PM-H+-ATPase mainly through translational regulation and leaf PM-H+-ATPase mainly through transcriptional and/or post-translational regulation, associated with nutrients absorbtion and ion homeostasis, activating leaf V-H+-ATPase and V-H+-PPase associated with compartmentation the toxic ions and cytosolic pH homeostasis etc. These responses might represent a set of adaptive mechanisms employed by physic nut to cope with salt stressful conditions. Compared with the Nanyou3, the Nanyou2had better response strategies.
     6.10%seawater treatment had no significant effect on the growth of the Nanyou2seedling, but it enhanced the vegetative growth of the Nanyou2, and the seed production of per plant.20%sea water treatment had no significant effect on the vegetative growth and the production of per plant. However, it reduced the linolenic acid and linoleic acid content of the fatty acid, which helped to improve the quality of biodiesel feedstock.
     In conclusion, the kernel oil content of three physic nut ecotypes was more than60%. Thus, they were all good biodiesel feedstocks. Among these three physic nut ecotypes, the kernel oil content and biological yield of the Nanyou3was highest, and the Nanyou2was with excellent fruit characters and excellent physical and genetic characteristics, which were helpful for reducing the cost of biodiesel production.Therefore, the Nanyou3and2had the greater potential for biodiesel feedstock. Compared with the Nanyou3, the Nanyou2had a relatively high salt tolerance. Further research showed that physic nut can adapt to10%~20%sea water treatment. It has the potential to adapt to grow in the coastal area, so we can further cultivate the salt-tolerant physic nut cultivar, as the coastal mixed forest tree species for the ecological and economic use.
引文
Achten W M J, Verchot L, Franken Y J, et al. Jatropha bio-diesel production and use[J]. Biomass and Bioenergy,2008,32:1063-1084.
    Achten W M J, Maes W H, Aerts R, et al. Jatropha:from global hype to local opportunity [J]. J Arid Environ,2010,74:164-165.
    Aebi H. Catalase in vitro[J]. Methods Enzymology,1984,105:121-126.
    Ahn S J, Im Y J, Chung G C, et al. Physiological responses of grafted cucumber leaves and rootstock affected by low root temperature[J]. Sci. Horti.,1999,81:397-408.
    Akintayo E T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes[J]. Bioresource Technology,2004,92:307-310.
    Altuntases E O, Zgo Z E, Taser O F, et al. Some physical properties of fenugreek (Trigonella foenum-graceum L.) seeds[J]. Journal of Food Engineering,2005,71:37-43.
    Amigo L, Moreno E and Lagunas R. In vivo inactivation of the yeast plasma membrane ATPase in the absence of exogenous catabolism[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1993, 1151:83-88.
    Antosiewicz D M. The relationships between constitutional and inducible Pb-tolerance and tolerance to mineral deficits in Biscutella laevigata and Silene inflata[J]. Environ Exp Bot.,1995,35:55-69.
    Ohnishi T, Gall R S, Mayer M L. An improved assay of inorganie Phosphate in the presence of extralabile phosphate eompounds:Application to the ATPase assay in the presence of phosphoereatine[J]. Anal Bioehem,1975,689:261-267.
    AnguloR M S, Linares R, Teal J. Assessment of the externalities of biomass energy and a comparison with coal [J]. Biomass and Biomass Energy,1998,14:469-478.
    Anonymous. Biodiesel 101 [J]. BioCycle,2005,46:33.
    Arango M, Gevaudant F, Oufattole M, et al. The plasma membrane proton pump ATPase:the significance of gene subfamilies[J]. Planta,2003,216:355-365.
    Asada M, Ahn Y H, Sagisaka S. Changes in parenchyma cells of pop lar xylem during transition from growing to wintering stages [J]. Plant Cell Physiol,1988,29:234.
    Azam M M, Waris A, Nahar N M. Prospects and potential of acidmethyl esters of some non-traditional seed oils for use as biodiesel in India[J]. Biomass Bioenerg,2005,29:293-302.
    Baginski E S, Foa P P, Zak B. Determination of phosphate:study of labile organic phosphate interference [J]. Clin Chim Acta,1967,15:155-158.
    Ballesteros E, Donaire J P, Belver A. Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles isolated from sunflower roots [J]. Physiol Plant,1996,97:259-268.
    Ballesteros E, Blumwald E, Donaire J P, et al. Na+/H+antiport activity in tonoplat vesicles isolated from sunflower roots induced by NaCl stress [J]. Physiol Plant,1997,99:328-334.
    Ballesteros E, Kerkeb B, Donaire J P, et al. Effects of salt stress on H+-ATPase activity of plasma membrane-enriched vesicles isolated from sunflower roots [J]. Plant Science,1998,134:181-190.
    Bao A K, Wang S M, Wu G Q. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Science,2009,176:232-240.
    Bartels D, Sunkar R. Drought and salt tolerance in Plants[J]. Critieal Reviews in Plant Seienees,2005, 24:23-58.
    Binzel M, Ratajczak R. Function of membrane transport systems under salinity:tonoplast, in:Lauchli A,Luttge U(Eds), Salinity:Environment Plants Molecules, Kluwer Academic Publishers 2002.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    Brini F, Hanin M, Mezghani I, et al. Overexpression of wheat antiporter TNHX1 Na+/H+and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants[J]. J Exp Botany,2007,58:301-308.
    Carmelo V, Santos H and Sa-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta,1997,1325:63-70.
    Luo C W, Li K, Chen Y, et al. Pollen viability, stigmareceptivity feature of J. curcas L.(Euphorbiaceae)[J]. North-west Plant,2007,27:1994-2001.
    Chaudhuri K, Choudhuri M A. Effeets of short-term NaCI stress on water relations and gas exehange of two jutes peeies[J]. Biologia Plantarum,1998,40:373-380.
    Cramer G R, Epstein E, Lauchli A. Effects of sodium, potassium and calcium on salt-stressed barley. II [J]. Elemental analysis. Physiol plant,1991,81:197-201.
    de Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany,2003,49:107-120.
    Delrot S, Atanassova R, Gomes E, et al. Plasma membrane transporters:a machinery for uptake of organic solutes and stress resistance [J]. Plant Science,2001,161:391-404.
    Demmig-Adams B,Adams W W. Phtoprotection and other responses of plants to high light stress [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
    DuPont F M. Salt-induced changes in ion transport:regulation of primary pumps and secondary transporters, in:Cooke DT, Clarkson DT(Eds), Transport and Receptor Proteins of Plant Membranes, Plenum Press,1992.
    Eraso P, Portillo F. Molecular mechanism of regulation of yeast plasma membrane H+-ATPase by glucose[J]. J Biol Chem.,1994,269:10393-10399.
    Estan M T, Martinez-Rodriguez M M, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot[J]. J Exp Bot,2005,56:703-712.
    Fairless D. Biofuel:the little shrub that could-maybe[J]. Nature,2007,449:652-655.
    Femandez-Garcia N, Martinez V, Cerda A, et al. Fruit qualjty of grafted tomato Plants grown Under saline conditions[J]. Journal of Hortieultural Science&Bioteehnology,2004,79:995-1001.
    Francis G, Edinger R, Becker K. A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India:need, potential and perspectives of Jatropha plantations[J]. Nat Resour Forum,2005,29:12-24.
    Garg B K, Gupta I C. Saline wastelands environment and plant growth[M]. Scientific Publishers, Jodhpur, India,1997.
    Garnayaka D K, Pradhana R C, Naika S N, et al. Moisture-dependent physical properties of Jatropha curcas L. seed[J]. Industrial Crops and Products,2008,27:123-129.
    Gaxiolaa R A, Palmgren M G, Schumacher K. Plant proton pumps[J]. FEBS Letters,2007,581: 2204-2214.
    Gevaudant F, Duby G, Stedingk E V, et al. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance [J]. Plant Physiol,2007,144: 1763-1776.
    Giibitz G M, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. [J]. Bioresource Technology,1999,67:73-82.
    Gulzar S, khan M A, Ungar I A. Salt tolerance of a coastal salt marsh grass[J]. Conununications in Soil Science and Plant Analysis,2003,34:2595-2605.
    Guo S, Yin H, Zhang X, et al. Molecular cloning and characterization of H+-pyrophosphatasegene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought toleranceof Arabidopsis [J]. Plant Mol Biol,2006,60:41-50.
    Guy C L. Cold acclimation and freezing stress tolerance:role of protein metabolism [J]. Plant Physiol, 1990,41:187.
    Han N, Shao Q, Lu C M. The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode [J]. Journal of Plant Physiology,2005,162:267-274.
    Ilana U B, RafaelV R, Marisa A, et al. Chlorophyll fluorescence as a tool to evaluate the ripening of Golden'papaya fruit [J]. Postharvest Biology and Technology,2004,33:163-173.
    Hanny J B, Shizuko H. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids [J]. Bioresource Technology,2008,99:1716-1721
    Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular molecular responses to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    Heber U, Wagner U, Kaiser W, et al. Fast Cytoplasmic Ph Regulation in Acid-Stressed Leaves [J]. Plant Cell Physiol,1994,35:479-488.
    Herrera J M, Siddhuraju P, Francis G, et al. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico [J]. Food Chemistry,2006,96:80-89.
    Huh G H, Damsz B, Matsumoto T K, et al. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants[J]. Plant J,2002,29:649-659.
    Imene Ben Salah, Alfonso Albacete, Andujar C M, et al. Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress[J]. Journal of Plant Physiology,2009,166:477-488.
    Janicka-Russak M, Klobus G. Modification of plasma membrane and vacuolar H+-ATPases in response to NaCL and ABA[J]. Journal of Plant Physiology,2007,164:295-302.
    Jiang M Y, Zhang J H. Cross-talk between caleium and reactive oxygen species originated from NADPH oxidase in abseisic acid induced antioxidant defence in leaves of maize seedlings[J]. Plant Cell and Environment,2003,26:929-939.
    Johansson F, Olbe M, Sommarin M, et al. Brij58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles[J]. Plant J,1995,7:165-173.
    Johansson F, Sommarin M, Larsson C. Fusicoccin activates the plasma membrane H+-ATPase by a mechanism involving the C-terminal inhibitory domain[J]. Plant Cell,1993,5:321-327.
    Kao W Y, Tsai T T, Tsai H C, et al. Response of three Glycine species to salt stress[J]. Environmental and Experimental Botany,2006,56:120-125.
    Kchaou H, Larbi A, Gargouri K, et al. Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+and Cl" exclusion mechanisms [J]. Scientia Horticulturae, 2010,124:306-315.
    Kerkeb L, Donaire J P, Rodriguez-Rosales M P. Plasma membrane H+-ATPase activity is involved in adaptation of tomato to NaCl[J]. Physiol Plant,2001,111:483-490.
    Ke W S, Xiong Z T, Chen S J, et al. Effects of copper and mineral nutrition on growth,copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites[J]. Environmental and Experimental Botany,2007,59:59-67.
    Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J]. Plant J,1997,12:1067-1078.
    Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus L. [J]. Environmental and Experimental Botany, 2006,56:136-146.
    Kumar G P, Yadav S K, Thawale P R, et al. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter-A greenhouse study[J]. Bioresource Technology, 2008,99:2078-2082.
    Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses(Jatropha curcas L.): a review[J]. Industrial Crops and Products,2008,28:1-10.
    Kuo S. Phosphorus. In:Sparks DL ed. Methods of Soil Analysis[M]. Part 3, Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA, 1996
    Leidi E O, Barragan V, Rubio L, et al. The AtNHXl exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61:495-506.
    Levitt J. Response of plants to environmental stress[M]. Volume Ⅱ,2nd ed. Academic press. New York, 1980.
    Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance[J]. Proc Natl Acad Sci USA,1997,94:14960-14964.
    Liu P, Yang G D, Li H, et al. Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions[J]. Acta Physiologiae Plantarum, 2010,32:81-90.
    Lopez-Perez L, Martinez-Ballesta MC, Maurel C, et al. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry,2009,70: 492-500.
    Lutts S, Kinet J M, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Plant Growth Regulation,1996,19:207-218.
    Liu J.& Zhu, J K. A calcium sensor homolog required for plant salt tolerance[J]. Science,1998,280: 1943-1945.
    Lopez-Perez L, Martinez-Ballesta M C, Maurel C, Carvajal M. Changes in plasma membrane lipids,aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity [J]. Phytochemistry,2009,70:492-500.
    Lopez-Climent M F, Arbona V, Perez-Clemente R M, et al. Relationship between salt tolerance and photosynthetic machinery performance in citrus[J]. Environmental and Experimental Botany,2008, 62:176-184.
    Lukaszewicz M, Jerouville B, Boutry M. Signs of translational regulation within the transcript leader of a plant plasma membrane H+-ATPase gene[J]. Plant J,1998,14:413-42.
    Lutts S, Kinet J M, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity resistance[J]. Plant Growth Regulation,1996,19:207-218.
    Maggio A, Raimondi G and Martino A. Salt stress response in tomato beyond the salinity tolerance threshold[J]. Environmental and Experimental Botany,2007,59:276-282.
    Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants[J]. Environ Exp Bot,2004, 52:113-122.
    Mansour M M F. Nitrogen containingcompounds and adaptation of plants to salinity stress[J]. Biologia Plantarum,2000,43:491-500.
    Marchesini N and Docampo R. A plasma membrane P-type H+-ATPase regulates intracellular pH in Leishmania mexicana amazonensis[J]. Molecular&Biochemical Parasitology,2002,119:225-236.
    Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion:a salinity tolerance mechanism among five zoysiagrass species[J]. Crop Science,1998,38:806-810.
    Mendoza I, Rubio F, Rodriguez-Navarro A, et al. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae[J]. J Biol Chem.,1994,269:8792-8796.
    Michelet B, Boutry M. The plasma membrane H+-ATPase:a highly regulated enzyme with multiple physiological functions[J]. Plant Physiol,1995,108:1-6.
    Mistrik I and Ullrich C I. Mechanism of anion uptake in plant roots:Quantitative evaluation of H+/NO3-and H+/H2PO4-stoichiometries[J]. Plant Physiology and Biochemistry,1996,34:629-636.
    Mittelbach M. Diesel fuel derived from vegetable oils, VI:specifications and quality control of biodiesel. Bioresour Technol,2006,56:7-11.
    Mohsenin N N. Physical properties of plant and animal materials[M]. New York:Gordon and Breach Science Press,1970.
    Moriau L, Michelet B, Bogaerts P, et al. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme[J]. Plant J,1999,19:31-41.
    Munns R, Tonnet M L, Shennan C, et al. Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus.Ⅱ. Ions in phloem sap[J]. Plant, Cell and Environment,1988,11: 291-300.
    Munns R. Comparative physiology of salt and water stress. Plant Cell Environment,2002,25:239-250.
    Munns R. Genes and salt tolerance:bringing them together[J]. New Phytologist,2005,167:645-663.
    Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypothesis[J]. Plant Cell Environ,1993,16:15-24.
    Navarro J M, Botella M A, CerdalA, et al. Phosphorus uptake and translocation in salt-stressed melon plants[J]. J Plant Physiol,2001,158:375-381.
    Netondo G W, Onyango J C, Beck E. Sorghum and salinity:II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress[J]. Crop Science,2004,44:806-811.
    Otoch M D L, Sobreira A C M, deAragao M E F, et al. Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata[J]. J Plant Physiol,2001,158:545-551.
    Palmgren MG. Plant plasma membrane H+-ATPases:powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol,2001,52:817-845.
    Palmgren M G, Sommarin M, Ulvlskov P, et al. Modulation of plasma membrane H+-ATPase from oat roots by lysophosphatidylcholine, free fatty acids and phospholipase A2[J]. Physiologia Plantarum, 1988,74:11-19.
    Palmgren MG. Proton gradients and plant growth[J]. Adv Bot Res,1998,28:1-70.
    Palmgren M G. Plant plasma membrane H+-ATPases:powerhouses for nutrient uptake[J]. Annu Rev Plant Phys. Plant Mol Biol,2001,52:817-845.
    Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Brugulera parvijlora in hydroponic cultures[J]. Journal of Plant Biology,2002,45:28-36.
    Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+uptake and distribution in the plant[J]. Plant Mol Biol,2003,51: 773-787.
    Pilot G, Gay Palmgren M G, Christensen G. Functional comparison between plant plasma membrane H+-ATPase isoforms expressed in yeast[J]. J Biol Chem,1994,269:3027-3033.
    Portillo F, Eraso P and Serrano R. Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression[J]. FEBS Lett.,1991,287:271-274
    Pramanik K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine[J]. Renewable Energy,2003,28:239-248.
    Rajasekaran L R, Aspinall D, Jones G P, et al. Effect of salt stress on Trigonelline accumulation in tomato[J]. Canadian Journal of Plani Seienee,2001,81:487-498.
    Ramoliya P J, Patel H M, Pandey A N. Effect of salinisation of soil on growth and macro-and micro-nutrient accumulation in seedlings of Acacia catechu (Mimosaceae)[J]. Annals of Applied Biology,2004,144:321-332.
    Ratajcza K R. Structure, function and regulation of the plant vacuolar H+-translocating ATPase[J]. Biochim Biophys Acta,2000,1465:17-36.
    Ribeiro R V, Machado E C, Santos M G, et al. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions[J]. Photosynthetica,2009,47:215-222.
    Rodriguez-Rosales M P, Kerkeb L, Bueno P, et al. Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato(Lycopersicon esculentum. Mill) calli[J]. Plant Science,1999,143:143-150.
    Rohacek K. Chlorophyll fluorescence prarmeters:the definitions, photosynthetic meaning and relationships[J]. Photosynthetica,2002,40:13-29.
    Sahu B B and Shaw B P. Salt-inducible isoform of plasma membrane H+-ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritime[J]. Journal of Plant Physiology,2009, 166:1077-1089.
    Salah I B, Albacete A, Andujar C M, et al. Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress[J]. Journal of Plant Physiology,2009,166:477-488.
    Sairam R K, Rao K V, SrivastavaG C. Differential response of wheat genotypes to long term salinity stress in relation to oxdative stress, antioxidant activity and osmolyte concentration [J]. Plant Science,2002, 163:1037-1046.
    Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant Physiology,1993,101:7-12.
    Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiol Plant,2007,133:651-669.
    Shi H Z, Ishitani M, Kim C S, et al. The Arabidopsis thaliana tolerance gene SOS1 encodes a putative Na+/H+antiporter[J]. Proc Natl Acad Sci USA,2000,97:6896-6901.
    Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:The root antioxidative system[J]. Physiologia Plantarum,2001,112:487-494.
    Shi Q H, Ding F,Wang X F, et al. Exogenous nitric oxide protect cueumber roots against oxidative stress induced by salt stress[J]. Plantphysiology and Bioehemistry,2007,45:542-550.
    Sibole J V, Montero E, Cabot C, et al. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum,1998,104:299-305.
    Silva E N, Ribeiro V R, Ferreira-Silva S L, et al. Comparative effects of salinity and water stress on photosynthesis, waterrelations and growth of Jatropha curcas plants[J]. Journal of Arid Environments 2010a,74:1130-1137.
    Silva E N, Ferreira-Silva S L, Viegas R A, et al. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants[J]. Environmental and Experimental Botany, 2010 b,69:279-285.
    Sondergaard T E, Schulz A, Palmgren M G. Energization of transport processes in plants:roles of the plasma membrane H+-ATPase[J]. Plant Physiol,2004,136:2475-2482.
    Sperandio M V L, Santos L A, Bucher C A, et al. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3" or NH+[J]. Plant Science, 2011,180:251-258.
    Speth C, Jaspert N, Marcon C, et al. Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain:what do we know for sure? [J]. European Journal of Cell Biology,2010,89: 145-151.
    Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains [J]. Environmental and Experimental Botany,1999,42:211-220.
    Sunil N, Varaprasad K S, Siva raj N, et al. Assessing Jatropha curcas L. germplasm in situ-A case [J]. Biomass and Bioenergy,2008,32:198-207.
    Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases:regulation and biosynthesis[J]. Plant Cell,1999,11:677-689.
    Tejera N A, Soussi M, Lluch C. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions [J]. Environmental and Experimental Botany, 2006,58:17-24.
    Tonbridge. Green power for Britain's farmers[J]. Farmers Guardian,2004,5:22.
    Turhan E, Eris A. Growth and Stomatal Behaviour of Two Strawberry Cultivars under Long Term Salinity Stress[J]. Turk J Agri,2007,31:55-61.
    Waditee R, Hibino T, Nakamura T, et al. Overexpression of a Na+/H+antiporter confers salt toleranee on a fresh water cyanobaeterium, making it capable of growth in sea water[J]. Proceedings of the National Aeademy of seiences of the United States of America,2002,99:4109-4114.
    Wakeel A, Hanstein S, Pitann B, Schubert S. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress[J]. Journal of Plant Physiology,2010,167: 725-731.
    Wang W X, Vinoeur B, AltmanA. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress toleranee[J]. Planta,2003,218(1):1-14.
    Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J]. Journal of Horticultural Sience and Biotechnology,2000,75:623-627.
    Werner A, Stezer R. Physiological response of the mangrove Rhizophora mangle growth in the absence and presence of NaCl [J]. Plant Cell and Environ,1990,13:243-255.
    Wilson C, Shannon M C. Salt-induced Na+/H+antiport in root plasma membrane of a glycophytic and halophytic species of tomato[J]. Plant Science,1995,107:147-157.
    Widell S and Larsson C. (1990)A critical evaluation of markers used in plasma membrane purification. In Larsson C, M(?)ller IM, eds, The Plant Plasma Membrane. Springer-Verlag,Berlin, pp 16-43.
    Williams L E, Lemoine R and Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation[J]. Trends in Plant Science,2000,5:283-290.
    Wilson C, Shannon M C. Salt-induced Na+/H+antiport in root plasma membrane of a glycophytic and halophytic species of tomato[J]. Plant Science,1995,107:147-157.
    Winter K, Schmitt M R, Edwards G E. Microstegium vimineum, a shade adapted C4 grass[J]. Plant Science Letters,1982,24:311-318.
    Wu J L. and Seliskar D M. Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens:ATP hydrolysis and enzyme kinetics[J]. J Exp Bot.,1998,49:1005-1013.
    Yan F, Zhu Y Y, Muller C, et al. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency [J]. Plant Physiology,2002,129:50-63.
    Wang Y Z, Xu H B, Zhang G X, et al. Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat[J]. J. Genet. Genomics,2009,36:711-720.
    Zhang J X, Kirkham M B. Drought stress induced changes in activities of superoxide dismutase. Catalase and peroxidse in wheat species[J]. Plant Cell Physiol,1994,35:785-791.
    Zhu J, Meinzer F C. Effieieney of C4 photosynthesis in Atriplex lentiformis under salinity stress[J]. Australian Journal of Plant Physiology,1999,26:79-86.
    Zhu J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol.,2002,53: 247-273.
    Zhu J K. Plant salt toleranee[J]. Trendsin Plant Seienee,2001,6:66-71.
    毕艳兰.油脂化学[M].北京:化工出版社,2005.
    陈钰,魏琴,唐琳等.麻疯树营养器官和种子的蛋白质组成及对水分和温度胁迫的反应[J].中国油料作物学报,2003,25(4):98-104.
    陈丽,吴军,曾妮.用GC-MS分析不同采收和贮存时期的麻疯树种子油的脂肪酸[J].热带热带植物学报.2007,15(5):443-446.
    陈秀,袁银南,孙平.脂肪酸甲酯结构对生物柴油十六烷值的影响[J].石油与天然气化工,2007,36(8):481-484.
    丁丽芹,何力,郝平.国外生物燃料的发展及现状[J].现代化工,2002,22(11):55-56.
    戴向荣,蒋立科,罗曼.发展农村生物质能的设想与建议[J].世界农业,2006,327(7):52-55.
    窦新永,吴国江,黄红英.麻疯树幼苗对干旱胁迫的响应[J].应用生态学报,2008,19(7):1425-1430.
    董必慧,张银飞,王慧.江苏海岸带耐盐植物资源及其开发利用[J].江苏农业科学,2010,1:318-321.
    范南虹.海岸线因不设防而脆弱[J].中国林业,2006,2:10-12.
    费世民,张旭东.国内外能源植物及其开发利用现状[J].四川林业科技,2005,26(3):20-26.
    公维昌,庄丽,赵文勤等.两种盐生植物解剖结构的生态适应性[J].生态学报,2009,12(29):6764-6771.
    苟圆,华坚.麻疯树资源的开发利用现状及前景[J].资源开发与市场,2007,23(6):519-522.
    郭承刚,王朝文,李建文等.麻疯树物候期和花的发育动态观察[J].现代农业科技,2007,1:12-13.
    国家统计局.中国统计年鉴[M].北京:中国统计出版社,2008.
    豪彦.GB/T19147-2003《车用柴油》和EN590《车用柴油》标准的比较[J].汽车与配件,2003,30:35-36.
    胡志远,谭丕强,楼狄明等.生物柴油-柴油混合燃料的理化特性研究[J].内燃机,2006(3):39-41.
    黄剑坚,韩维栋.我国主要木本能源植物的研究现状及利用前景[J].广东林业科技,2006,22(4):105-110.
    江清阳,孙平.生物柴油对能源和环境影响的研究[J].江苏大学学报(自然科学版),2002,23(4):8-11.
    廖飞,何平.油酮叶成熟过程中光系统结构和功能的变化及其对SO的抗性[J].经济林研究,2005,23(1):4-6.
    李昌珠,蒋丽娟,程树棋.生物柴油——绿色能源[M].北京:化学工业出版社,2005.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003.
    林娟,颜钫,唐琳等.麻疯树核糖体失活蛋白的分离纯化和作用机制[J].高技术通讯,2002(11):36-40.
    李化,陈丽,唐琳.西南部分地区麻疯树种子油的理化性质及脂肪酸组成分析[J].应用与环境生物学报,2006,12(5):643-646.
    李军,吴平治,李美茹等.能源植物的研究进展及其发展趋势[J].自然杂志,2007,29(1):21-25.
    李秋莉,杨华,高晓蓉等.植物甜菜碱合成酶的分子生物学和基因工程[J].生物工程进展,2002,22(1):84-86.
    李瑞梅,周广奇,符少萍等.盐胁迫下海马齿叶片结构变化[J].西北植物学报,2010,30(2):0287-0292.
    李正茂,邓新华,李党训.光皮树经济性状及生物质液体燃料开发研究构想[J].湖南林业科技,1996,23(2):11-13.
    刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,31(4):389-395.
    刘焕芳,廖景平,唐源江.麻疯树乳汁管的解剖学研究[J].热带热带植物学,2006,14(4):294-300.
    刘睿,孙伟,巢牡香等.盐胁迫下木榄幼苗叶片的解剖学变化[J].热带热带植物学报,2009,17(2):169-175.
    刘守新,李海潮,张世润.木质生物能源利用技术研究[J].中国林副特产,2001(3):37-39.
    刘兆普,沈其荣,尹金来等.滨海盐土农业[M].北京:中国科学技术出版社,1998.
    罗通,马丹炜,邓骛远等.低温对麻疯树生理指标的影响[J].中国油料作物学报,2005,27(4):50-54.
    罗文,袁振宏,廖翠萍.生物柴油标准及质量评价[J].可再生能源,2006,128(4):33-37.
    罗艳,刘梅.开发木本油料植物作为生物柴油原料的研究[J].中国生物工程杂志,2007,27(7):68-74.
    吕文,李定河.发展油料能源树种与开发生物柴油前景分析[J].中国能源,2007,29(1):30-32.
    马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报,1998,18(1):33-41.
    倪维斗,陈贞麻,林巍等.关于广义节能的思考[J].中外能源,2009,2:1-8.
    裘丽珍,黄有军,黄坚钦等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    《热带林业》编辑部.沿海防护林是海南生态安全第一道防线[J].热带林业,2008,36(2):1.
    《热带林业》编辑部.我国沿海防护林体系建设工程取得显著成效[J].热带林业,2009,37(2):1.
    戎志梅.从战略高度认识开发生物质能产业的重要意义[J].精细化工原料及中间体,2006,7:7-10
    沈其荣,刘兆普,茆泽圣.滨海盐土农业改良利用模式初探[J].江苏农业科学,1992,2:41-42.
    石东乔,周奕华,张丽华.农杆菌介导的油菜脂肪酸调控基因工程研究[J].高技术通讯,2001,2:1-7.
    石福臣,鲍芳.盐和温度胁迫对外来种互花米草(Spartina alterniflora)生理生态特性的影响[J].生态学报,2007,27(7):2733-2741.
    宋东安,裴广庆,王风芹等.中国燃料乙醇生产用原料的多元化探索[J].农业工程学报,2008,24(3):302-307.
    苏培玺,安黎哲,马瑞君等.荒漠植物梭梭和沙拐枣的花环结构及C4光合特征[J].植物生态学报,2005,29(1):1-7.
    孙德岳.林业生物质能源发展前景广阔—访国家林业局科技司生物质能核心专家李昌珠[J].今日国土,2007(5):16-17.
    谭筱.新能源吸引能源巨头眼球[J].市场周刊新物流,2006,12(5):11.
    王宝山.植物生理学[M].北京:科学出版社,2007.
    王豁然,江泽平,傅紫芰.林木引种驯化与森林可持续经营[M].北京:中国环境科学出版社,1998.
    王丽燕,赵可夫.NaCl胁迫对海蓬子离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报,2004,30(1):94-98.
    王瑞刚,陈少良,刘力源等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报,2005,27(3):46-52.
    王伟波,张全发.能源植物规模化种植理论与技术研究进展[J].生命科学,2010,22(12):1271-1276.
    王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.
    王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989.
    王志红,张坤,周维芝等.山西翅果油树资源及可持续利用研究[J].山西大学学报(自然科学版),2002,25(4):358-360.
    吴国江,刘杰,娄治平等.能源植物的研究现状及发展建议[J].科技与社会,2006,21(1):53-7.
    巫淼鑫,邬国英,韩瑛.6种食用植物油及其生物柴油中脂肪酸成分的比较研究[J].中国油脂,2003,28(12):65-67.
    周海霞,袁丽红.能源植物的开发与利用[J].中国科技论文在线,2008,3(3):179-183.
    中国科学院植物研究所.中国高等植物科属检索表[M].北京:科学出版社,1979.
    伍家平.广西海岸带国土资源及其开发战略[J].资源科学,1998,20(2):46-52.
    吴师强,黄国宁,钟雄相.全国沿海防护林建设现场经验交流会在海南召开[J].热带林业,2009,23(2):55.
    吴伟光,黄季煜,邓祥征.中国生物柴油原料树种麻疯树种植土地潜力分析[J].中国科学,2009,39(12):1672-1680.
    西北农业大学植物生理生化教研组.植物生理学实验指导[M].西安:陕西科学技术出版社,1987.
    徐明岗,李菊梅,李志杰.利用耐盐植物改善盐土区农业环境[J].中国土壤与肥料,2006,3:6-10.
    颜启传等译,支巨振等校.1996国际种子检验规程[M].北京:中国农业出版社,1999.
    袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    冀星,王璇.世界各国生物柴油应用情况[J].国际化工信息,2002(9):1-4.
    熊静.乙酰辅酶A羧化酶的分离和纯化.硕士学位论文,华中师范大学,2009.
    于大江.近海资源保护与可持续利用[M].北京:海洋出版社,2001.
    张宝泽,赵可夫.刺槐和沙枣耐盐性能的研究[J].山东科学,1996,9(2):53-55.
    张继澍.植物生理学[M].北京:高等教育出版社,2005.
    张建锋,李吉跃,宋玉民等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003,16(2):17-22.
    张立军,梁宗锁.植物生理学[M].北京:科学出版,2007.
    张明生,张丽霞,吴树敬等.三种胁迫预处理对麻疯树幼苗抗冷性的影响[J].南京林业大学学报(自然科学版),2006,30(5):60-62.
    张以顺,黄霞,陈云凤等.植物生理学实验教程[M].北京:高等教育出版社,2009.
    张无敌,宋洪川,韦小岿等.小桐子开发与元谋县生态环境保护[J].云南师范大学学报(自然科学 版),2001,21(5):37-42.
    赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    赵雪梅,班秀丽.影响种子贮藏的物理性[J].种子世界,2004,9:35-36.
    郑柄松.现代植物生理生化研究技术[M].北京:气象出版社,2006.
    曾虹燕,方芳,苏杰龙.麻疯树籽油提取技术[J].江苏农业学报,2005,21(1):69-70.
    中科农业科学院农产品质量安全研究所.农产品质量安全标准检测技术手册[M].北京:中国标准出版社,2007.
    中国科学院上海植物生理研究所[M].北京:科学出版社,2004.
    中国土壤学会.土壤农业化学分析方法[M].北京:中国农业出版社,2000.
    周春霖,王凯,王茂文等.沿海滩涂碱蓬种植技术研究初报[J].江苏农业科学,2002,1:65-67.
    朱晓东,施丙文.海岸带环境管理与评价的基本问题[J].海洋开发与管理,1998,2:28-31.
    周希琴,吉前华.盐胁迫下木麻黄幼苗抗氧化酶活性的变化及Ca2+对它的调控[J].植物生理学通讯,2004,40(2):184-186.
    朱广新,张其德NaCl对光合作用的研究进展[J].植物学通报,2006,16(4):332-338.
    朱宇旌,张勇.盐胁迫下小花碱茅超微结构的研究[J].中国草地,2000,4:30.
    中国油料植物编写委员会.中国油料植物[M].北京:科学出版社,1987.
    周善元.21世纪的新能源[J].江西能源,2001(4):34-37.
    祖元刚,张衷华,王文杰等.薇甘菊叶和茎的光合特性[J].植物生态学报.2006,30(6):998-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700