用户名: 密码: 验证码:
碳氮组合下华北平原冬小麦—夏玉米水分利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原种植模式以冬小麦—夏玉米轮作为主,这里是我国重要的粮食生产基地,关系着国家的粮食安全。水资源不足一直是制约当地农业可持续发展的主要因素,优化田间水肥管理措施、提高作物水分利用效率是解决问题的关键。有机肥在改善土壤理化特性、提高土壤保水蓄水性能方面的效果显著,同时有机肥可以协调作物需水和土壤供水之间的矛盾,可促进作物生长,提高作物产量和水分利用效率。目前,关于不同有机肥施用量以及水碳氮组合对华北平原旱作粮田土壤水分动态变化、作物耗水规律以及水分利用效率的研究鲜有报道。
     本研究在山东省陵县试验区(中国农业科学院德州试验站)和桓台试验区(华北集约化农业生态系统试验站)分别开展了无机肥、有机肥对比试验(2006~(-2)012年)和水碳氮组合的微区试验(2010~(-2)012年),其中对比试验设无机肥、有机肥2个因素,各10个水平(以N计),分别为0、60、120、180、240、300、360、420、500和600kgN·hm~(-2),共19个处理。水碳氮微区试验共6个处理(各处理N水平相同):(1)常规灌水(100mm·次-1)、单施无机肥(冬小麦,200kgN·hm~(-2);夏玉米,152kgN·hm~(-2))(W1C0N2);(2)常规灌水、有机肥(冬小麦,100kgN·hm~(-2);夏玉米,76kgN·hm~(-2))与无机肥配施(冬小麦,100kgN·hm~(-2);夏玉米,76kgN·hm~(-2))(W1C1N1);(3)常规灌水、单施有机肥(冬小麦,200kgN·hm~(-2);夏玉米,152kgN·hm~(-2))(W1C2N0);(4)减量灌水(50~60mm·次-1)、单施无机肥(W2C0N2);(5)减量灌水、有机肥与无机肥配施(W2C1N1);(6)减量灌水、单施有机肥(W2C2N0)。研究了单施无机肥和单施有机肥,以及有机肥与无机肥配施对冬小麦—夏玉米轮作体系内的土壤水分周年动态、作物耗水、产量以及水分利用效率的影响。旨在明确碳氮组合下土壤水分周年变化规律和水分利用效率,为进一步提高华北地区旱作农田的水分和养分管理水平、挖掘土壤供水潜力提供理论依据。本研究获得的主要结论如下:
     1.相同灌水和N水平下,土壤增碳能够提高农田雨季蓄墒和旱季保墒的能力,降低土壤水分在茬口的损失,土壤水分的“前贮后用”效果明显。相同N水平下,与无机氮相比,增碳后冬小麦播前的土壤贮水(0~100cm)提高了2.44~45.6mm,增加幅度为0.987%~19.3%;夏玉米播前的土壤贮水(0~100cm)也可提高1.30~30.5mm,增加幅度有0.543%~13.9%。与单施无机氮(C0N2)相比,碳氮配施(C1N1)处理在冬小麦和夏玉米播前的土壤贮水(0~160cm)也分别增加了12.1~31.6mm(P>0.05)和7.17~14.2mm(P>0.05),增加幅度为2.93%~7.56%和1.73%~3.94%。周年的茬口土壤水分损失量为26.8~41.1mm(0~160cm),平均损失强度为1.58~2.42mm·d-1,土壤增碳能够降低水分在茬口的损失,与单施无机氮(C0N2)相比,损失量降低了4.73~10.4mm,降低幅度达11.5%~26.2%。施用有机肥改善了土壤团聚体结构,增加了土壤有机碳和全氮含量(P<0.05),利用二元二次方程可以很好地模拟土壤贮水与水稳性团聚体(>0.25mm)、土壤容重的关系以及土壤贮水与土壤有机碳、全氮的关系,模型方程系数(R2)分别达到显著(P<0.05)和极显著(P<0.001)水平。
     2.低N条件下,增碳可显著增加作物耗水和产量。其中有机肥和无机肥的N水平分别低于阈值199.4kgN·hm~(-2)(碳用量5293kgC·hm~(-2))和113.2kgN·hm~(-2)时,冬小麦耗水随着碳、氮用量的提高而增加(P<0.05);有机肥和无机肥的N水平分别低于阈值220.6kgN·hm~(-2)(碳用量5855kgC·hm~(-2))和110.7kgN·hm~(-2)时,冬小麦产量也随着碳、氮用量的增加而增加(P<0.05)。
     3.高N水平下,增碳对耗水量和作物产量的影响不明显;有机肥增产作用与无机肥处理相当,但具有更好的节水效应。当有机肥和无机肥的N水平分别超过阈值220.6kgN·hm~(-2)(碳用量为5855kgC·hm~(-2))和113.2kgN·hm~(-2)时,冬小麦的耗水量和产量均无显著变化;其中N水平达到一定程度后(大于220.6kgN·hm~(-2)),有机肥与等N的无机肥相比,冬小麦产量几乎没有差异(仅下降了0.812%),而耗水量却降低了21.1mm,降低幅度达4.86%。其中N水平超过372.0kgN·hm~(-2)时,有机肥处理(碳用量超过9874kgC·hm~(-2))的水分利用效率(WUEg)高于比无机肥,最大可增加15.1%。由此说明,高N条件下达到同样的产量水平,土壤增碳具有更好的节水效果。
     4.本试验条件下的适宜有机肥和无机肥用量。产量无显著变化时的有机肥和无机肥用量分别为220.6kgN·hm~(-2)和110.7kgN·hm~(-2)时,而获得最高冬小麦产量和较高水分利用效率时的有机肥和无机肥用量分别为481.7kgN·hm~(-2)(碳用量为12786kgC·hm~(-2))和367.6kgN·hm~(-2)。可知冬小麦的有机肥适宜用量为220.6~481.7kgN·hm~(-2)(碳用量介于5855~12786kgC·hm~(-2)),无机肥适宜用量为110.7~367.6kgN·hm~(-2)。其中有机肥比等N的无机肥多施86.2~114.1kgN·hm~(-2),即增碳2288~3029kgC·hm~(-2),不仅具有同样的增产作用,而且水分利用效率较高。
     5.明确了本试验条件下的最优水碳氮组合。综合考虑不同水碳氮组合下的土壤蓄水保墒作用、植株生长性状、光合性能、产量以及水分利用效率,减量灌水、碳氮配施(W2C1N1)处理不仅提高了土壤贮水和供水能力,而且植株生长形状好,产量和水分利用效率高,是本试验中的最优水碳氮组合。
North China Plain is one most important area of cereal producing in China, and land use isdominantly arable with winter wheat and summer maize cropping system, which is of great significanceto national food security. Water shortage in North China Plain has been the main factor restrainingagriculture sustainable development, and optimizing management of water and fertilizer and improvingwater use efficiency are considered as two effective measures to the challenge. Organic fertilizer canimprove soil physical and chemical properties, retard water shortage, coordinate the contradiction ofcrop water requirement and soil water supply and improve water use efficiency. However, theinformation of various management concerning the effects of organic fertilizer rate, carbon and nitrogencombination on soil moisture dynamic, water consumption and water use efficiency were remainlimited.
     Two experiments of inorganic fertilizer and organic fertilizer and water, carbon and nitrogencombination micro-plot were conducted in Lingxian county and Huantai county, respectively. In orderto check the effects of inorganic fertilizer and organic fertilizer,19treatments were designed withthree replicates, which were composed of2factors of inorganic nitrogen fertilizer and organicnitrogen fertilizer with10N levels of0,60,120,180,240,300,360,420,500,600kgN·hm~(-2). Thewater, carbon and nitrogen combination micro-plot experiment was designed6treatments in a certainrate of N fertilizer, including (1) normal irrigation (each time with100mm)+inorganic N fertilizer(wheat,200kgN·hm~(-2); maize,152kgN·hm~(-2))(W1C0N2);(2) normal irrigation+inorganic Nfertilizer (wheat,100kgN·hm~(-2); maize,76kgN·hm~(-2))+organic N fertilizer (wheat,100kgN·hm~(-2);maize,76kgN·hm~(-2))(W1C1N1);(3) normal irrigation+organic N fertilizer (wheat,200kgN·hm~(-2);maize,152kgN·hm~(-2))(W1C2N0);(4) decrement irrigation (each time with50~60mm)+inorganicN fertilizer (W2C0N2);(5) decrement irrigation+inorganic N fertilizer+organic N fertilizer(W2C1N1);(6) decrement irrigation+organic N fertilizer (W2C2N0). We studied the dynamicchanges of soil annual moisture, crop water consumption, yield and water use efficiency during winterwheat and summer maize growing stage, and aimed to provide theoretical basis for improving waterand nutrient use efficiency. Our major conclusions were described as following:
     1. Under the same irrigation and N level, soil carbon can improve the capacity of soil waterstorage in rainy season and soil water conservation in dry season, and also decrease significantlywater losses during rotation, whilst an obvious effect was observed for soil water of storage early anduse later. Compared to the treatments with inorganic nitrogen, soil water storage (0~100cm) beforewinter wheat and summer maize sowing were increased in the treatments with organic nitrogen underthe same nitrogen levels, increasing by0.987%~19.3%(2.44~45.6mm) and0.543%~13.9%(1.30~30.5mm), respectively. Compared to C0N2, C1N1also increased soil water storage (0~160cm)at the early stage of winter wheat and summer maize sowing, and the ranges were2.93%~7.56% (12.1~31.6mm) and1.73%~3.94%(7.17~14.2mm), respectively. Annual loss of soil water duringcrops rotation was varied from26.8to41.1mm (0~160cm), and the mean losses was1.58~2.42mm·d-1. The treatments with organic nitrogen decreased the annual loss of soil water losses duringcrops rotation compared to inorganic fertilizer, at11.5%~26.2%(4.73~10.4mm). The capacity of soilwater storage and soil water supply was improved in treatments with organic nitrogen, and it wassignificant correlated with soil aggregate, soil organic carbon and total nitrogen.
     2. Organic N fertilizer could improve water consumption and crop yield under low N levels, andinorganic N fertilizer showed similarly. The water consumption of winter wheat showed increasinglywith the carbon increase below a threshold value of199.4kgN·hm~(-2)(5293kgC·hm~(-2)), and similartrend was observed in inorganic N fertilizer with a threshold value of113.2kgN·hm~(-2). Carbonapplication could improve winter wheat yield with the rate increasing below a threshold value of220.6kgN·hm~(-2)(5855kgC·hm~(-2)), and similar trend was found in inorganic N fertilizer with athreshold value of110.7kgN·hm~(-2). Overall, the treatments of inorganic N fertilizer affected the waterconsumption and winter wheat yield more obviously than organic N treatments under low N levels.
     3. Under high N levels, crop yield and water consumption affected by increasing carbon but notobviously; organic N treatments obtained equal levels of crop yield and showed a better water-savingeffect compared to inorganic N treatments. No significant difference was observed for waterconsumption and yield when the organic N was over the rate of220.6kgN·hm~(-2)(5855kgC·hm~(-2)) orthe inorganic N was over the rate of113.2kgN·hm~(-2). Compared to inorganic N treatments, organic Ntreatments showed an equal impact on winter wheat yield when the N rate was over220.6kgN·hm~(-2),but water consumption was reduced by4.86%(21.1mm); water use efficiency (WUE) was increasedby15.1%in organic N treatments when the N rate was over the value of372.0kgN·hm~(-2)(over thevalue of9874kgC·hm~(-2)). Overall, organic N treatments showed better water-saving effects underhigher N level.
     4. The optimum rates of organic N and inorganic N fertilizer were obtained from our results. Nosignificant difference was observed at the rates of110.7kgN·hm~(-2)and220.6kgN·hm~(-2)for organic Nand inorganic N fertilizer, respectively; and higher winter wheat yield and water use efficiency couldbe achieved at the rates of481.7kgN·hm~(-2)(12786kgC·hm~(-2)) and220.6kgN·hm~(-2)for organic N andinorganic N fertilizer. Therefore, organic N fertilizer rate of220.6~481.7kgN·hm~(-2)(5855~12786kgC·hm~(-2)) and inorganic N fertilizer rate of110.7~367.6kgN·hm~(-2)were considered as the optimumfertilizer range. Compared to inorganic N fertilizer, the rate of organic N fertilizer increased by86.2~114.1kgN·hm~(-2)(2288~3029kgC·hm~(-2)), not only can obtain the equal crop yield, but alsoimprove water use efficiency.
     5. An optimal combination of water, carbon and nitrogen was ascertained based on our results.As a result, the treatment of W2C1N1was regarded as the most optimal management due to its bettercapacity of soil water conservation, crop growth characteristics, photosynthetic performance, and cropyield and water use efficiency.
     In conclusion, Organic N fertilizer application affected obviously on conserving water, reducing soil water losses, increasing yield and improving water use efficiency. However, the rate of yieldincreasing showed no significant difference at the over-high rate of organic fertilizer. Therefore, theoptimum range of organic fertilize is220.6~481.7kgN·hm~(-2). Overall, W2C1N1was the most optimalin our designed experiment, because of its better growth characteristics, photosynthetic performance,and yield and water use efficiency.
引文
1.蔡太义,贾志宽,孟蕾等.渭北旱塬不同秸秆覆盖量对土壤水分和春玉米产量的影响.农业工程学报,2011,27(3):43–48.
    2.褚鹏飞,王东,张永丽等.灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响.中国农业科学,2009,42(4):1306–1315.
    3.崔荣美,李儒,韩清芳等.不同有机肥培肥对旱作农田土壤团聚体的影响.西北农林科技大学学报(自然科学版),2011,39(11):124–132.
    4.陈小云,郭菊花,刘满强等.施肥对红壤性水稻土有机碳活性和难降解性组分的影响.土壤学报,2011,48(1):125–131.
    5.党建友,裴雪霞,王姣爱等.灌水时间对冬小麦生长发育及水肥利用效率的影响.应用生态学报,2012,23(10):2745–2750.
    6.邓振镛,张强,王强等.黄土高原旱塬区土壤贮水量对冬小麦产量的影响.生态学报,2011,31(18):5281–5290.
    7.段文学,于振文,张永丽等.施氮量对旱地小麦耗水特性和产量的影响.作物学报,2012,38(9):1657–1664.
    8.房全孝,陈雨海,李全起等.灌溉对冬小麦水分利用效率的影响研究.农业工程学报,2004,20(4):34–39.
    9.冯鹏,王晓娜,王清郦等.水肥耦合效应对玉米产量及青贮品质的影响.中国农业科学,2012,45(2):376–384.
    10.冯瑞云,杨武德,王慧杰等.秸秆扩蓄肥对土壤水分和马铃薯产量品质及水分利用的影响.农业工程学报,2012,28(2):100–105.
    11.高飞,贾志宽,韩清芳等.有机肥对宁夏南部旱农区土壤物理性状及水分的影响.西北农林科技大学学报(自然科学版),2010,38(7):105–110.
    12.高飞,贾志宽,路文涛等.秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响.生态学报,2011,31(3):0777–0783.
    13.高会议,郭胜利,刘文兆.不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响.土壤学报,2010,47(5):931–938.
    14.高祥照,马文奇,杜森等.我国施肥中存在问题的分析.土壤通报,2001,32(6):258–261.
    15.高亚军,王喜庆,杜建军等.施肥对提高水分利用效率的影响.汪德水主编,旱地农田肥水关系原理与调控技术.北京,中国农业科技出版社,1995:191–194.
    16.高阳,邱新强,巩文军等.黄淮海平原播前土壤水分对冬小麦产量的影响.灌溉排水学报,2012,31(3):17–20.
    17.龚伟,颜晓元,蔡祖聪等.长期施肥对小麦—玉米轮作土壤微团聚体组成和分形特征的影响.土壤学报,2011,48(6):1141–1148.
    18.谷洁,高华,李鸣雷等.施用有机无机复混肥对夏玉米生长和水分利用的影响.西北植物学报,2004,24(4):638–642.
    19.韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响.灌溉排水,2001,20(2):5–7.
    20.韩占江,于振文,王东等.测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响.作物学报,2010,36(3):457–465.
    21.蒿宝珍,张英华,姜丽娜等.限水灌溉下追氮水平对冬小麦旗叶光合特性及物质运转的影响.麦类作物学报,2010,30(5):863–869.
    22.何晓雁,郝明德,李慧成等.黄土高原旱地小麦施肥对产量及水肥利用效率的影响.植物营养与肥料学报,2010,16(6):1333–1340.
    23.侯贤清,王维,韩清芳等.夏闲期轮耕对小麦田土壤水分及产量的影响.应用生态学报,2011,22(10):2524–2532.
    24.黄鸿翔,李书田,李向林等.我国有机肥的现状与发展前景分析.土壤肥料,2006,(1):3–8.
    25.江云,马友华,陈伟等.作物水分利用率的影响因素及其提高途径探讨.中国农学通报,2007,23(9):269–273.
    26.李芳林,郝明德,杨晓等.黄土旱塬施肥对土壤水分和冬小麦产量的影响.麦类作物学报,2010,30(1):154–157.
    27.李桂花,张艳萍,胡克林.不同降雨和灌溉模式对作物产量及农田氮素淋失的影响.中国农业科学,2013,46(3):545–554.
    28.李全起,房全孝,陈雨海等.底墒差异对夏玉米耗水特性及产量的影响.农业工程学报,2004,20(2):93–96.
    29.李江涛,钟晓兰,张斌等.长期施用畜禽粪便对土壤孔隙结构特征的影响.水土保持学报,2010,24(6):137–180.
    30.李全起,陈雨海,周勋波等.灌溉和种植模式对冬小麦播前土壤含水量的消耗及水分利用效率的影响.作物学报,2009,35(1):104109.
    31.李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,2004,41(4):544–552.
    32.梁国庆,林葆,林继雄等.长期施肥对石灰性潮土氮素形态的影响.植物营养与肥料学报,2000,6(1):3–10.
    33.梁龙,吴文良,郭岩彬等.华北地区农田潜在生态毒性评估与农业可持续发展——以山东桓台县冬小麦-夏玉米轮作系统为例.农业环境与发展,2011,2(4):94–99.
    34.刘定辉,庞良玉,陈尚洪等.覆盖与底墒对丘陵旱地小麦产量与水分利用的影响.西南农业学报,2010,23(3):641–643.
    35.刘庚山,郭安红,安顺清等.底墒对小麦根冠生长及土壤水分利用的影响.自然灾害学报,2003,12(3):149–154.
    36.刘佳骏,董锁成,李泽红.中国水资源承载力综合评价研究.自然资源学报,2011,26(2):258–269.
    37.刘静,张恒嘉,安飞虎等.有限灌溉对沙地春玉米底墒利用及籽粒产量影响的研究.干旱地区农业研究,2011,29(6):7-11.
    38.刘青林,张恩和,王琦等.灌溉与施氮对留茬免耕春小麦耗水规律、产量和水分利用效率的影响.草业学报,2012,21(5):167–177.
    39.刘荣花,方文松,朱自玺等.黄淮平原冬小麦底墒水分布规律.生态学杂志,2008,27(12):2105–2110.
    40.刘思春,吕家珑,马爱生等.有机质对黄墡土持水性与水肥效应的影响.干旱地区农业研究,2005,23(3):65–68.
    41.刘树堂,韩晓日,姚源喜等.长期定位施肥对非石灰性潮土水分保持及腐殖质组成的影响.中国农学通报,2005,21(5):272–277.
    42.刘少玉,刘鹏飞,周晓妮等.华北平原水资源合理开发利用的思路与举措.地球科学与环境学报,2012,34(3):57–61.
    43.刘效东,乔玉娜,周国逸.土壤有机质对土壤水分保持及其有效性的控制作用.植物生态学报,2011,35(12):1209–1218.
    44.刘守龙,童成立,吴金水等.等氮条件下有机无机肥配比对水稻产量影响的初探.土壤学报,2007,44(1):106–112.
    45.刘岩,周勋波,陈雨海等.底墒和种植方式对夏大豆光合特性及产量的影响.生态学报,2011,31(12):3478–3487.
    46.刘宇锋,梁燕菲,邓少虹等.灌溉方式和有机无机氮比例对水稻产量与水分利用的影响.植物营养与肥料学报,2012,18(3):551–561.
    47.刘玉涛.旱地玉米施用有机肥的定位研究.玉米科学,2003,1l(2):86–88.
    48.路文涛,贾志宽,张鹏等.宁南旱区有机培肥对冬小麦光合特性和水分利用效率的影响.植物营养与肥料学报,2011,17(5):1066–1074.
    49.罗俊杰,王勇,樊廷录.旱地不同生态型冬小麦水分利用效率对播前底墒的响应.干旱地区农业研究,2010,28(1):6165.
    50.马俊永,李科江,曹彩云等.有机—无机肥长期配施对潮土土壤肥力和作物产量的影响.植物营养与肥料学报,2007,13(2):236–241.
    51.马力,杨林章,慈恩等.长期不同施肥处理对水稻土有机碳分布变异及其矿化动态的影响.土壤学报,2009,46(6):1049–1058.
    52.梅旭荣,赵聚宝,吕学都.屯留试验区旱地冬小麦农田水分动态规律.干旱地区农业研究,1990,(4):1–6.
    53.孟琳,张小莉,蒋小芳等.有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率.中国农业科学,2009,42(2):532–542.
    54.孟晓瑜,王朝辉,杨宁等.底墒和磷肥对渭北旱塬冬小麦产量与水、肥利用的影响.植物营养与肥料学报,2011,17(5):1083–1090.
    55.孟晓瑜,王朝辉,李富翠等.底墒和施氮量对渭北旱塬冬小麦产量与水分利用的影响.应用生态学报,2012,23(2):369–375.
    56.苗果园,高志强,张云亭等.水肥对小麦根系整体影响及其与地上部相关的研究.作物学报,2002,28(4):445–450.
    57.苗淑杰,周连仁,乔云发等.长期施肥对黑土有机碳矿化和团聚体碳分布的影响.土壤学报,2009,46(6):1068–1075.
    58.欧杨虹,徐阳春,沈其荣.有机氮部分替代无机氮对水稻产量和氮素利用率的影响.江苏农业学报,2009,25(1):106–111.
    59.乔云发,韩晓增,赵兰坡.长期定位施肥对黑土碳氮储量的影响.农业系统科学与综合研究,2011,27(4):480–484.
    60.任三学,赵花荣,郭安红等.底墒对冬小麦植株生长及产量的影响.麦类作物学报,2005,25(4):79–85.
    61.邵国庆,李增嘉,宁堂原等.灌溉和尿素类型对玉米水分利用效率的影响.农业工程学报,2010,26(3):58–63.
    62.沈彦俊,刘昌明.华北平原典型井灌区农田水循环过程研究回顾.中国生态农业学报,2011,19(5):1004–1010.
    63.师日鹏,上官宇先,李娜等.播种量和施氮量对垄沟覆膜栽培冬小麦花后生理性状的影响.应用生态学报,2012,23(3):758–764.
    64.宋春雨,张兴义.不同施肥措施对黑土土壤水分及保水性的影响.农业系统科学与综合研究,2007,23(2):161–165.
    65.宋尚有,王勇,樊廷录等.氮素营养对黄土高原旱地玉米产量、品质及水分利用效率的影响.植物营养与肥料学报,2007,13(3):387–392.
    66.苏秦,贾志宽,韩清芳等.宁南旱区有机培肥对土壤水分和作物生产力影响的研究.植物营养与肥料学报,2009,15(6):1466–1469.
    67.唐小明.有机肥的保水培肥效果及对冬小麦产量的影响.水土保持研究,2003,10(1):130–132.
    68.田昌玉,左余宝,林治安等.有机肥与无机肥氮素平行施用对土壤硝态氮积累与玉米产量的影响.土壤通报,2010,41(6):1418–1422.
    69.王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响.应用生态学报,2008,19(9):1965–1970.
    70.王风,韩晓增,李海波等.不同黑土生态系统的土壤水分物理性质研究.水土保持学报,2006,20(6):67–70.
    71.王会肖,蔡燕.农田水分利用效率研究进展及调控途径.中国农业气象,2008,29(3):272–276.
    72.王淑英,樊庭录,丁宁平等.长期定位施肥条件下黄土旱塬农田作物产量、水分利用效率的变化.核农学报,2010,24(5):1044–1050.
    73.王晓娟,贾志宽,梁连友等.旱地施有机肥对土壤水分和玉米经济效益影响.农业工程学报,2012,28(6):144–149.
    74.王唯逍,刘小军,田永超等.不同土壤水分处理对水稻光合特性及产量的影响.生态学报,2012,32(22):7053–7060.
    75.王勇,白玲晓,赵举等.喷灌条件下玉米地土壤水分动态与水分利用效率.农业工程学报,2012,28(S1):92–97.
    76.危锋,郝明德.黄土旱塬长期施肥对小麦连作土壤养分和水分的影响.中国水土保持科学,2011,9(4):104–109.
    77.魏孝荣,郝明德,张春霞.旱地长期施肥对土壤水分的影响.水土保持研究,2003,10(1):95–97.
    78.闻轶,张翰林,闵敏.施肥技术在茭白—水稻轮作系统中对生态环境及产量的影响.环境污染与防治,2011,33(3):38–43.
    79.武文明,陈洪俭,李金才等.氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响.作物学报,2012,38(6):1088–1096.
    80.夏永秋,颜晓元.太湖地区麦季协调农学、环境和经济效益的推荐施肥量.土壤学报,2011,48(6):1210–1218.
    81.解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布特征.土壤学报,2004,41(1):35–43.
    82.肖俊夫,刘战东,段爱旺等.不同灌水处理对冬小麦产量及水分利用效率的影响研究.灌溉排水学报,2006,25(2):20–23.
    83.谢英荷,栗丽,洪坚平等.施氮与灌水对夏玉米产量和水氮利用的影响.植物营养与肥料学报,2013,18(6):1354–1361.
    84.徐英,周明耀,薛亚锋.水稻叶面积指数和产量的空间变异性及关系研究.农业工程学报,2006,22(5):10–14.
    85.许育彬.作物水分利用效率研究进展.陕西农业科学,1998,(4):13–17.
    86.杨蕊菊,柴守玺,马忠明等.水肥耦合对小麦玉米带田产量效应及土壤水分动态研究.核农学报,2011,25(5):1004–1009.
    87.杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展.土壤通报,2004,3(4):502–506.
    88.杨启良,孙英杰,齐亚峰等.不同水量交替灌溉对小桐子生长调控与水分利用的影响.农业工程学报,2012,28(18):121–126.
    89.杨晓亚,于振文,许振柱.灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响.生态学报,2009,29(2):0846–0853.
    90.叶优良,李隆.水氮量对小麦/玉米间作土壤硝态氮累积和水氮利用效率的影响.农业工程学报,2009,25(1):33–39.
    91.余江敏,李伏生,韦彩会等.根区局部灌溉对有机无机肥配施土壤微生物和玉米水分利用的影响.干旱地区农业研究,2008,26(6):63–69.
    92.袁颖红,黄欠如,黄荣珍等.长期施肥对红壤土有机碳和全氮含量的影响.南昌工程学院学报,2007,26(4):29–33.
    93.张富仓,康绍忠,李志军等.施肥对旱地土壤供水特征的影响.沈阳农业大学学报,2004,35(5):408410.
    94.张福锁,王激清,张卫峰等.中国养分资源可持续利用现状与对策.2006世界化肥农业大会.
    95.张光辉,连英立,刘春华等.华北平原水资源紧缺情势与因源.地球科学与环境学报,2011,33(2):172–176.
    96.张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用.应用生态学报,2011,22(7):1921–1930.
    97.张建军,樊廷录,王勇等.有机肥对陇东黄土旱塬冬小麦产量和土壤养分的调控效应.西北植物学报,2009,29(8):1656–1662.
    98.张建军,樊廷录,郭天文等.不同施肥处理对陇东旱塬冬小麦产量及土壤肥力的影响.西北农业学报,2012,21(10):42–48.
    99.张丽华,姚艳荣,裴翠娟等.干旱年型播前土壤底墒、播种密度及灌水对冬小麦的产量效应.华北农学报,2011,26(增刊):185–188.
    100.张鹏,贾志宽,路文涛等.不同有机肥施用量对宁南旱区土壤养分、酶活性及作物生产力的影响.植物营养与肥料学报,2011,17(5):1122–1130.
    101.张胜全,方保停,王志敏等.春灌模式对晚播冬小麦水分利用及产量形成的影响.生态学报,2009,29(4):2035–2044.
    102.张永丽,于振文.灌水量对小麦氮素吸收、分配、利用及产量与品质的影响.作物学报,2008,34(5):870–878.
    103.张依章,刘孟雨,唐常源等.华北地区农业用水现状及可持续发展思考.节水灌溉,2007,(6):1–3.
    104.张玉革,姜勇,依艳丽等.长期施肥对土壤水分特性影响的研究.土壤,1999,(3):120–131.
    105.张兆吉,雒国中,王昭等.华北平原地下水资源可持续利用研究.2009,31(3):355–360.
    106.张兆吉,费宇红,郭春艳等.华北平原区域地下水污染评价.吉林大学学报(地球科学版),2012,42(5):1456–1461.
    107.张振涛,朱俊奇,杨晓光等.辽宁阜新和山东德州不同种植模式需水特征及杂物系数的确定.唐华俊主编,节水农作制度理论与技术.北京,中国农业科学技术出版社,2008,122–132.
    108.张忠学,温金祥,吴文良.华北平原冬小麦夏玉米不同培肥措施的节水增产效应研究.应用生态学报,2000,11(2):219–222.
    109.张忠学,于贵瑞.华北高产粮区农用水资源可持续利用对策研究———以山东省桓台县为例.资源科学,2002,24(1):68–71.
    110.赵风华,马军花,欧阳竹.过量施氮对冬小麦生产力的影响.植物生态学报,2012,36(10):1075–1081.
    111.赵京考,卢静,谷思玉等.降雨量和氮素对黑土区春玉米产量的影响.农业工程学报,2011,27(12):74–78.
    112.赵桂慎,姜浩如,吴文良.高产粮区农田生态系统可持续性的能值分析.农业工程学报,2011,27(8):318–323.
    113.赵立群,李井云,李薇等.不同生育期灌水量及培肥措施对玉米产量和水分利用率的影响.吉林农业科学,2009,34(6):20–22.
    114.郑成岩,于振文,张永丽.不同施氮水平下灌水量对小麦水分利用特征和产量的影响.应用生态学报,2010,21(11):2799–2805.
    115.周广业,王宏凯,方社会.旱地黑坊土水分动态规律及合理利用途径研究.土壤通报,1991,22(4):149–152.
    116.周建斌,王春阳,梁斌等.长期耕种土壤剖面累积有机碳量的空间分布及影响因素.农业环境科学学报,2009,28(12):2540–2544.
    117.邹文秀,韩晓增,王守宇等.长期施肥对大豆地土壤蒸发和水分利用效率的影响.大豆科学,2009,28(3):487–494.
    118.邹文秀,韩晓增,江恒等.施肥和降水年型对土壤供水量和大豆水分利用效率的影响.大豆科学,2012,31(2):224-231.
    119.左余宝,逢焕成,李玉义等.鲁北地区地膜覆盖对棉花需水量、作物系数及水分利用效率的影响.中国农业气象,2010,31(1):37–40.
    120. Abd El-Waheda M H, Ali EA. Effect of irrigation systems, amounts of irrigation water andmulching on corn yield, water use efficiency and net profit. Agricultural Water Management,2013,120:64–71.
    121. Allen R G, Perreira L S, Raes D, et al. Crop evapotranspiration. FAO Irrigation and DrainagePaper56, Rome,1998.
    122. An S Q, Liu G S, Guo A H. Consumption of available soil water stored at planting by winterwheat. Agricultural Water Management,2003,63:99–107.
    123. Angadi S V, Entz M H. Root system and water use patterns of different height sunflower cultivars.Agronomy Journal,2002,94(1):136–145.
    124. Arriaga F J, Lowery B. Soil physical properties and crop productivity of an eroded soil amendedwith cattle manure. Soil Science,2003,168(12):888–899.
    125. Bandyopadhyay K K, Misra A K, Ghosh P K, et al. Effect of integrated use of farmyard manureand chemical fertilizers on soil physical properties and productivity of soybean. Soil and TillageResearch,2010,110(1):115–125.
    126. Barreto R C, Madari B E, Maddock J L, et al.The impact of soil management on aggregation,carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in SouthernBrazil. Agriculture, Ecosystems and Environment,2009,132(3-4):243–251.
    127. Bhattacharyya R, Prakash V, Kundu S, et al. Soil aggregation and organic matter in a sandy clayloam soil of the Indian Himalayas under different tillage and crop regimes. Agriculture,Ecosystems and Environment,2009,132(1-2):126–134.
    128. Biau A, Santiveri F, Mijangos I, et al. The impact of organic and mineral fertilizers on soil qualityparameters and the productivity of irrigated maize crops in semiarid regions. European Journal ofSoil Biology,2012,53:56–61.
    129. Blair G, Lefroy R, L isle L. Soil carbon fractions based on their degree of oxidation, and thedevelopment of a carbon management index for agricultural systems. Australian Journal ofAgricultural Research,1995,46(7):1459–1466.
    130. Blanco-Canqui H, Lal R. Soil structure and organic carbon relationships following10years ofwheat straw management in no-till. Soil and Tillage Research,2007,95(1-2):240–254.
    131. Brar B S, Singh Kamalbir, Dheri G S, et al. Carbon sequestration and soil carbon pools in arice–wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure.Soil&Tillage Research,2013,128:30–36.
    132. Cabrera-Bosquet L, Albrizio R, Araus J L, et al. Photosynthetic capacity of field-grown durumwheat under different N availabilities: a comparative study from leaf to canopy. Environmentaland Experimental Botany,2009,67:145–152.
    133. Celik I, Ortasa I, Kilic S. Effects of compost, mycorrhiza, manure and fertilizer on some physicalproperties of a Chromoxerert soil. Soil and Tillage Research,2004,78(1):59–67.
    134. Chan K Y, Bowman A, Oatesl A. Oxidizible organic carbon fractions and soil quality changes anoxic paleustalf under different pasture leys. Soil Science,2001,166(1):61–67.
    135. Cui Z L, Chen X P, Li J L, et al. Effect of N fertilization on grain yield of winter wheat andapparent N losses. Pedosphere,2006,16(6):806–812.
    136. Cook H, Valdes G, Lee H. Mulch effects on rainfall interception, soil physical characteristics andtemperature under zea mays L. Soil and Tillage Research,2006,91(1-2):227–235.
    137. De la Hera M L, Romero P, Gómez-Plaza E, et al. Is partial root-zone drying an effectiveirrigation technique to improve water use efficiency and fruit quality in field grown wine grapesunder semiarid conditions? Agricultural Water Management,2007,87(3):261–274.
    138. Fan Z L, Chai Q, Huang G B, et al. Yield and water consumption characteristics of wheat/maizeintercropping with reduced tillage in an Oasis region. European Journal of Agronomy,2013,45:52–58.
    139. Fang Q X, Ma L, Green T R, et al. Water resources and water use efficiency in the North ChinaPlain: Current status and agronomic management options. Agricultural Water Management,2010,97:1102–1116.
    140. Fang X, Xue Z J, Li B C, et al. Soil organic carbon distribution in relation to land use and itsstorage in a small watershed of the Loess Plateau, China. Catena,2012,88(1):6–13.
    141. Fischer G, Tubiello F N, van Velthuizen H, et al. Climate change impacts on irrigation waterrequirements: effects of mitigation,1990–2080. Technological Forecasting and Social Change,2007,74:1083–1107.
    142. Giacometti C, Demyan M S, Cavani L, et al. Chemical and microbiological soil quality indicatorsand their potential to differentiate fertilization regimes in temperate agro ecosystems. Applied SoilEcology,2013,64:32–48.
    143. Gong W, Yan X, Wang J, et al. Long-term manuring and fertilization effects on soil organiccarbon pools under a wheat-maize cropping system in North China Plain. Plant and Soil,2009,314(1):67–76.
    144. Han F P, Hu W, Zheng J Y, et al. Estimating soil organic carbon storage and distribution in acatchment of Loess Plateau, China. Geoderma,2010,154:261–266.
    145. Hati K M, Mandal K G, Misra A K, et al. Effects of inorganic fertilizer and farmyard manure onsoil physical properties, root distribution, and water-use efficiency of soybean in Vertisols ofcentral India. Bioresource Technology,2006,97(16):2182–2188.
    146. Hosseini N M, Palta J A, Berger J D, et al. Sowing soil water content effects on chickpea (Cicerarietinum L.): Seedling emergence and early growth interaction with genotype and seed size.Agricultural Water Management,2009,96:17321736.
    147. Hou P, Gao Q, Xie R Z, et al. Grain yields in relation to N requirement: Optimizing nitrogenmanagement for spring maize grown in China. Field Crops Research,2012,129:1–6.
    148. Hu H Y, Ning T Y, Li Z J, et al. Coupling effects of urea types and subsoiling on nitrogen–wateruse and yield of different varieties of maize in northern China. Field Crops Research,2013,142:85–94.
    149. Huang G B, Chai Q, Feng F X, et al. Effects of different tillage systems on soil properties, rootgrowth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in aridnorthwest China. Journal of Integrative Agriculture,2012a,11(8):1286–1296.
    150. Huang J K, Xiang C, Jia X, et al. Impacts of training on farmers’ nitrogen use in maize productionin Shandong, China. Journal of Soil and Water Conservation,2012b,67:321–327.
    151. Ibragimov N, Evett S R, Esanbekov Y, et al. Water use efficiency of irrigated cotton inUzbekistan under drip and furrow irrigation. Agricultural Water Management,2007,90:112–120.
    152. Ilbeyi A, Ustun H, Oweis T, et al. Wheat water productivity and yield in a cool highlandenvironment: Effect of early sowing with supplemental irrigation. Agricultural WaterManagement,2006,82:399–410.
    153. Istanbulluoglu A, Gocmen E, Gezer E, et al. Effects of water stress at different developmentstages on yield and water productivity of winter and summer safflower (Carthamus tinctorius L.).Agricultural Water Management,2009,96(10):1429–1434.
    154. Jensen C R, Battilani A, Plauborg F, et al. Deficit irrigation based on drought tolerance and rootsignalling in potatoes and tomatoes. Agricultural Water Management,2010,98(3):403–413.
    155. Jia B, Zhou G, Wang Y, et al. Effects of temperature and soil water-content on soil respiration ofgrazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments,2006,67:60–76.
    156. Jia X P, Huang J K, Xiang C, et al. Farmer’s Adoption of Improved Nitrogen ManagementStrategies in Maize Production in China: an Experimental Knowledge Training. Journal ofIntegrative Agriculture,2013,12(2):364–373.
    157. Lee J. Effect of application methods of organic fertilizer on growth, soil chemical properties andmicrobial densities in organic bulb onion production. Scientia Horticulturae,2010,124(3):299–305.
    158. Kang S Z, Zhang L, Liang Y L, et al. Effects of limited irrigation on yield and water useefficiency of winter wheat in the Loess Plateau of China. Agricultural Water Management,2002,55:203216
    159. Karam F, Lahoud R, Masaad R, et al. Evapotranspiration seed yield and water use efficiency ofdrip irrigated sunflower under full and deficit irrigation conditions. Agricultural WaterManagement,2007,90:213–223.
    160. Kendy E, Ge′rard-Marchant P, Walter M T, et al. A soil–water-balance approach to quantifygroundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes,2003,17(10):2011–2031.
    161. Kijne J W, Barker R, Molden D J. Water Productivity in Agriculture: Limits and Opportunitiesfor Improvement [C]. Wallingford, UK: CABI, IWMI:2003. Cambridge MA USA,2003.
    162. Knoxa J W, Kay M G, Weatherhead E K. Water regulation, crop production, and agriculturalwater management—Understanding farmer perspectives on irrigation efficiency. AgriculturalWater Management,2012,108:3–8.
    163. Kukal S S, Rehana-Rasool, Benbi D K. Soil organic carbon sequestration in relation to organicand inorganic fertilization in rice-wheat and maize-wheat systems. Soil&Tillage Research,2009,102:87–92.
    164. Li F M, Song Q H, Liu H S, et al. Effects of pre-sowing irrigation and phosphorus application onwater use and yield of spring wheat under semi-arid conditions. Agricultural Water Management,2001,49(3):173–183.
    165. Li F M, Yan X, Li F R, et al. Effects of different water supply regimes on water use and yieldperformance of spring wheat in a simulated semi-arid environment. Agricultural WaterManagement,2001,47(1):25–35.
    166. Li F S, Liang J H, Kang S Z, et al. Benefits of alternate partial root-zone irrigation on growth,water and nitrogen use efficiencies modified by fertilization and soil water status in maize. Plantand Soil,2007,295:279–291.
    167. Li F S,Yu J M, Nong M L, et al. Partial root-zone irrigation enhanced soil enzyme activities andwater use of maize under different ratios of inorganic to organic nitrogen fertilizers. AgriculturalWater Management,2010,97(2):231–239.
    168. Li Q Q, Dong B D, Qiao Y Z, et al. Root growth, available soil water, and water-use efficiency ofwinter wheat under different irrigation regimes applied at different growth stages in North China.Agricultural Water Management,2010,97(10):1676–1682.
    169. Li X X, Hu C S, Delgado J A, et al. Increased nitrogen use efficiencies as a key mitigationalternative to reduce nitrate leaching in north china plain. Agricultural Water Management,2007,89:137–147.
    170. LinYechun, Zeng Zhaohai, RenChangzhong, et al. Water use efficiency and physiologicalresponses of oat under alternate partial root-zone irrigation in the semiarid areas of northeastChina. Procedia Engineering,2012,28:33–42.
    171. Liu C A, Li F R, Zhou L M, et al. Effect of organic manure and fertilizer on soil water and cropyields in newly-built terraces with loess soils in a semi-arid environment. Agricultural WaterManagement,2013,117:123–132.
    172. Liu C M, Yu J J, Eloise K. Groundwater Exploitation and Its Impact on the Environment in theNorth China Plain. Water International,2001,26(2):265–272.
    173. Liu X Y, Ren G G, Shi Y. The effect of organic manure and chemical fertilizer on growth anddevelopment of Stevia rebaudiana Bertoni. Energy Procedia,2010,(5):1200–1204.
    174. Liu Y, Li S Q, Chen F, et al. Soil water dynamics and water use efficiency in spring maize(zea mays l.) fields subjected to different water management practices on the loessplateau, China. Agricultural Water Management,2010,97(5):769–775.
    175. Logninow W, Wisniewski W, Strony W M, et a1. Fractionation of organic carbon based onsusceptibility to oxidation. Polish Journal of Soil Science,1987,20(1):47–52.
    176. Ma L, Yang L Z, Xia L Z, et al. Long-term effects of inorganic and organic amendments onorganic carbon in a paddy soil of the Taihu Lake Region, China. Pedosphere,2011,21(2):186–196.
    177. Macdonald A J, Poulton P R, Howe M T, et al. The use of cover crops in cereal-based croppingsystems to control nitrate leaching in SE England. Plant Soil,2005,273:355–373.
    178. Majumder B, Ruehlmann J, Kuzyakov Y. Effects of aggregation processes on distribution ofaggregate size fractions and organic C content of a long-term fertilized soil. European Journal ofSoil Biology,2010,46:365–370.
    179. Meng L, Ding W X, Cai Z C. Long-term application of organic manure and nitrogen fertilizer onN2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology andBiochemistry,2005,37(11):2037–2045.
    180. Meng Q F, Sun Q P, Chen X P, et al. Alternative cropping systems for sustainable water andnitrogen use in the North China Plain. Agriculture, Ecosystems and Environment,2012,146:93–102.
    181. Miriti J M, Kironchi G, Esilaba A O, et al. Yield and water use efficiencies of maize and cowpeaas affected by tillage and cropping systems in semi-arid Eastern Kenya. Agricultural WaterManagement,2012,115:148–155.
    182. Moeller C, Asseng S, Berger J, et al. Plant available soil water at sowing in Mediterraneanenvironments—is it a useful criterion to aid nitrogen fertiliser and sowing decisions? Field CropsResearch,2009,114:127–136.
    183. Mohanty M, Bandyopadhyay K, Painuli D, et al. Water transmission characteristics of a vertisoland water use efficiency of rainfed soybean (Glycine max (L.) Merr.) under subsoiling andmanuring. Soil and Tillage Research,2007,93(2):420–428.
    184. Needelman B A, Wander M M, Bollero G A, et al. Interaction of tillage and soil texture:biologically active soil organic matter in Illinois. Soil Science Society of America Journal,1999,63(5):1326–1334.
    185. Nichols K A, Toro M. A whole soil stability index (WSSI) for evaluating soil aggregation. Soil&Tillage Research,2011,111(2):99–104.
    186. Nielsen D C, Halvorson A D. Nitrogen fertility influence on water stress and yield of winterwheat. Agronomy Journal,1991,83:1065–1070.
    187. Niewczas J, Witkowska-Walczak B. The soil aggregates stability index (ASI) and its extremevalues. Soil&Tillage Research,2005,80:69–78.
    188. Nielsen D C, Vigil M F, Benjamin J G. The variable response of dryland corn yield to soil watercontent at planting. Agricultural Water Management,2009,96:330–336.
    189. Nimmo J R, Deason J A, Izbicki J A, et al. Evaluation of unsaturated zone water fluxes inheterogeneous alluvium at a Mojave Basin site. Water Resources Research,2002,38(10):33-1–33-13.
    190. Ninou E, Tsialtas J T, Dordas C A, et al. Effect of irrigation on the relationships between leaf gasexchange related traits and yield in dwarf dry bean grown under Mediterranean conditions.Agricultural Water Management,2013,116:235–241.
    191. Norwood C A. Drylnadwinterwheat asaffectedbyprevious crops.Agronomy Journal,2000,92(1):12l–127.
    192. Patanèa C, Cosentino S L. Yield, water use and radiation use efficiencies of kenaf (Hibiscuscannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterraneanarea. European Journal Agronomy,2013,46:53–62.
    193. Payero J O, Tarkalson D D, Irmak S, et al. Effect of irrigation amounts applied with subsurfacedrip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter productionin a semiarid climate. Agricultural Water Management,2008,95(8):895–908.
    194. Patil S L, Sheelavantar M N. Soil water conservation and yield of winter sorghum (Sorghumbicolor L. Moench) as influenced by tillage, organic materials and nitrogen fertilizer in semi-aridtropical India. Soil and Tillage Research,2006,89(2):246–257.
    195. Qi Z M, Helmers M J, Kaleita A L. Soil water dynamics under various agricultural land covers ona subsurface drained field in north-central Iowa, USA. Agricultural Water Management,2011,98:665–674.
    196. Rasool R, Kukal S S, HiraG S. Soil organic carbon and physical properties as affected bylong-term application of FYM and inorganic fertilizers in maize–wheat system. Soil and TillageResearch,2008,101(1-2):31–36.
    197. Rasool R, Kukal S S, Hira G S. Soil physical fertility and crop performance as affected by longterm application of FYM and inorganic fertilizers in rice–wheat system. Soil and Tillage Research,2007,96(1-2):64–72.
    198. Rizza F, Ghashghaie J, Meyer S, et al. Constitutive differences in water use efficiency betweentwo durum wheat Cultivars. Field Crops Research,2012,125:49–60.
    199. Rovira P, Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matterdecomposing at different depths in soil: An acid hydrolysis app roach. Geoderma,2002,107(1-2):109–141.
    200. Savci S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia,2012,1:287–292. International Conference on Environmental Science and Development (ICESD).
    201. Shi Z L, Li D D, Jing Q, et al. Effects of nitrogen applications on soil nitrogen balance andnitrogen utilization of winter wheat in a rice–wheat rotation. Field Crops Research,2012,127:241–247.
    202. Singh S K, Singh A K, Sharma B K, et al. Carbon stock and organic carbon dynamics in soils ofRajasthan, India. Journal of Arid Environments,2007,68(3):408–421.
    203. Song G H, Pan G X, Zhang Q. Topsoil SOC storage of China agricultural soils and its loss bycultivation. Biogeochemistry,2005,74:47–62.
    204. Su Z Y, XiongY M, Zhu J Y, et al. Soil organic carbon content and distribution in a smalllandscape of Dong guan, South China. Pedosphere,2006,16(1):10–17.
    205. Sun B, Shen R P, Bouwman A F. Surface N Balances in Agricultural Crop Production Systems inChina for the Period1980–2015. Pedosphere,2008,18(3):304–315.
    206. Sun H Y, Liu C M, Zhang X Y, et al. Effects of irrigation on water balance, yield and WUE ofwinter wheat in the North China Plain. Agricultural Water Management,2006,85(1-2):211–218.
    207. Sun H Y, Shen Y J, Yu Q, et al. Effect of precipitation change on water balance and WUE of thewinter wheat-summer maize rotation in the North China Plain. Agricultural Water Management,2010,97(8):1139–1145.
    208. Sun Q P, Kr bel R, Müller T, et al. Optimization of yield and water-use of different croppingsystems for sustainable groundwater use in North China Plain. Agricultural Water Management,2011,98:808–814.
    209. Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winterwheat subjected to post-anthesis water-logging. Photosynthetica,2008,46:2127.
    210. Tang J, Mo Y H, Zhang J Y, et al. Influence of biological aggregating agents associated withmicrobial population on soil aggregate stability. Applied Soil Ecology,2011,47:153–159.
    211. Tong C L, Xiao H A, Tang G Y, et al. Long-term fertilizer effects on organic carbon and totalnitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil andTillage Research,2009,106(1):8–14.
    212. Turner N C. Plant water relations and irrigation management. Agricultural Water Management,1990,17:59–73.
    213. Vallejo A, Skiba U M, García-Torres L, et al. Nitrogen oxides emission from soils bearing apotato crop as influenced by fertilization with treated pig slurries and composts. Soil Biology andBiochemistry,2006,38:2782–2793.
    214. Wang X B, Wu H J, Dai K, et al. Tillage and crop residue effects on rainfed wheat and maizeproduction in northern China. Field Crops Research,2012,132,(14):106–116.
    215. Wang X Y. Irrigation Water Use Efficiency of Farmers and Its Determinants: Evidence from aSurvey in Northwestern China. Agricultural Sciences in China,2010,9(9):1326–1337.
    216. Wang Y Z, Zhang XY, Liu XW, et al. The effects of nitrogen supply and water regime oninstantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat.Field Crops Research,2013,144:236–244.
    217. Webber H A, Madramootoo C A, Bourgault M, et al. Water use efficiency of common bean andgreen gram grown using alternate furrow and deficit irrigation. Agricultural Water Management,2006,86:259–268.
    218. William F S, Steven E, Schofstoll J, et al. Available water and wheat grain yield relations in aMediterranean climate. Field Crops Research,2008,109(1-3):45–49.
    219. Xia J, Liu M Y, Jia S F. Water security problem in North China: research and perspective.Pedosphere,2005,15(5):563–575.
    220. Xu Z Z, Yu Z W, Wang D. Nitrogen translocation in w heat plants under soil water deficit. Plantand Soil,2006,280:291–303.
    221. Xue Q W, Zhu Z X, Musick J T, et al. Physiological mechanisms contributing to the increasedwater use efficiency in winter wheat under deficit irrigation. Journal of Plant Physiology,2006,163:154164.
    222. Yan Y, Tian J, Fan M S, et al. Soil organic carbon and total nitrogen in intensively managedarable soils. Agriculture, Ecosystems and Environment,2012,150:102110.
    223. Yang H S. Resource management, soil fertility and sustainable crop production: Experiences ofChina. Agriculture, Ecosystems and Environment,2006,116(1-2):27–33.
    224. Yang L J, Qu H, Zhang Y L, et al. Effects of partial root-zone irrigation on physiology, fruit yieldand quality and water use efficiency of tomato under different calcium levels. Agricultural WaterManagement,2012,104:89–94.
    225. Ye Y S, Liang X Q, Chen Y X, et al. Alternate wetting and drying irrigation andcontrolled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield,water and nitrogen use. Field Crops Research,2013,144:212–224.
    226. Yu H Y, Ding W X, Luo J F, et al. Long-term application of organic manure and mineralfertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil&TillageResearch,2012,124:170–177.
    227. Zhang C, Liu G B, Xue S, et al. Soil organic carbon and total nitrogen storage as affected by landuse in a small watershed of the Loess Plateau, China. European Journal of Soil Biology,2013,54:16–24.
    228. Zhang F S, Cui Z L, Chen X P, et al. Integrated nutrient management for food security andenvironmental quality in China. Advances in Agronomy,2012,116:1–40.
    229. Zhang H B, Luo Y M, Wong M H, et al. Soil organic carbon storage and changes with reductionin agricultural activities in Hong Kong. Geoderma,2007,139:412–419.
    230. Zhang X Y, Pei D, Chen S Y, Sun H Y, Yang Y H. Performance of double-cropped winterwheat-summer maize under minimum irrigation in the north China Plain. Agronomy Journal,2006,98(6):1620–1626.
    231. Zhang X Y, Chen S Y, Sun H Y, et al. Water use efficiency and associated traits in winter wheatcultivars in the North China Plain. Agricultural Water Management,2010,97:1117–1125.
    232. Zhang X Y, Pei D, Chen S Y, et al. Performance of double cropped winter wheat-summer maizeunder minimum irrigation in the North China Plain. Agronomy Journal,2006,98(6):1620–1626.
    233. Zhang Y Q, Kendy E, Qiang Y, et al. Effect of soil water deficit on evapotranspiration, crop yield,and water use efficiency in the North China Plain. Agricultural Water Management,2004,64(2):107–122.
    234. Zhao B Q, Li X Y, Liu H, et al. Results from long-term fertilizer experiments in China: The riskof groundwater pollution by nitrate. NJAS-Wageningen Journal of Life Sciences,2011,58(3-4):177–183.
    235. Zhao X N, Hu K, Stahr K. Simulation of SOC content and storage under different irrigation,fertilization and tillage conditions using EPIC model in the North China Plain. Soil&TillageResearch,2013,130:128–135.
    236. Zhou J B, Wang C Y, Zhang H, et al. Effect of water saving management practices and nitrogenfertilizer rate on crop yield and water use efficiency in a winter wheat–summer maize croppingsystem. Field Crops Research,2011,122(2):157–163.
    237. Zhou Z C, Gan Z T, Shangguan Z P, et al. Effects of long-term repeated mineral and organicfertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. EuropeanJournal of Agronomy,2013,45:20–26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700