用户名: 密码: 验证码:
冬小麦耐热性及相关性状数量位点遗传剖析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦属喜凉习性作物,但生长季节内易受到异常高温造成的热胁迫影响,从而导致产量下降并且品质变劣。小麦籽粒灌浆形成的适宜温度为20-24℃,温度高于25℃,就会缩短灌浆时间,导致茎叶早衰,影响粒重的增长。从此意义上看小麦生产中的热胁迫影响可能是经常性的。小麦耐热性为复杂数量性状,开展小麦耐热相关性状的QTL定位分析和遗传剖析,对于小麦耐热分子育种有重要的现实意义。本研究以两个农艺性状差异较大的小麦品种旱选10号与鲁麦14杂交创建的加倍单倍体(DH)群体做为试验材料,考察幼苗期和灌浆期耐热相关性状,包括叶片持绿性状(CC)、叶绿素荧光参数(CFP)、根干重(RDW)、苗干重(SDW)及幼苗生物量(SB)叶片相对含水量(RWC)、冠气温差(CTD)、茎秆可溶性碳水化合物含量(WSC)及转运率(RE)、千粒重(TGW)等。对这些性状的耐热性(以耐热指数为耐热性指标)及性状的发育进行QTL定位分析,从分子水平上阐述了小麦耐热性的遗传基础和表达规律。
     (1)试验DH群体目标性状对高温反应敏感;群体中各株系呈现广泛变异和超亲分离,属于微效多基因控制的复杂数量性状。试验共检测到两个时期的不同性状耐热指数的31个加性效应QTL和39对上位性效应QTL;检测到耐热相关性状的118个加性效应QTL和149对上位性效应QTL,并分析了它们的遗传效应及其与环境的互作效应。
     (2)幼苗期检测到与幼苗性状耐热指数相关的5个加性遗传效应QTL和8对上位性遗传效应QTL;检测到控制幼苗耐热相关性状的8个加性遗传效应QTL和20对上位性遗传效应QTL。这些位点分布在除4D和6D染色体以外的19条染色体上。从QTL在染色体上的分布来看,控制幼苗耐热指数的QTL位点在6A、6B、3A、2D、5A和7A染色体上分布相对较多;而控制幼苗性状的遗传位点在2D、6B、3A、4A、5A和7A染色体上分布较多。幼苗耐热指数的遗传却以加性效应为主而幼苗性状的遗传以上位性效应为主。控制耐热指数的单个加性和单对上位性QTL所解释的表型变异范围分别为5.14%~12.41%和1.44%~3.61%;而控制幼苗性状的单个加性QTL和单对上位性效应QTL所解释的表型变异分别达0.32%~8.81%和0.71%~6.23%。
     (3)灌浆期检测到控制TGW、CC、RWC、CFP、CTD和颖壳、穗下节、其余茎秆可溶性碳水化合物含量(GWSC、NWSC和SWSC)的耐热指数26个加性效应QTL和31个上位性效应QTL;分别可解释表型变异的范围为2.64%~11.41%和0.99%~8.84%。耐热指数的遗传位点在1A、1B、2D、3A、5A、5B、6A、6B及7A等染色体上分布相对较多。其中有4个加性效应QTL的贡献率在10%以上。从遗传效应来看,TKW、CC、GWSC、NWSC和SWSC的耐热指数的遗传以加性效应为主,RWC、CFP、CTD的耐热指数遗传以上位性效应为主。颖壳可溶性碳水化合物含量的耐热指数与其它多数性状耐热指数显著正相关。
     (4)对苗期和灌浆期的耐热性QTL位点比较分析,幼苗期耐热指数的环境互作效应小,而灌浆期耐热指数的环境互作效应大。两个发育时期耐热性的遗传机制不太一致,但有一定的共同点,即携带它们的位点均在3A、6A和6B上的较多,遗传效应均以加性效应为主。两个时期的一些耐热性加性效应QTL定位在相同或相近位置,幼苗期生物量耐热指数QTL(Q.Sb.cgb-3D)与灌浆期千粒重耐热指数QTL(Q.Itgw.cgb-3D)均定位在3D染色体Xgwm456-Xgdm8区间距右标记1.8cM的位置;幼苗期叶绿素含量耐热指数QTL(QCc.cgb-2D.1)与灌浆期叶片相对含水量耐热指数QTL(Q.Itgw.cgb-2D)均定为在2D染色体P3176.1-P1123.1区间内。表明在小麦耐热性遗传上可能存在一些“永久性”表达基因,在整个小麦生育期均对小麦耐热性起调控作用。
     (5)灌浆期检测到三个测量时期的控制旗叶相对含水量和气冠温差的13个加性效应和26对上位性效应QTL,控制RWC的位点在染色体3B、5B和6A等上分布较多,控制NWC的位点在2B、2D、3B和3D等上分布较多,而控制CTD的位点在1B、2B、3B和5A上分布较多。3个性状3个时期的上位性效应及其环境互作效应较大,遗传基础复杂。检测到的控制胁迫7天时两种温度下自然含水量的遗传效应最多,可解释表型变异的64.5%。
     (6)灌浆期叶片叶绿素含量和叶绿素荧光参数对不同的环境条件反应比较敏感。小麦CC和CFP是微效多基因控制的复杂数量性状,易与温度及水分环境发生互作。共检测到该2性状在4环境3时期的21个加性效应和39个上位性效应QTL,控制CC的QTL主要分布在染色体1B、2D、4B、5A和6A上,控制CFP的QTL主要分布在1B、3A、3B和4A染色体上。检测到贡献率较高的3个加性QTL(Q.Ccu.cgb-1B.1、Q.Ccf.cgb-5A.1和Q.Ccf.cgb-2D),贡献率分别为19.40%、8.88%和7.39%。
     (7)灌浆期检测了DH群体中控制颖壳、穗下节和其余茎WSC含量及其转运效率的12个性状,这些性状均属于微效多基因控制的复杂数量性状。共检测到46个加性和25对上位性效应QTL,这些位点在1B、2A等染色体上分布较多。在7D染色体WMC436-Xgwm44上、2D的WMC170-Cwm96.2上和7A的P4114.1-P6934.2上检测到与WSC有关的重合位点,在2A、2D等上检测QTL簇。12个性状有10个以加性遗传效应为主。
     (8)利用不同的环境条件对小麦粒重进行了动态发育分析,共检测到30个加性QTL和39对上位性QTL,其位点在染色体1B、4B、2D、2A、7B、3B、4A和6A上分布较多。控制非条件下的粒重位点在染色体1B、3B、4B、7B等上较多,而控制条件下的粒重位点在染色体1B、2D、4A、4B等上比较多。在1B区段P3474-480-T122上,在2D的WMC453.1-WMC144上,在3B的Xgwm644.2-P2076-147上检测到控制粒重的QTL簇。粒重非条件遗传效应以加性效应为主,而条件遗传效应以上位性效应为主,条件和非条件下的环境互作效应均较小。并利用已知的全部DH群体的每个QTL基因型遗传效应的比较分析预测了QTL多位点最佳结合的优良等位基因型。
The wheat (Triticum aestivum L.) belong to cool crop, and was affected by hightemperature during growing season, especially during later growing season. And the resulttended to drop grain yield and quality. The optimum temperature for grain filling was during20~24℃. When the temperature was above25℃, the time for grain filling will be shorten,the shoot will be premature senility and grain will be affected. From this sence, the impact ofthe wheat from high temperature is likely to be regular. Currently development of molecularquantitative genetics provided an effective method to study the genetic mechanism of heatresistance and its genetic patterns for complex quantitative traits. So, it is of very importancethat map QTLs and dissect genetic factors for complex quantitative traits associated with heattolerance in wheat molecular breeding of heat tolerance.
     Doubled haploid lines (DHLs) previously constructed by a cross between Hanxuan10andLumai14, two common wheat cultivars, being selected for experimental materials in presentstudy. Some of the important traits associated with heat-tolerance including content ofchlorophyll (CC), fluorescence parameter of chlorophyll (CFP), root dry weight (RDW),shoot dry weight (SDW), seedling biomass (SB) in different temperature during seedlingstage were investigated in different temperature. And flag leaf raletive water content (RWC),flag leaf natural water content (NWC), canopy temperature depression (CTD), glumewater-soluble carbohydrates (GWSC), neck stem water-soluble carbohydrates (NWSC) andthe rest stem water-soluble carbohydrates (SWSC), thousand-kernel weight (TKW), CC andCFP in grain filling stage were investigated in different temperature and water condition.Quantitative trait loci (QTL) mapping and QTLs×water environment interactions (QEIs) areanalyzed on these target traits in this study. The study mapped the QTLs for those traits andtheir heat tolerance index (HTI) and illustrated the genetic basis and expression regularpattern for heat tolerance of winter wheat.
     (1) All target traits from DHLs in the test showed significantly sensitive to heat stress andshowed wide variation and transgressive segregations, belonging to complicated quantitativetraits controlled by the tiny effect polygene and regulated by minor-effect polygenes whichwere easily affected by different environments. Total of31additive QTLs and39epistatic QTL of HTI for target traits and total of118additive QTLs and149epistatic QTL of thetarget traits were detected in two development period. And the genetic effect and theinteraction effect for QTL×environments were estimated and analyzed in this study.
     (2) The5additive QTLs and8epistatic QTL related to HTI of seedling traits, and8additive QTLs and20epistatic QTL related to seedling traits were located on allchromosomes except4D and6D under two temperature conditions. From the distribution ofthe QTLs detected by the test, the QTL for seedling traits mainly distributed on thechromosomes2D,6B,3A,4A,5A and7A, and that for HTIs mainly on the chromosomes6A,6B,3A,2D,5A and7A. The genetic effect of the QTLs for seedling traits mainly wasepistatic effect and their HTI mainly was additive effect. The phenotypic variance explainedby single additive QTL and single epistatic QTL controlling the HTI of seedling traits werefrom5.14%to12.41%and from1.44%to3.61%, respectively. And that for controllingseedling traits were from0.32%to8.81%and from0.71%to0.32%, respectively.
     (3) Total26additive QTLs and31epistatic QTLs for TKW, CC, CFP, RWC, CTD,GWSC, NWSC and SWSC in grain filling stage were detected on chromosome1A,1B,2D,3A,5A,5B,6A,6B,7A and so on. The phenotypic variance explained by single additiveQTL and single epistatic QTL for those QTLs were from2.64%to11.41%and from0.99%to8.84%, respectively. The genetic effect of4of the26additive QTLs were above10%. Thegenetic effect for HTLs of TKW, CC, GWSC, NWSC and SWSC mainly were additive effect,and that of RWC, CFP, CTD mainly were epistatic effect. The correlation coefficients amongthe HTI of GWSC with the most of other traits were highly significant.
     (4) The heat-resistance QTL of the DHL were compared and analysed in seedling stageand grain filling stage, and the result showed that interaction effect QTL×environment wererelatively small in seedling stage than in grain filling stage. The genetic mechanisms of theQTL for the two development stage were not very consistent, and there are some commonpoint bwtween them, that is the number of the QTL on6A,3A and6B were more in the twostage, and the additive effect was the main for those QTL. Some of the additive QTL in thetwo stage were detected on the same or close site. For instance, both of the QTL(Q.Sb.cgb-3D) for HTI of SB in seedling stage and the QTL (Q.Itgw.cgb-3D) for HTI ofhousand-kernel weight (TKW) in grain filling stage were deteced at the place1.8cM from theright mark between Xgwm456-Xgdm8on3D. And both of the QTL (QCc.cgb-2D.1) for HTIof CC in seedling stage and the QTL (Q.Itgw.cgb-2D) for HTI of RWC in grain filling stagewere deteced between P3176.1-P1123.1. This suggested that there may be some "permanent"expressed genes for the genetic of heat tolerance in wheat, and they play the regulatory rolefor heat tolerance in the whole growth period.
     (5) Total13additive and26epistatic QTL for RWC, NWC and CTD between differentheat stress time were detected in grain filling stage. And the QTLs for RWC mainlydistributed on chromosome2B,3B,5B,6A, and the QTLs for NWC mainly on2B,3B and3Dand the QTLs for CTD mainly on1B,2B and3B. The genetic effect of the epistatic QTLs andepistatic QTLs×environment were larger than additive QTLs. The genetic effects for NWCunder heat-stress for7days was the most, and the contribution for phenotypic variation was64.5%.
     (6) CC and CFP were sensitive to temperature environment condition and may be usedas parameter for heat tolerance in grain filling stage. They essentially were subjected to thecomplex quantitative traits regulated by minor-effect polygenes which were easily affected bydifferent environments. Total of21additive and39epistatic QTL for CC and CFP weredetected. The QTLs for CC mainly distributed on chromosome1B,2D,4B,5A and6A, andthat for CC mainly on chromosome1B,3A,3B and4A. Three QTLs (Q.Ccu.cgb-1B.1,Q.Ccf.cgb-5A.1and Q.Ccf.cgb-2D) had large contribution were detected in the test, and theircontribute for phenotypic variation were19.40%,8.88%and7.39%, respectively.
     (7) The12traits for GWSC, NWSC, SWSC and their remobilization were detected in grainfilling stage, and all of them belong to complex quantitative traits regulated by minor-effectpolygenes. Total of46additive and25epistatic QTL for target traits were detected, and mostof them on chromosome1B,2A,2Dand so on. Some of the QTLs for the three traits wereshared the same intervals, that is, C436-Xgwm44on7D, WMC170-Cwm96.2on2D andP4114.1-P6934.2on7A. The QTL clusters were detected on chromosome2A,2D,3A,3D,7A and7D. The genetic effect of the targets traits mainly were additive effect.
     (8) Total of30additive and39epistatic QTLs for grain weight developmental behaviourwith unconditional and conditional method were detected, and mainly distributed onchromosome1B,4B,2D,2A,7B,3B,4A and6A. The locus for unconditional grain weightmainly distributed on chromosome1B,3B,4B and7B, and that for conditional grain weightmainly distributed on chromosome1B、2D、4A and4B. The QTL clesters were detected onthe intervals of P3474-480-T122on1B, WMC453.1-WMC144on2D, Xgwm644.2-P2076-147on3B. The genetic effect for unconditional grain weight mainly wereadditive effect, and that for conditional grain weight mainly were epistatic effect. The effectof QTL×environment with unconditional and conditional method were minor. The testpredicted superior alleles constituted with the superior polygene by the total genetic effects ofknown QTL from individual DHLs.
引文
蔡运龙.1996.全球气候变化下中国农业的脆弱性与适应对策.地理学报,51(3):202~212
    曹立勇,赵建根,占小登,李登楼,何立斌,程式华.2003.水稻耐热性的QT L定位及耐热性与光合速率的相关性.中国水稻科学,17:223~227
    曹立勇,朱军,赵松涛,何立斌,颜启传.2002.水稻籼粳交DH群体耐热性QTLS定位.农业生物技术学报,10:210~214.
    曹卫东,贾继增,金继运.2004.不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究.植物营养与肥料学报,10:473~478
    陈培琴,郁松林,詹妍妮,康喜亮.2006.植物在高温胁迫下的生理研究进展.中国农学通报,22:223~227
    陈庆全,余四斌,李春海,牟同敏.2008.水稻抽穗开花期耐热性QTL的定位分析.中国农业科学,41(2):315-321.
    陈希勇,孙其信,孙长征.2000.春小麦耐热性表现及其评价.中国农业大学学报,5(1):43~49
    陈希勇,赵爱菊,李亚军.2007.小麦耐热性基因的染色体定位和遗传效应分析.华北农学报,22(增刊):1~5
    陈贻竹,李晓萍,夏丽,郭俊彦.1995.叶绿素荧光技术在植物环境胁迫研究中的利用.热带亚热带植物学报,3(4):79~86
    陈忠,苏维埃,汤章城.2000.植物热激蛋白.植物生理学报,36(4):289~296
    丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,陈德亮,高学杰,戴晓苏.2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2(1):3~8
    董建力,李树华,王敬东,惠红霞.2008.热胁迫下春小麦品种产量性状耐热性差异及相关分析.西北农业学报,17(2):70~73
    董树亭,王空军,胡昌浩.2000.玉米品种更替过程中群体光合特性的演变.作物学报,26:200~204.
    封超年,郭文善,施劲松,彭永欣,朱新开.2000.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,26:399~405
    郭洪雪,宋希云,燕增文,裴玉贺,王海娟,刘兰浩.2007.高温胁迫对小麦幼苗几个生理生化指标的影响.华北农学报,22(增刊):71~74
    郭文善,施劲松,彭永欣,封超年,葛才林,朱新开.1998.灌浆期高温对小麦光合产物运转的影响.核农学报,12(1):21~27
    韩笑冰,利容千,王建波,1997.热胁迫下萝卜不同耐热性品种细胞组织结构比较.武汉植物学研究.15:173~178
    何萍,金继运.2000.保绿型玉米的营养生理研究进展.玉米科学,8(4):41~44.
    黄清华,景蕊莲,吴新元,曹连莆,昌小平,张新忠,黄天荣.2008.普通小麦白粉病成株抗性的QTL分析.中国农业科学,41:2528–2536
    胡廷积,杨永光,马元喜.1986.小麦生态与生产技术.河南科学技术出版社:19~23.
    江华,师生波,许大全.2000.冬季小麦叶片光合作用对温度响应方式的变化.植物生理学报,26(1):69~74.
    金善宝主编.1992.小麦生态理论与应用.浙江科技出版社.
    金善宝.中国小麦学.中国农业出版社,1996:97.
    景蕊莲,昌小平,贾继增,胡荣海.1999.用花药培养创建小麦加倍单倍体作图群体.生物技术,9(3):4~8.
    李永庚,于振文,张秀杰,高雷明.2005.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报,29(3):461~466.
    廖祥政,王瑾,周荣华,任正隆,贾继增.2008.发掘人工合成小麦中千粒重QTL的有利等位基因.作物学报,34:1877~1884
    梁燕,张坤普,赵亮,梁雪,张雯婷,孙晓琳,孟庆伟,田纪春,赵世杰.2010.小麦苗期光合作用及其相关性状的QTL分析.作物学报,36:267~275
    刘德祥,董安祥,陆登荣.2005.中国西北地区近43年气候变化及其对农业生产的影响.干旱地区农业研究,23(2):195~201
    刘冬成,高睦枪,关荣霞,李润枝,曹双河,郭小丽,张爱民.2002.小麦株高性状的QTL分析.遗传学报,29:706~11
    刘桂富,杨剑,徐海明,朱军.2007.上位性和QTL×环境互作对水稻(Oryza sativa L.)抽穗期的影响.遗传学报,34:608~615
    刘金元,刘大钧,陈佩度.1997.分子标记辅助育种新尝试—与Pm2和Pm4α基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用.南京农业大学学报,20(2):1~5
    刘萍,郭文善,浦汉春,封超年,朱新开,彭永欣.2006.灌浆期短暂高温对小麦淀粉形成的影响.作物学报,32:182~188.
    刘瑞文.1992.小麦叶温对籽粒灌浆的影响.中国农业气象,13(3):1~4
    刘彦随,陈百明.2002.中国可持续发展问题与土地利用/覆被变化研究.地理研究,21(3):324~341
    刘祚昌,苏德荫.1985.高温对小麦叶绿体核糖体和叶绿素蛋白质生物合成的影响.植物学报,,27(1):63~67.
    刘志勇,王晓玲,倪中福.2000.小麦抗叶锈基因Lr9、Lr24的分子标记辅助选择研究.农业生物技术学报,8(1):113~116
    毛传澡,程式华.1999.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,7:386~394
    马晓娣,彭慧茹,汪矛,王丽,孙其信.2004.作物耐热性的评价.植物学通报,21:411~418.
    马晓娣,王丽,汪矛,彭惠茹.2003.不同耐热性小麦品种在热锻炼和热胁迫下叶片相对电导率及超微结构的差异.中国农业大学学报,8(5):4~8
    马旭俊,朱大海.2003.植物超氧化酶(SOD)的研究进展.遗传,25:225~231
    梅德圣,李云昌,王汉中.2003.作物产量性状QTL定位的研究现状及应用前景,19(5):83~88.
    苗琛,利容千,王建波.1994.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,36:730~732
    裴红宾,张永清,上官铁梁.2006.根区温度胁迫对小麦抗氧化酶活性及根苗生长的影响.山西师范大学学报(自然科学版),20(2):78~81
    气候变化对农业的影响及其对策课题组.1993.气候变化对农业的影响及其对策.北京大学出版社,
    秦大河,丁一汇,苏纪兰,任贾文,王绍武,伍荣生,杨修群,王苏民,刘时银,董光荣,卢琦,黄镇国,杜碧兰,罗勇.2005.中国气候与环境演变评估(I):中国气候与环境变化及未来趋势.气候变化研究进展,1(1):4~9
    沈新莲,张天真.2003.作物分子标记辅助选择育种研究的进展与展望.高技术通讯,(2):105~109
    石春海,吴建国,樊龙江,朱军,吴平.2001.不同环境条件下籼稻糙米重的发育遗传研究.植物学报,43:603~609
    宋松.2010.幼苗期小麦热激蛋白的诱导研究.安徽农业科学,38:595~596
    苏德荫.1992.高温对小麦的生理障碍及伤害机理(综述).山西农业科学,5:35~38.
    苏德荫房戈英,郑爱宁.1983.高温对夏播小麦幼苗的生理障碍.山西农业科学,5:8~9
    唐国利,丁一汇,王绍武,任国玉,刘洪滨,张莉.2009.中国近百年温度曲线的对比分析.气候变化研究进展,5(2):71~78
    唐海峰,樊万选.2009.农业应对气候变暖创新开发理念加快技术研发.创新科技,3:17~19
    王光耀,刘俊梅,张仪,余炳生,沈征言.1999.热锻炼和热胁迫过程中菜豆叶肉细胞超微结构的变化.农业生物技术学报,7(2):151~156
    王纪华,赵春江,黄文江,郭晓维,李鸿祥.2001.土壤水分对小麦叶片含水量及生理功能的影响.麦类作物学报,21(4):42~47
    王军,周美学,黄祖六,吕超,许如根.2006.大麦DH群体数量性状遗传分析.扬州大学学报(农业与生命科学版),,27(3):65~69
    王竹林,王辉,孙道杰,何中虎,夏先春,刘曙东.小麦株高的QTL分析.2008.西北农林科技大学学报(自然科学版),36,12:59~63
    魏乐,杜军华.1999.高温和零上低温对小麦根系含糖量及细胞透性的影响.青海师范大学学报·自然科学版,1:35~39
    吴为人,李维明,卢浩然.1996.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,25(4):394~399.
    吴云鹏,张业伦,肖永责,阎俊,张勇,张晓科,张利民,夏先春,何中虎.2008.小麦重要品质性状的QTL定位.中国农业科学,41:331~339
    许大权,沈允钢.1998.光合作用限制因子,植物生理与分子生物学.北京:北京科学出版社,262~276
    许为钢,胡琳.1996.小麦抗热性育种.干旱地区农业研究,14(3):77~82
    许为钢,胡琳,盖钧镒,1999.小麦耐热性研究.华北农学报,14(2):20~24
    许智宏,刘春明.1998.植物发育的分子机理.北京:科学出版社,151~160
    徐如强,孙其信,张树榛.1996.普通小麦品种Hope细胞膜热稳定性基因的染色体定位.遗传,18:1~3.
    徐如强,孙其信,张树榛.1998.小麦耐热性研究现状与展望(综述).中国农业大学学报,3(3):33~40
    徐晓玲,王志敏,张俊平.2001.灌浆期热胁迫对小麦不同绿色器官光合性能的影响。植物学报,43:571~577.
    徐云碧,石春海,申宗坦.1989.热害对早稻结实率的影响.浙江农业科学,2:14~18.
    徐云碧,朱立煌.1994.分子数量遗传学.中国农业出版社,55~187
    薛庆中,张能义,熊兆飞,朱立煌.1998.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,24(6):581~582.
    肖静,胡治球,汤在祥,隋炯明,李欣,徐辰武.2005.多个相关数量性状主基因的联合分析方法.中国农业科学,38(9):1717-1724
    肖世和,阎长生,张秀英,张文祥.2000.冬小麦耐热灌浆与气-冠温差的关系.作物学报.26:972~974
    邢永忠,徐才国.2001a.作物数量性状基因研究进展.遗传,23:498~502
    邢永忠,徐才国,华金平,谈移芳.2001b.水稻穗部性状的QTL与环境互作分析.遗传学报,28:439~446
    闫素辉,尹燕枰,李文阳,李勇,梁太波,邬云海,耿庆辉,王振林.2008.花后高温对不同耐热性小麦品种籽粒淀粉形成的影响.生态学报.28:6139~6147
    杨德龙.2005.小麦叶绿素相关性状和茎杆可溶性糖含量QTL定位分析,第三届全国动植物数量遗传学学术讨论会文集
    杨德龙.2007a.小麦抗旱相关重要生理性状和农艺性状数量位点遗传剖析.博士学位论文,61页
    杨德龙,李唯,景蕊莲,昌小平.2007b.小麦DH群体茎秆可溶性碳水化合物含量相关数量性状的遗传分析.作物学报,33:1543~1547
    杨景峰,程炳嵩,王洪春.1984.高温低湿对小麦膜脂脂肪酸组分的影响.植物学报,26:386~391
    张福琐主编.1993.环境胁迫与植物育种.北京:中国农业出版社,164~167
    姚元干,石雪晖,杨建国,王淑英,2000.辣椒耐热性与叶片质膜透性及几种生化物质含量的关系.湖南农业大学学报,26(2):97~99
    尹贤贵,罗庆熙,王文强,潘光辉,杨琦凤,尹诗麟,2001.番茄耐热性鉴定方法研究.西南农业学报,14(2):62~65
    张坤普,徐宪斌,田纪春.2009.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,35:270~278
    张平平,何中虎,夏先春,王德森,张勇.2005.高温胁迫对小麦蛋白质和淀粉品质影响的研究进展.麦类作物学报,25(5):129~132
    张小明,李春寿,叶胜海.2002.混合分组分析法在作物基因定位上的研究进展.上海农业学报,18:24~27.
    张志良.1990.植物生理学实验指导.北京:高等教育出版社
    张志强,孙成权.1999.全球变化研究十年新进展.科学通报,44(5):464~477
    张正斌,山仑,徐旗.2000.控制小麦种属旗叶水分利用效率的染色体背景分析.遗传学报,27:240~246
    赵志刚,江玲,肖应辉,张文伟,翟虎渠,万建民.2006.水稻孕穗期耐热性QTLs分析.作物学报,32:640~644
    赵新华.2004.小麦抗旱相关生理性状的QTL作图.硕士论文
    郑飞,何钟佩.1999.高温胁迫对冬小麦灌浆期物质运输与分配的影响.中国农业大学学报,4(1):73~76
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.2006.小麦产量性状的QTL分析.麦类作物学报,26(4):35~40
    周人纲,樊志和,李晓芝,王占武,韩炜.1993.高温锻炼对小麦细胞膜热稳定性的影响.华北农学报,8(3):33~37
    周人纲,樊志和,李晓芝,王占武,韩炜.1995.热锻炼对小麦叶片细胞膜及有关酶活性的影响.作物学报,21:568~572
    邹琦.1995.植物生理生化实验指导.北京:中国农业出版社:41~46
    邹琦.1988.小麦高温伤害与高温适应.植物学报,30(4):338~395
    周晓果,景蕊莲,昌小平.2005a.小麦苗期水分利用效率及其相关性状的QTL分析.植物遗传资源学报,6:20~25
    周晓果.2005b.小麦水分利用效率和幼苗根系性状的QTL分析.硕士论文
    朱军.2000.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业与生物科学版),26:1~6
    Agrama H A S, Moussa M E.1996. Mapping QTLs in breeding for drought tolerance in maize (zea maysL.). Euphytica,91:89~97
    Akkaya M S, Bhagwat A A, Cregan P B.1992. Length Polymorphisms of Simple Sequence Repeat DNAin Soybean. Genetics,132:1131~1139
    Alpert K B, Tanksley S D.1996. High-resolution mapping and isolation of a yeast artificial chromosomecontig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci.USA,93:15503~15507
    Amani I, Fischer R A, Reynolds M P,1996. Evaluation of canopy temperature as a screening tool for heattolerance in spring wheat. J Agron Crop Sci,176:119~129
    An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S.2006. Mapping QTLs fornitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil,284:73~84
    Asíns M J.2002. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding,121:281~291
    Assad M T, Paulsen G M.2002. Genetic changes in resistance to environmental stresses by U.S. GreatPlains wheat cultivars. Euphytica128:87~96
    Atchley W R, Zhu J.1997. Developmental quantitative genetics, conditional epigenetic variability andgrowth in mice. Genetics,147:765~776
    Badaruddin M, Reynolds M P, Ageeb O A A.1998. Sustaining wheat yields with crop management in heatstressed environments:effect of organic and inorganic fertilizers,mulching,and irrigation frequency.Mexico D F: CIMMYT, V.229. Series: CIMMYT Wheat Special Report (WPSR), No.47
    Beavis W D, Smith O S, Grant D.1994. Identification of quantitative trait loci using a small sample oftop-crossed and F4progeny from maize. Crop Sci,34:882~896
    Benbella M, Paulsen G M.1998. Efficacy of treatments for delaying senescence of wheat leaves: II.Senescence and grain yield under field conditions. Agron J,90:332~338
    Bennett M D, Smttm J B.1976. Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Lond B,274:227~274
    Bhullar S S, Jenner C F.1985. Differantial response to high temperature of stash and nitrogen accumulation inthe grain of four cultivars of wheat. Aust J Plant Physiol,12:363~375
    Bidinger F, Musgrave R B, Fisher R A.1977. Contribution of stored preanthesis assimilate to grain yieldin wheat and barley. Nature,270:431~433
    Blum A.1988. Plant breeding for stress environments. CRC Press. Boca Raton. FL, P:72
    Blumenthal C, Bekes F, Gras P W, Barlow E W R, Wrigley C W.1995. Identification of wheat genotypestolerant to the effects of heat stress on grain quality. Cereal Chem,72:539~544
    B rner A, Plaschke J, Korzun V, Worland A J.1996. The relationships between dwarfing genes of wheatand rye. Euphytica,89:69~75
    B rner A, Schumann E, Fürste A, C ster H, Leithold B, R der M and Weber W.2002. Mapping ofquantitative trait loci determining agronomic important characters in hexaploid wheat (Triticumaestivum L.). Theor Appl Genet,105:921~936.
    Borrell A K, Bidinger F R, Sunitha K.1999. Stay-green trait associated with yield in recombinant inbredsorghum lines varying in rate of leaf senescence. Int Sorghum and Millets Newslett,40:31~34
    Borrell A K, Hammer G L.2000. Nitrogen dynamics and the physiological basis of stay-green in sorghum.Crop Sci.,40:1295~1307
    Botwright T L, Condon A G, Rebetzke G J, Richards R A.2002. Field evaluation of early vigour forgenetic improvement of grain yield in wheat. Aust. J. Agric. Res,53:1137~1145
    Campbell C A, Davidson H R, Wtnkleman G E.1981. Effect of nitrogen, temperature, growth stage, andduration of moisture stress on yield components and protein content of Manirou spring wheat. Con JPlant Sci,61:549~563
    Campbell B T, Baenziger P S, Gill K S, Fincher R.2003. Identification of QTLs and environmentalinteractions associated with agronomic traits on chromosome3A of wheat. Crop Sci,43:1493~1505
    Cao G, Zhu J, He C X, Gao Y, Yan J, Wu P.2001. Impact of epistasis and QTL×environment interactionon the developmental behavior of plant height in rice (Oryza sativa L.). Theoretical and AppliedGenetics.103:153~160
    Carlborg and Haley C S.2004. Epistasis: too often neglected in complex trait studies? Nature ReviewsGenetics,5:618~625.
    Cha K W, Lee Y J, Koh H J, Lee B M., Nam Y W, Paek N C.2002. Isolation, characterization, andmapping of the stay green mutant in rice. Theor Appl Genet,104:526~532
    Chao S, Raines C A, Longstaff M,; Sharp P J, Gale M D, Dyer T A.1989. Chromosomal location andcopy number in wheat and some of its close relative of gene for enzymes involved in photosynthesis.Mol.&General Gen.,218:423~430
    Chastain T G, Ward K J,Wysocki D J.1995. Stand establishment responses of soft white winter-wheat toseedbed residue and seed size. Crop Sci.35:213~218
    Churchill G A, Doerge R W.1994. Empirical threshold values for quantitative trait. Genetics,138:963~971
    Cho R J, Mindrinos M, Richards D R, Sapolsky R J, Anderson M, Drenkard E, Dewdney J, Reuber T L,Stammers M, Federspiel N, Theologis A, Yang W H, Hubbell E, Au M, Chung E Y, Lashkari D,Lemieux B, Dean C, Lipshutz R J, Ausubel F M, Davis R W, Oefner P J.1999. Genome-widemapping with biallelic markers in arabidopsis thaliana. Nature Genetics,23:203~207
    Crossa J, Vargas M, van Eeuwijk FA, Vargas M, van Eeuwijk F A, Jiang C, Edmeades G O, Hoisington D.1999. Interpreting genotype environment interaction in tropical maize using linked molecular markersand environmental covariables. Theor. Appl. Genet.,99:61~625
    Dawson I A, Wardlaw I F.1989a. The tolerance of wheat to high temperatures during reproductivegrowth:Ⅰ. Booting to anthesis.Aust J Agric Res,40:965~980
    Dwyer L M, Tollenaar M.1989b. Genetic Improvement in Photosyn2thetic Response of Hybrid MaizeCultivars,1959to1989. Plant Science,69:81~91
    Ehdaie B, Alloush G A, Madore M A, Waines J G.2006. Genotypic variation for stem reserves andmobilization in wheat: Ⅰ. postanthesis changes in internode dry matter. Crop Sci,46:735~746
    Farquhar G D, Wong S C, Evans J R.1989. Photosynthesis and gas exchange. In: Jones H G, Flowers T J,Jones M B (Eds.), Plant under Stress, Cambridge University Press, Cambridge,47~69
    Fischer R A, Maurer O R.1976. Crop temperature modification and yield potential in a dwarf spring wheat.Crop Sci,16:855~859
    Fischer R A, Rees D, Sayre K d, Lu Z M, Condon A G, Larque-saavedra A.1998. Wheat yield progressassociated with a high stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci.38:1467~1475
    Fokar M, Nguyen H T, Blum A.1998. Heat tolerance in spring wheat.Ⅰ. Estimating-cellularthermotolerance and heritability. Euphytica,104:1~8
    Fracheboud Y, Ribaut JM, Vargas M, et al. Identification of quantitative trait loci for cold-tolerance ofphotosynthesis in maize (Zea mays L.). J. Exp. Bot.,2002,53:1967-1977
    Fullon T M, Grandillo S, Bech-Bunn T, Fridma E, Frampton n A, Lopez J, Petiard V, Uhlig J, Zamir D,Tanksley S D.2000. Advanced backcross QTL analysis of a Lycopersicon esculentumx andLycopersicon parviflorum cross. Theor. Appl. Genet.,100:1025~1042
    Galiba G, Kerepesi I, Snape JW, Sutka J.1997. Location of a gene regulating cold-induced carbohydrateproduction on chromosome5A of wheat. Theor. Appl. Genet.,95:265~270
    Gaudet J, Muttumu S, Horner M, Mango S E.2004. Whole genome analysis of temporal gene expressionduring foregut development. PLos Biology2:1828~1842
    Gentinetta E, Ceppi D, Lepori C. A major gene for delayed senes2cence in maize.1986. Pattern ofphotosynthates accumulation and inheri tance. Plant Breeding,97:193~203.
    Giura A, Saulescu N N.1996. Chromosomal location of genes contolling grain size in a large grainedselection of wheat (Triticum aestivum L.). Euphytica,89:77~80
    Gong Y H, Zhang J, Gao J F, Lu J Y, Wang J R.2005. Slow export of photoassimilate from stay-greenleaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). J. Agron&CropSci.,191:292~299
    Grodzicker T, Williams J, Sharp P, Sambrook J.1974. Physical mapping of temperature-sensitivemutations of adenoviruses. Cold Spring Harbor Symp. Quant. Biol.,39:439~446
    Groos C, Robert N, Bervas E, Charmet G.2003. Genetic analysis of grain protein content, grain yield andthousand-kernel weight in bread wheat. Theor Appl Genet,106:1032~1040
    Gross J, Protas M, Conrad M, Scheid P, Vidal O, Jeffery W, Borowsky R, Tabin C.2008. Synteny andcandidate gene prediction using an anchored linkage map of Astyanax mexicanus. Proceedings of theNational Academy of Sciences, USA105:20106~20111
    Guiamet J J, Giannibelli M C.1996. Nuclear and cytoplasmic “stay green” Mutations of soybean alter theloss of leaf soluble proteins duringsenescence. Plant Physiol,96:665~661.
    Gutierrez-Rodriguez M, Reynolds M P, Larque-Saavedra A,2000. Photosynthesis of wheat in awarm,irrigated environment.Ⅱ. Traits associated with genetic gains in yield. Field Crop Res,66:51~62
    Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P.2000. Flag leafsenescence, as evaluated by numerical image analysis, and its relationship with yield under drought indurum wheat. J Agron&Crop Sci,185:275~280
    Hall A E.1993. Breeding for heat tolerance. Plant Breeding Reviews,10:129~168
    Hao Z F, Chang X P, Guo X J, Jing R L, Li R Z, Jia J A. QTL mapping for drought tolerance at stages ofgermination and seedling in wheat (Triticum aestivum L.) using a DH population. Agricultural Sciencein China,2003,2:943-949.
    Haussmann B I, Mahalakshmi V, Reddy B V, Seetharama N, Hash C T, Geiger H H..2002. QTL mappingof stay-green in two sorghum recombinant inbred populations. Theor Appl Genet,106:133~142
    Hervé D, Fran oise F, Berrios E F,, Leroux N, Al Chaarani G, Planchon C, Sarrafi A, Gentzbittel L.2001.QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) undergreenhouse condition. J. Exp. Bot.,52:1857~1864
    He Z H, Rajaram S. Differential responses of bread wheat charactrs to high temperature. Euphytica,1994,72:197~203
    Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q.2004. The genetic basis of stay-green in rice analyzed in apopulation of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet,108:688~698
    Johnson R C, Kanemasu E T.1983. Yield and development of winter wheat at elevated temperatures. AgroJ,75:562~565
    Junko Matasuki, Takeshi Yasui, Kaoru Kohyama, Tomoko Sasaki.2003. Effects of environmentaltemperature on structure and gelatinizati on properties of wheat starch. Cereal Chemistry,80:476~480.
    Kanani P K, Jadon B S. Variability for high temperature tolerance in bread wheat. Indian J Agric Scit1985,55:63~66
    Kao CH, Zeng ZB.1997. General formulas for obtaining the MLE and the asymptotic variance-covariancematrix in mapping quantitative trait loci when using the EM algorithm. Biometrics,53:359~371
    Kato K, Miura, H, Sawada S.2000. Mapping QTLs controlling grain yield and its components onchromosome5A of wheat. Theor Appl Genet.101:1114~1121
    Keightley P D, Blfield G.1993. Detection of quantitative trait loci from frequency changes of markeralleles under selection. Genet. Res.,62:195~203
    Kislyuk I M, Bubolo L S, Bykov O D, Kamentseva I E, and Sherstneva O A.2008. Protective and injuringaction of visible light on photosynthetic apparatus in wheat plants during hyperthermia treatment.Russian Journal of Plant Physiology,55:613~620.
    Kobata T, Palta J A, Turner N C.1992. Rate of development of postanthesis water deficits and grainfilling of spring wheat. Crop Sci,32:1238~1242
    Kulwal P L, Roy J K, Balyan H S, Gupta P K.2003. QTL mapping for growth and leaf characters in breadwheat. Plant Sci,164:267~277.
    Kumar N, Kulwal P, Gaur A, Tyagi A, Khurana J, Khurana P, Balyan H, Gupta P.2006. QTL analysis forgrain weight in common wheat. Euphytica,151:135~144
    Lander E S, Botstein S.1989. Mapping Mendelian factors underlying quantitative teait loci using RFLPlinkage maps. Genetics,121:185~199
    Lark K, Chase K, Adler F, Mansur L, Orf J.1995. Interactions between quantitative trait loci in soybean inwhich trait variation at one locus is conditional upon a specific allele at another. Proceedings of theNational Academy of Sciences, USA92:4656~4660
    Lebreton CV, Steed LA, Pekic S, Quarrie S A.1995. Identification of QTL for drought responses in maizeand their use in testing causal relationships between traits. J. Exp. Bot.,46:853~865
    Levesque M P, Vernoux T, Busch W, Cui H, Wang J Y, Blilou I, Hassan H, Nakajima K, Matsumoto N,Lohmann J U, Scheres B, Benfey P N.2006. Whole genome analysis of the short-root developmentalpathway in Arabidopsis. Plos Biology,4:739~752
    Li H W, Tong Y P, Li B, Jing R L, Lu C M, Li Z S.2010. Genetic analysis of tolerance to photo-oxidativestress induced by high light in winter wheat (Triticum aestivum L.). J. Genet. Genomics,37:399~412
    Lilley J M, Ludlow M M.1996. Expression of osmotic adjustment and dehydration tolerance in diverse ricelines. Field Crops Res,48:185~197
    Lincoln S E, Daly M J, Larder ES.1992. Constructing genetic maps with MapMaker/EXP3.0.2. ed.Cambridge, Whitehead Institute Technical Report.
    Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H, Liu G F, Wang G C,Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S..2003. QTL×Environment interactions in rice. I. Heading date and plant height. Theor Appl Genet,108:141~153
    Luo P G, Ren Z L, Wu X H, Zhang H Y, Zhang H Q, Feng J.2006. Structural and biochemical mechanismresponsible for the stay-green phenotype in common wheat. Chinese Science Bulletin,51:2595~2603
    Mae T.1997. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yieldpotential. Plant Soil.,196:201~210
    Marza F, Bai G H, Carver B F, Zhou W C.2006. Quantitative trait loci for yield and related traits in thewheat population Ning7840×Clark. Theor Appl Genet,112:688~698.
    Mason R E, Mondal S, Beecher F W, Pacheco A, Jampala B, Ibrahim A M H, Hays D B.2010. QTLassociated with heat susceptibility index in wheat (Triticum aestivum L.) under short-termreproductive stage heat stress. Euphytica,174:423~436
    McBee G G, Waskom R M, Miller F R, Creelman R A.1983. Effect of senescence and non-senescence oncarbohydrates in sorghum during late kernel maturity states. Crop Sci.,23:372~376
    McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D.2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat crossRL4452×ACDomain. Genome,48:870~883.
    McIntosh R A, Hart G E, Devos K M, Rogers W J. Catalogue of gene symbols for wheat.1999.Http://grain.jouy.inra. fr/ggpages/wgc.
    Meenakshi Goyal, Bavita Asthir.2010. Polyamine catabolism influences antioxidative defense mechanismin shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul.,60:13~25.
    Michelmore RM, Paran I, Kesseli RV.1991. Identification of markers linked to disease-resistance genes bybulked segregant regions by using segregating populations. Proc. Nat. Acad.Sci. USA,88:9828~9832
    Midmore D J, Cartwright P M, Fischer R A.1982. wheat in tropical environments: Ⅰ.Phasic developmentand spike size. Field Crop Res,5:185~200
    Moffat J M, Sears G, Cox T S, Paulsen G M.1990. Wheat high temperature tolerance during reproductivegrowth. Ⅰ.Evaluation by chlorophyll fluorescence. Crop Sci,30:881~885
    Morgante M, Salamini F. From plant genomics to breeding practice. Current Opinion in Biotechnology2003,14:214–219
    Moriya K (森谷国男).1990. Heat tolerance of rice. Nogyou Gijutsu(Agric Tech)(农业技术),45(7):40~43.(in Japanese)
    Nagata K, Shimizu H, Terao T.2002. Quantitative trait loci for nonstructural carbohydrate accumulation inleaf sheaths and culms of rice (Oryzasativa L.) and their effects on grain filling. Breed Sci,52:275~283
    Ortiz R, Sayre K D, Govaerts B, Gupta R, Subbarao G V, Ban T, Hodson D, Dixon J M, Ortiz-MonasterioJ I, Reynolds M.2008. Climate change: Can wheat beat the heat? Agriculture, Ecosystems andEnvironment,126:46~58.
    Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D.1991. Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species,Generations, and Environments. Genetics.,127:181~197.
    Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, WorlandA J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P.1999.‘Green revolution’genes encode mutant gibberellin response modulators. Nature,400:256~261
    Plaut Z, Butow B J, Blumenthal C S, Wrigley C W.2004. Transport of dry matter into developing wheatkernels and its contribution to grain yield under post2anthesis water de ficit and elevated temperature.Field Crops Res,86(2):185~982
    Pooni HS, Coombs DJ, Jinks PS.1987. Detection of epistatisis and linkage of interacting genes in thepresence of reciprocal differences. Heredity,58:257~266
    Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma P C, Edwards K J, Singh H, Dhaliwal H S, Roy JK, Gupta P K.1999. A microsatellite marker associated with a QTLfor grain protein content onchromosome arm2DL of bread wheat. Theor Appl Genet,99:341~345.
    Price AH, Townend J, Jones MP, Audebert A, Courtois B.2002. Mapping QTLs associated with droughtavoidance in upland rice grown in the Philippines and West Africa. Plant Mol. Bio.,48:683~695
    Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupta V.2010.QTL mapping of1000-kernel weight, kernel length, and kernel width in bread wheat (Triticumaestivum L.). J Appl Genet51:421~429
    Randall P J, MossH J.1990. Some effects of temperature regi me during grain filling on wheat quality. Aust. J. A gric. Res.,41:603~617.
    Rasyad A, Van Sanfold DA.1992. Genetic and maternal variances and covariances of kernel growth traitsin winter wheat. Crop Sci,32:1139~1143
    Reynolds M P, Balota M, Delgado M I B, Amani I, Fischer R A,1994. Physiological and morphologicaltraits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol,21:717~730
    Reynolds M P, Ortiz-Monasterio J I, McNab A.2001. Application of Physiology in Wheat Breeding.Mexico D F: CIMMYT,124~135
    Reynolds M P, Singh R P, Abrahim A, Ageeb O A A, Larque-Saavedra A, Quick J S.1998. Evaluatingphysiological traits to complement empirical selection for wheat in warm environments. Euphytica,100:85~94
    Reynolds M P, Rajaram S, Sayre K D.1999. Physiological and genetic changes of irrigated wheat in thepost-green revolution period and approaches for meeting projected global demand. Crop Sci,39:1611~1621
    Richard S.1994. Inheritance of the Stay Green Trait in Sorghum. Crop Science,34:970~972.
    R der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W.1998. A microsatellitemap of wheat. Genetics,149:2007~2023
    Sadalla M M, Quick J F, Shanahan J F.1990a. Heat tolerance in winter wheat1.Hardening and geneticeffects on membranes thermo-stability.Crop Sci,30:1243~1247
    Sadalla M M, Quick J F, Shanahan J F.1990b. Heat tolerance in winter wheat2. Membranesthermostability and field performance. Crop Sci,30:1248~1251
    Shanahan J F, Edwards I B, Quick J S, Fenwick J R.1990. Membrane thermostability and heat tolerance ofspring wheat. Crop Sci,30:247~251
    Shpiler L,Blum A. Differential reaction of wheat cultivars to hot environments. Euphytica,1986,35:483~492
    Schneider KA, Brothers ME, Kelly JD.1997. Marker assisted selection to improve drought resistance incommon bean. Crop. Sci,37:51~60
    Schonfeld M A, Johnson R C, Carver B F, Mornhinweg D W.1988. Water relations in winter wheat asdrought resistance indicators. Crop Sci.,28:526~531
    Setter T L, Anderson W K, Asseng S, Barclay I.1998. Review of the impact of high shoot carbohydrateconcentrations on maintenance of high yields in wheat exposed to environmental stress during grainfilling. In: Nagarajan S, Singh G, Tyagi B S. Wheat Research Needs Beyond2000AD. NarosaPublishers, New Delhi, London,. pp237~255
    Shi R L, Li H W, Tong Y P, Jing R L, Zhang F S, Zou C Q.2008. Identification of quantitative traitlocus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil,306:95~104
    Singh A and Grover A.2008. Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants14(1-2):155~166
    Smika D E. Shawcroft R W.1980. Prehminary study using a wind tunnel to determin the effect of hot windon a wheat crop. Field Crops Research,3:129~135
    Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish L J, Wang Y K, Ciavarrella M.2007. Dissectinggene×environmental effects on wheat yields via QTL and physiological analysis. Euphytica,154:401~408
    Sourdille P, Cadalen T, Guyomarch H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, BernardM.2003. An update of the Courtot×Chinese Sping intervarietal molecular marker linkage map for the QTL detection of agronomic t rait s in wheat. Theor Appl Genet,106:530~538.
    Spano G, Fonzo Di N, Perrotta C.2003. Physiological characterization of stay green mutants in durumwheat. Journal of Experimental Botany,54:1415~1420
    Spiertz J H J, Hamer R J, Xu H, Primo-Martin C, Don C, Putten van der PEL.2006. Heat stress in wheat(Triticum aestivum L.): Effects on grain growth and quality traits. Europ J Agronomy,25:89~95
    Stuber CW.1995. Mapping and maniqulating quantitative traits in maize. Trends Genet.,11:477~481
    Stuber CW, Moll RH, Goodman MM, Schaffer H E, Weir B S.1980. Allozyme frequency changesassociated with selection for increased grain yield in maize (Zea mays L.). Genetics,95:225~236
    Subudhi PK, Rosenow DT, Nguyen HT.2000. Quantitative trait loci for the stay green trait in sorghum(Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor ApplGenet,101:733~741
    Su J Y, Tong Y P, Liu Q Y, Li B, Jing R L, Li J Y and Li Z S.2006. Mapping Quantitative Trait Loci forPost-Anthesis DryMatter Accumulation in Wheat. Journal of Integrative Plant Biology,48:938~944
    Sun D S, Li W B, Zhang Z C, Chen Q S, Ning H L, Qiu L J, Sun G L.2006. Quantitative trait loci analysisfor the developmental behavior of soybean (Glycine max L. Merr.). Theoretical and Applied Genetics,112:665~673
    Sun Q X.1991. Quick J S.Chromosomal location of genes for heat tolerance in tetraploid wheat.CerealResearch Communication,19(4):431~437
    Tanksley S D, Ganal M W, Martin G B.1995. Chromosome landing: A new paradigm for map-basedcloning in species with large genomes. Trends in Genetics,11:63~68
    Tashjro J, Wardlaw I F.1990. The response to high temperature shock and humidity change prior to andduring the early stage of grain development in wheat. Aust J Plant Physiol,17:651~561
    Teulat B, Borries C, This D.2001. New QTLs identified for plant water status, water-soluble carbohydrateand osmotic adjustment in a barley population grown in a growth-chamber under two water regimes.Theor. Appl. Genet,103:161~170
    Teulat B, This D, Kharirallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A.1998. Several QTLs involved osmotic adjustment trait variation in barley (Hurdeum vulgare L.).Theor Appl. Genet.,96:688~698
    Thévenot C, simond-C te E, Reyss A, Manicacci D, Trouverie J, Guilloux M L, Ginhoux V, Sidicina F,Prioul J L.2005. QTLs for enzyme activities and soluble carbohydrates involved in starchaccumulation during grain filling in maize. J Exp Bot,56:945~958
    This D, Borries C, Souyris I,Teulat B.2000. QTL study of chlorophyll content as a genetic parameter ofdrought tolerance in barley. Barley Gen. News.,30:20~23
    Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S.2002. Mapping QTLs regulatingmorpho-physiologyical traits and yield: case studies, shortcomings and perspectives indrought-stressed maize. Ann. Bot.,89:941-963
    Udall J A, Souza E, Anderson J, Sorrells M E, Zemetra R S.1999. Quantitative trait loci for flour viscosityin winter wheat. Crop Sci,39:238~242
    Ungerer M C, Halldorsdottir S S, Purugganan M D, Mackay T F C.2003. Genotype-environmentinteractions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.Genetics,165:353~365
    Van O E, Jayachandran R, Bidinger F R.1996. Diallel analysis of the stay-green trait and its components insorghum. Crop Sci,36:540~555
    Varshney R K, Prasad M, Roy J K, Kumar N, Harjit-Singh, Dhaliwal H S, Balyan H S, Gupta P K.2000.Identification of eight chromosomes and a microsatellite marker on1AS associated with QTL forgrain weight in bread wheat. Theor Appl Genet,100:1290~1294
    Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S, Snape J W.2004. Mappingquantitative trait loci for leaf senescene as a yield determinant in winter wheat under optical anddrought-stressed environments. Euphytica,135:255~263
    Vijayalakshmi K Fritz A K. Paulsen G M. Bai G Pandravada S Gill B S. Modeling and mappingQTL for senescence-related traits in winter wheat under high temperature. Mol Breeding,2010,26:163–175.
    Wahid A, Gelania S, Ashrafa M, Foolad MR.2007. Heat tolerance in plants: An overview. JEnvironmental and Experimental Botany.,61:199~223.
    Wang D L, Zhu J, Li Z K, Paterson A H.1999. Mapping QTL with epistatic effects and genotypeenvironment interactins by mixed linear model approaches. Theor Appl Genet,99:1255~1264.
    Wardlaw I F, Sofield I, Cartwright P M. factors limiting the rate of dry matter accumulation in the grain ofwheat grown at high temperature.1980. Aust J Plant Physiol,7:387~400
    Wardlaw I F, Dawson I A, Munibi P.1989. The tolerance of wheat to high temperatures duringreproductive growth:ⅠSurvey procedures and general response patterns; Ⅱ. Grain development. AustJ Agric Res.,40:15~24
    Wardlaw IF, Willenbrink J.1994. Carbohydrate storage and mobilization by the culm of wheat betweenheading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Aust. J.Plant Physiol.,21:255~271
    Wiega nd C L, Cuellar J A.198l. Duration of grain filling and kernel weight of wheat as affected bytemperature.Crop Sci,21:95~100
    Williams JGK, Kubelik AR., Livak KJ, Rafalski J A, Tingey S V.1990, DNA polymorphisms amplified byarbitrary primers are useful as genetic markers. Nucleic Acids Res.,,18:6531~6535
    Wu R L, Ma C X, Zhu J, Casella G.2002. Mapping epigenetic quantitative trait loci (QTL) altering adevelopmental trajectory. Genome,45:28~33
    Wu W R, Li W M, Tang D Z, Lu H R, Worland A J.1999. Time related mapping of quantitative trait lociunderlying tiller number in rice. Genetics,151:297~303
    Wu X S, Wang Z H, Chang X P, Jing RL.2010. Genetic dissection of the developmental behaviours ofplant height in wheat under diverse water regimes. Journal of Experimental Botany,,61:2923~2937,
    Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q.2002. Characterization of the main effects,epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice.Theor Appl Genet,105:248~257
    Xu W W, Rosenow D T, Nguyen H T.2000. Stay green trait in grainsorghum: Visual rating and objectivemeasuring. Plant Breeding,119:365~367
    Yan J Q, Zhu J, He C X, Benmoussa M, Wu P.1999. Molecular marker-assisted dissection of genotype×environment interaction for plant type traits in rice. Crop Science,39:538~544
    Yan J Q, Zhu J, He C X, Benmoussa M, Wu P.1998a. Quantitative trait loci analysis for the developmentalbehavior of tiller number in rice (Oryza sativa L.). Theoretical and Applied Genetics,97:267~274
    Yan J Q, Zhu J, He C X, Benmoussa M, Wu P.1998b. Molecular dissection of developmental behavior ofplant height in rice (Oryza sativa L.). Genetics,150:1257~1265
    Yang D L, Jing R L, Chang X P, Li W.2007a. Identification of quantitative trait loci and environmentalinteractions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticumaestivum L.) stems. Genetics176:571~584
    Yang D L, Jing R L, Chang X P, Li W.2007b. Quantitative Trait Loci Mapping for ChlorophyllFluorescence and Associated Traits in Wheat (Triticum aestivum L.). Journal of Integrative PlantBiology,49:646~654
    Yang H Y, Wang X F, Liu J B, Gao L J, Ishii M, Igarashi Y, and Cui Z J.2006. Effects of water-Solublecarbohydrate content on silage fermentation of wheat straw. Journal of Bioscience andBioengineering,101:232~237
    Yano M, Sasaki F.1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol,35:145~153
    Yemm E W, Willis A J.1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J.,57:508~514
    You L Z, Rosegrant M W, Wood S, Sun D S.2009. Impact of growing season temperature on wheatproductivity in China. Agricultural and Forest Meteorology,149(6-7):1009~1014
    Zeng Z B.1994. Precision mapping of quantitative trait loci. Genetics,136:1457~1468
    Zhou L J, Jiang L, Liu X, Chen H, Chen L M, Liu S J, Wan J M.2009. Mapping and interaction of QTLsfor thousand-Grain weight and percentage of grains with chalkiness in rice. Acta Agron Sin,35:255~261
    Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L.1997. Analysis of QTL×Environment interaction for yield components and plant height in rice. Theor Appl Genet,95:799~808
    Zhu C L, Xiao Y H, Wang C M, Jiang L, Zhai H Q, Wan J M.2005. Mapping QTL for heat-tolerance atgrain filling stage in rice. Rice Science,12(1):33~38.
    Zhu J.1995. Analysis of conditional genetic effects and variance components in developmental genetics.Genetics,141:1633~1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700