用户名: 密码: 验证码:
九个重要小麦抗条锈病品种(系)抗病基因的遗传分析与分子作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由条锈菌(Puccinia striiformis f. sp. tritici)引起的世界性小麦病害,在我国曾多次大流行,给小麦生产造成重大损失。种植抗病品种是防治小麦条锈病最有效、经济和安全的措施。小麦对条锈菌的抗病性可以分为全生育期抗病性和成株期抗病性。全生育期抗病性又称苗期抗病性,这种抗病性通常是小种专化的,容易被新的毒性小种所克服,而成株期抗病性是由成株期表达的抗病基因所控制的,这种抗病性相对持久。高温抗条锈性是由较高的环境温度所诱导表达的一种非小种专化性的持久抗病性,分为全生育期和高温成株期抗病性两种类型。将各种抗病基因聚合,培育小麦抗病品种,将会对持久控制小麦条锈病发挥更大作用。因此,寻找和发掘新的小麦条锈病抗源、改良小麦品种抗锈性和促进小麦品种抗病基因的多样化,对控制小麦条锈病的流行和保障我国粮食生产安全具有重要意义。
     本研究对普通小麦-华山新麦草易位系H9014-14-4-6-1、H9015-17-1-9-6、H9014-121-5-5-9、中梁12、中梁16、中梁21、三属麦1号和兰天1号抗条锈病基因进行了遗传分析以及分子作图,取得了以下结果:
     1.对普通小麦-华山新麦草易位系H9014-14-4-6-1与铭贤169杂交的F1、F2和F3代在苗期温室条件下进行遗传分析,结果表明H9014-14-4-6-1对Sul1-4的抗病性由一对显性基因控制,暂命名为YrH9014;对CYR33的抗病性由一对隐形基因控制。利用群体分离分析法(BSA)筛选到与抗病基因YrH9014连锁的简单重复序列(SSR)标记。用中国春缺四体进一步确定了SSR标记所在染色体的具体位置,抗锈基因YrH9014被定位在2B短臂上。对F2分离群体的142个单株进行分析,构建了与YrH9014连锁的遗传图谱。系谱分析结合分子标记结果表明,YrH9014可能是来自于华山新麦草,并与已知抗条锈病基因不同的。
     2.通过对H9015-17-1-9-6与铭贤169杂交的F1、F2和F3代进行遗传分析,表明H9015-17-1-9-6对CYR32的抗病性由一对显性基因控制,暂命名为YrH9015。利用BSA法对RGAP引物和SSR引物进行筛选,获得了与抗条锈病基因YrH9015连锁的7对RGAP标记和3对SSR标记,并将YrH9015定位于小麦5DL染色体。YrH9015可能来自于华山新麦草,并与已知抗条锈病基因不同。
     3.对H9014-121-5-5-9与铭贤169杂交的F1、F2和F3代进行遗传分析,结果表明H9014-121-5-5-9对CYR31的抗病性由一对显性基因控制,暂命名为YrHA。利用BSA法对SSR引物进行筛选,获得了与YrHA连锁的7对SSR标记,并将YrHA定位于小麦1AL染色体。系谱分析结合分子标记结果表明,YrHA可能来自于华山新麦草,并与已知抗条锈病基因不同。
     4.经典遗传学分析表明,中梁12对CYR30和CYR31抗病性分别由一对显性基因控制,分别暂命名为YrZhong12-1和YrZhong12-2。BSA法结合SSR标记分析,7AL染色体上的Xwmc695、Xcfd20、Xbarc121、Xbarc49与YrZhong12-1连锁;1AL染色体上的Xpsp3003、Xcfd2129、Xwmc673、Xwmc51与YrZhong12-2连锁。
     5.采用生理小种CYR29和CYR30对中梁16进行遗传分析,结果表明中梁16对CYR29和CYR30抗病性分别由一对显性基因控制,分别暂命名为YrZhong16-1和YrZhong16-2。利用BSA法对SSR引物进行筛选,获得了5个SSR标记,并将YrZhong16-1定位在2AS染色体上;5个SSR标记与YrZhong16-2连锁,并将YrZhong16-2定位在7BL染色体上。
     6.采用CYR30小种对中梁21进行遗传分析,并利用SSR分子标记进行遗传作图,发现中梁21对CYR30的抗性由1对显性基因控制,暂命名为Yrzhong21。该基因与位于小麦5AL染色体上的10个SSR位点连锁。与已定位于5A染色体上的抗条锈病基因的比较表明,Yrzhong21可能是一个抗条锈病的新基因。用侧翼标记(?)Ygwm186和IXbarc165检测中梁系列品种,其中仅17%扩增到与中梁21相同的位点,表明该基因在抗条锈病育种中可能有很大的应用潜力。
     7.采用生理小种CYR31和Su11-11对三属麦1号进行遗传分析,结果表明三属麦1号对CYR31的抗病性是由一对显性基因控制,暂命名为YrS1;对Su11-11的抗病性是由一对隐性基因控制,暂命名为YrS2。利用BSA法对SSR引物进行筛选,获得了与YrS1连锁的7对SSR标记,并将YrS1定位于小麦3DS染色体;4对SSR标记与YrS2连锁,并将YrS2定位于小麦4DL染色体。绘制等的YrS1和YrS2遗传连锁图,将有助于分子选择辅助育种以及将该基因与其它抗病基因结合培育持久抗病品种。
     8.通过对农家品种白大头进行遗传分析,结果表明白大头含有成株抗条锈基因。4个SSR标记和2个SRAP标记构建了与成株抗病基因YrBai连锁的遗传连锁图,该基因位于染色体6DL染色体上,这将有助于对白大头中该基因的合理和有效地利用。
     9.通过对兰天1号苗期温室高温条件下的抗病性鉴定,以及F2群体遗传分析表明兰天1号对CYR32是由1对显性基因控制的,暂命名为YrLT1。利用BSA法对SSR引物和RGAP引物进行筛选,获得了与高温抗病基因YrLT1连锁的5对SSR标记和3对RGAP标记,并将YrLT1定位于小麦2DL染色体。这些标记将有助于将YrLT1导入其他小麦品种或者与其它抗病基因聚合培育持久抗病品种。
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks, is one of the most important diseases of wheat worldwide. The best strategy of controlling stripe rust is to grow resistant cultivars. Two major types of resistance can be classified into seedling (also known as all-stage) resistance and adult plant resistance. Seedling resistance is usually race specific, but often provides complete control when it confers resistance to the prevalent races. Adult plant resistance is usually non-race specific and often requires high temperatures to function. One type of adult plant resistance is high-temperature adult-plant (HTAP) resistance. HTAP resistance, which is expressed in adult stages of plant development at higher temperatures, is non-race specific and durable Identification and excavation new stripe rust resistance genes is an important method for controlling stripe rust. Geneticists and plant breeders pay more attention to wild relatives and elite cultivars carrying durable resistance in order to search new resistant germplasms.
     In this study, the wheat-P. huashanica Keng translocation lines H9014-14-4-6-1, H9015-17-1-9-6, H9014-121-5-5-9and varieties Zhongliang12, Zhongliang16, Zhongliang21, Sanshumai1, Baidatou and Lantian1were genetic analysis of stripe rust resistance genes and molecular mapping related resistance genes. The results are as follows:
     1. The seedlings of the parents and F1plants, F2, F3and BC1generations were tested with Pst races under controlled greenhouse conditions. Two genes for resistance to stripe rust were identified, one dominant gene conferred resistance to Sull-4, temporarily designated YrH9014and the other recessive gene conferred resistance to CYR33. The bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with YrH9014. Seven polymorphic SSR markers were used to genotype the F2population inoculated with Sull-4. A linkage map was constructed according to the genotypes of seven SSR markers and resistance gene. Based on the position of SSR marker, the resistance gene YrH9014was located on chromosome arm2BS. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xbarc13indicated that YrH9014was located on chromosome2B. Based on chromosomal location, the reaction patterns and pedigree analysis, YrH9014should be a novel resistance gene to stripe rust.
     2. To identify genes for the stripe rust resistances, H9015-17-1-9-6was crossed with Mingxian169. Genetic analysis of H9015-17-1-9-6indicated that the resistance to race CYR32was controlled by a single dominant gene, temporarily designated as YrH9015. Markers combined with BSA revealed that seven RGAP markers and three SSR markers located on chromosome5DL were linked to YrH9015. Pedigree analysis of H9015-17-1-9-6combined with SSR markers indicated that the highly resistance gene YrH9015derived from P. huashanica Keng, is a novel gene for resistance to stripe rust in wheat.
     3. To determine the inheritence and map the resistance gene, segregating populations were developed from the cross between H9014-121-5-5-9and the susceptible cultivar Mingxian169. The seedlings of the F1, F2, and F2:3generations were tested with race CYR31. The results showed that the resistance in H9014-121-5-5-9was conferred by a single dominant gene. BSA and SSR markers were used to identify polymorphic markers associated with the resistance gene locus. Seven polymorphic SSR markers were linked to the resistance gene. A linkage map was constructed according to the genotypes of seven SSR markers and resistance gene. Based on the SSR marker position on wheat chromosome, the resistance gene was assigned on chromosome1AL, temporarily designated YrH9014. Based on chromosomal location, the reaction patterns and pedigree analysis, YrH9014should be a novel resistance gene to stripe rust. The molecular markers of the new resistance gene in H9014-121-5-5-9could be useful for marker-assisted selection (MAS) in breeding programs for against stripe rust.
     4. Genetic analysis of Zhongliang12showed that resistance genes conferring to races CYR30,CYR31were all controlled by a single dominant gene, temporarily designated as YrZhongl2-1and YrZhongl2-2. Four SSR markers on chromosome7AL were linked to YrZhongl2-1.The SSR markers were Xwmc695、Xcfd20、Xbarc121、Xbarc49. And four SSR markers on chromosome1AL were linked to YrZhongl2-2. The SSR markers were Xpsp3003、Xcfd2129、Xwmc673、Xwmc51.
     5. Inheritance of Zhongliang16by artificial inoculation with races CYR29and CYR30at seedlings showed that resistance genes conferring to races CYR29, CYR30were all controlled by a single dominant gene, temporarily designated as YrZhongl6-1and YrZhongl6-2. Five SSR markers on chromosome2AS were linked to YrZhongl6-1. And Four SSR markers on chromosome7BL were linked to YrZhongl6-2.
     6. Seedlings of the F1, F2, and BC1generations from the cross between Zhongliang21and Mingxian169, as well as the parents, were tested with Pst race CYR30. The results showed that the stripe rust resistance in Zhongliang21was conferred by a single dominant gene, which was designated Yrzhong21, temporarily. Ten SSR markers located on chromosome arm5AL were linked to Yrzhong21with the nearest flanking markers of Xgwml86and Xbarc165. Based on chromosomal location, reactions to various pathotypes and pedigree analysis, we deduced that Yrzhong21was a novel resistance gene to stripe rust. Eighteen cultivars (lines) of Zhongliang series were tested with the flanking markers Xgwm186and Xbarcl65, and only17%showed the same banding pattern as that in Zhongliang21. This result suggested that17%of Zhongliang cultivars (lines) might carry Yrzhong21, indicating that this resistance gene has a potential application in wheat breeding program for strip rust resistance.
     7. Genetic analysis of Sanshumai1demonstrated that resistance gene conferring to race CYR31were all controlled by a recessive gene, temporarily designated as YrS1; Resistance of Sanshumai1conferring to Sull-11was controlled by one dominant gene, temporarily designated as YrS2. Seven SSR markers on chromosome3DS were linked to YrS1. And Four SSR markers on chromosome4DL were linked to YrS2. These flanking markers got from this study should be useful for MAS in breeding programs for stripe rust.
     8. To identify genes for the stripe rust resistances, Baidatou was crossed with Mingxian169. The result of genetic analysis showed Chinese wheat cultivar Baidatou has adult plant resistant to stripe rust. Two SRAP markers and four SSR markers were constructed adult pant resistance gene YrBai linkage map, which is located on the long arm of chromosome6D. Molecular markers should be useful in marker-assisted selection to incorporate these genes into commercial cultivars and combining them with other resistance genes for durable resistance.
     9. Seedlings of the parents, and F1, F2and F2:3progeny were tested with races CYR32of Pst under controlled greenhouse conditions. Lantian1has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. A linkage group of three RGAP markers and five SSR markers was constructed for YrLT1using166F2plants. Based on the marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP marker M3confirmed that the resistance gene was located on the long arm of chromosome2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
引文
陈静,任正隆.1996.四川栽培小麦新品种(系)中的IRS/1BL染色体易位.四川大学学报(自然科学版),33:16-20
    陈佩度,周波,齐莉莉等.1995.用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系.遗传学报,22:380-386
    陈佩度,刘大钧,齐莉莉等.2001.小麦条锈菌新抗源的抗谱鉴定初析.植物病理学报,31:31-36
    傅杰,周荣华,陈漱阳等.2001.小簇麦新种质的品质、抗病性及分子细胞遗传学研究.西北农林科技大学学报(自然科学版),29:1-8
    侯冬媛,周新力,王岭岭,王文立,马东方,井金学.2010小麦成株期高温抗条锈基因Yrxy54-1的RGAP分子标记定位.植物保护学报,37:488-492
    侯璐,宋晓贺,路亚明,胡茂林,贺苗苗,井金学,王保通.2009.小簇麦易位系V9128-3抗条锈病基因的遗传分析和SSR分子标记.植物病理学报,39:67-75
    贾秋珍,金社林,曹世勤,金明安,骆惠生,2005.2002-2003年甘肃省小麦条锈菌生理小种监测结果.植物保护,31:44-47
    井金学,傅杰,袁红旭,王美南,商鸿生,李振岐.1999.三个小麦野生近缘属抗条锈传递的初步研究.植物病理学报,26:139-143
    林忠旭,张献龙,聂以春,贺道华,吴茂清.2003.棉花SRAP遗传连锁图构建.科学通报,48:1676-1679
    刘萍,杨宝军,陈佩度.2004.普通小麦-簇毛麦6VS/6AL易位系抗病性在不同小麦遗传背景中的传递.南京农业大学学报,27:1-5
    李强,贺苗苗,董海丽,姚强,井金学,王保通.2011.小麦品种贵农22抗条锈基因的遗传分析及分子标记.植物病理学报,41(5):495-501
    李振岐,曾士迈.2002.中国小麦锈病.北京:中国农业出版社
    李振岐.1980,我国小麦品种抗条锈丧失原因及其解决途径.中国农业科学,3:72-77
    吕伟东,徐鹏彬,蒲训.2007偃麦草属种质资源在普通小麦育种中的应用现状简介.草业学报,16:136-140
    马东方,王海鸽,唐明双,袁喜丽,白耀博,周新力,宋建荣,井金学.2011.小麦品种中梁21抗条锈病基因遗传分析与SSR标记定位.作物学报,37:2145-2151
    马渐新,周荣华,董玉琛,贾继增.1999.来自长穗偃麦草的抗小麦条锈病基因的定位.科学通报,44:65-69
    齐莉莉,陈佩度,刘大钧,周波,张守中,盛宝钦,向齐君,段霞渝,周益林.1995.小麦白粉病新抗源基因Pm21.作物学报,21:257-262
    秦琳,李杉,崔凯荣,王亚馥,倪建福,周文麟.1997.小麦抗锈变异体的RAPD分子验证.西北植物学报,17(6):22-26
    商鸿生.1998.小麦对条锈病的高温抗病性研究.中国农业科学,31:46-50
    商鸿生.2011.小麦条锈病及其防治.北京:金盾出版社
    宋晓贺,侯璐,杨敏娜,贺苗苗,严引娣,井金学.2008.小麦-滨麦易位系M8657-1抗条锈病基因遗传分析和分子标记.植物病理学报,38:652-655
    万安民,赵中华,吴立人.2003.2002年我国小麦条锈病发生回顾.植物保护,29:5-8
    王保通,李高宝,李强,王芳,康振生.2007,2001-2005年陕西省小麦条锈菌生理小种变化动态.西北农林科技大学学报自然科学版,35:209-216
    王凤涛,蔺瑞明,欧阳宏雨,徐世昌.2009.利用SRAP标记分析河南省小麦栽培品种的遗传多样性.10:517-521
    王利国,商鸿生,井金学.1995.高温抗条锈性小麦品种的筛选和鉴定.西北农业学报,4:35-38
    王岭岭,侯冬媛,王文立,周新力,宋建荣,井金学.2011.小麦品系中梁93444的抗条锈性遗传分析与分子作图.植物保护学报,38:109-115
    王美南,商鸿生.2000.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报,28:69-71.
    吴立人,牛永春.2000.我国小麦条锈病持续控制的簸略.中国农业科学,33:46-54
    吴立人,杨华安,袁文焕,宋位中,杨家秀,李艳芳,毕云青.1993.1985-1990年我国小麦条锈菌生理专化研究.植物病理学报,23:269-274
    文雁成,王汉中,沈金雄,刘贵华,张书芬.2006.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,39:246-256
    徐琼芳,马有志,辛志勇,陈孝,林志珊.1999.应用原位杂交和RAPD技术标记抗黄矮病小麦-中间偃麦草染色体异附加系.遗传学报,26:49-53
    徐世昌,张敬原,张书绅,赵文生,张继新.2001a.小麦条锈病重要抗源京核8811品系抗性遗传机制.植物保护学报,28:289-293
    徐世昌,张敬原,赵文生,吴立人,张继新,袁振东.2001b.小麦京核891-1抗条锈病主效、微效基因的遗传分析.中国农业科学,34:272-276
    杨悦,马东方,王文立,宋建荣,井金学.2010.中梁93447抗条锈病基因遗传分析和分子作图.植物病理学报,40:482-488
    杨敏娜,姚强,贺苗苗等.2009.小麦-柔软滨麦草易位系M853-4抗条锈病基因的遗传分析和SSR标记定位.农业生物技术学报,17:695-700
    袁虹霞,李洪连,王守正.1998.小麦近缘属种纹枯病的抗性鉴定.华北农学报,13:26-29
    曾士迈.1979.关于植物的水平抗性.植物保护,1-6
    曾士迈.王沛有,张万义.1981.相对抗病性指数-小麦抗锈性定量鉴定方法改进之一.植物病理学报,11:7-12
    曾士迈.1994.关于植物的水平抗病性.中国学术期刊电子出版社,1-6.
    张德玉,钟少斌,姚景侠.1994.小麦抗白粉病基因定位及其分子的研究进展.国外农学-麦类作物,3:44-47
    张增艳,马有志,辛志勇,陈孝,武东亮,林志珊.1998.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质.中国农业科学,31:1-4
    张庆勤,张立异,朱文华.1998.簇毛麦在小麦抗病育种中的利用.植物保护学报,25:41-45
    赵继新,陈新宏.2003王小利等普通小麦-华山新麦草异代换系和附加系的C-分带鉴定。西北农林科技大学学报(自然科学版),31:1-4
    周阳,何中虎,张改生.20041BL/1RS易位系在我国小麦育种中的应用.作物学报,30:531-535.
    Autrique J E, Nelson J C, Van Deynze A.1995. RFLP mapping of genes associated with different agronomic traits and disease resistance in wheat. Abstract of International Plant Genome Ⅲ, P8, San Diego.
    Bansal U K, Forrest K L, Hayden M, Miah H, Singh D, Bariana H S.2011. Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet,122:1461-1466
    Bariana H S, McIntosh R A.1993. Cytogenetic studies in wheat. XIV. Location of rust resistancegenes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome,36: 476-482
    Bariana H S, Parry N, Barclay I R.2006. Identification and characterization of stripe rustresistance gene Yr34 in common wheat. Theor Appl Genet,112:1143-1148
    Borner A, Roder M S, Unger O.2000. The detection and molecular mapping of a major gene for non-race-specific adult-plant disease resistance against stripe rust(Puccinia striiformis) in wheat. Theor Appl Genet,100:1095-1099
    Budak H, Shearman R C, Parmaksiz I, Dweikat I.2004.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylog enetic relationship using ISSRs, SSRs, RAPDs and SRAPs. Theor Appl Genet,109:280-288
    Cheng P, Chen X M.2010. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet,121:195-204
    Chen X M, and Line R F.1992a. Identification of stripe rust resistance genes in wheat cultivars used to differentiate North American races of Puccinia striiformis. Phytopathology,82:1428-1434
    Chen X M, and Line R F.1992b. Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology,82:633-637
    Chen X M, and Line R F.1993. Inheritance of stripe rust resistance in wheat cultivars postulated to have resistance genes at Yr3 and Yr4 loci. Phytopathology,83:382-388
    Chen X, Line RF, Jones SS.1995a. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines Ⅶ, Clement, Moro, Tyee, Tres, and Daws. Phytopathology,85: 1362-1367
    Chen X M, Line RF, and Jones S S.1995b. Chromosomal location of genes for stripe rust in spring wheat cultivars Compare, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology,85:375-381
    Chen X M, and Line RF.1995c.Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant resistance and race-specific resistance to Puccinia striiformis. Phytopathology,85:573-578
    Chen X M, Line R F, Leung H.1998a. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Gene,97:345-355
    Chen X M, Line R F, and Leung H.1998b. Resistance gene analogs associated with a barley locus for resistance to stripe rust. Abstracts of the International Conference on the Status of Plant & Animal Genome Res. Ⅵ,18-22, Jan. San Diego, CA. P.124
    Chen X M, Line R F, Shi Z X.1998c. Genetics of wheat resistance to stripe rust. In proceedings of the 9th International Wheat Genetics Symposium.2-7 August 1998, University of Saskatchewan, Saskatoon, Sask. Edited by A.E. Slinkard. University Extension Press, University of Saskatchewan, Saskatoon, Sask. Vol.3 pp.237-239
    Chen X M, Line R F, Hayes P M.1999. Mapping barley genes for resistance to stripe rust, leaf rust and scab, using resistance gene analog polymorphism and restriction fragment length polymorphism. Phytopathology,89:S15
    Chen X M, Moore M K, Milus E A.2002. Wheat stripe rust epidemics and races of Puccina striiformis f. sp. tritici in the United States in 2000. Plant Dis,86:39-46
    Chen X M.2005. Epidemiology and control of stripe rust on wheat. Can JPlant Pathol,27:314-337
    Eriksen L, Afshari F, Christiansen M J.2004. Yr32 for resistance to stripe(yellow) rust present in the wheat cultivar Carstens V. Theor Appl Gene,108:567-575
    Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B.2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat(Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the USA,200:15253-15258
    Flor H H.1956.The complementary genic systems in flax and flax rust. Advances in Genetics 8:29-54. Academic Press, New York
    Friedman A R, Baker B J.2007. The evolution of resistance genes in multi-protein plant resistance systems. Current Opinion in Genetics and Development,17:493-499
    Fu D L, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela H, Fahina T, Dubcovsky J.2009. A kinase-start gene confers temperature dependent resistance to wheat stripe rust. Science,323: 1357-1360
    Gerechter-Amitai Z K, van Silfhout CH, Grama A & Kleitman F.1989. Yrl5-a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica,43:187-190
    Hammond-Kosack K E, Jones J D G.1997. Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology,48:575-607
    Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh D, Singh R P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet,2011,122:239-249
    Jackie Campbell, Hongtao Zhang, Michael J. Giroux, Leila Feiz, Yue Jin, Meinan Wang, Xianming Chen,Li Huang.2012. A mutagenesis-derived broad-spectrum disease resistance locus in wheat. Theor Appl Genet,125:391-404
    Johnson R, Taylor AJ.1972. Isolates of Puccinia striiformis collected in England from wheat varieties 'Maris Beacon' and 'Joss Cambier'. Johnson R & Taylor AJ,238:105-106
    Kang Houyang, Wang Yi, Fedak George, Cao Wenguang, Zhang Haiqin, Fan Xing, Sha Lina, Xu Lili, Zheng Youliang, Zhou Yonghong.2011. Introgression of Chromosome 3Ns from Psathyrostachys Huashania into Wheat Specifying Resistance to Stripe Rust. Plos one.6:Doi:10.1371/journal.pone. 0021802
    Koebner R M D, Summers R W.2002. The impact of molecular markers on the wheat breeding paradigm. Cell Mol Biol Lett 7:695-702
    Kosambi D D.1944. The estimation of map distances from recombination values. Ann Eugen 12:172-175
    Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B.2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science,323:1360-1363
    Kuraparthy V, Chhuneja P, Dhaliwal, H S.2007. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet,114:1379-1389
    Lagudah E S, McFadden H, Singh R P.2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet,114:21-30
    Li H, Brooks S A, Li W L, Fellers J P, Trick H N,Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,164:655-664
    Li Q, Hu M L, Chen J, Jing J X, Wang B T, Zhou X C.2010. Inheritance and molecular mapping of genes for all-stage resistance to stripe rust in wheat cultivar N. Strampelli. Canadian Journal of Plant Science,90:529-536
    Li Q, Chen X M, Wang M N, Jing J X.2011. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor Appl Genet,122:189-197
    Li G, Gao M, Yang, Quiros C F.2003. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet,107:168-180
    Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C.2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet,112:1434-1440
    Li G, Quiros C F.2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassiea. Theor Appl Genet, 103:455-61
    Lincoln S, Daly M, Lander E.1992. Constructing genetic maps with Mapmarker/EXP3.0. Whitehead Institute Techn Rep,3rd edn. Whitehead Institute, Cambrige
    Line R F, Qayoum A.1992. Virulence, aggressiveness, evolution, and distribution of races (of the causes of stripe rust of wheat) in North America,1968-1987. Tech Bull US Dept Agric No.1788
    Line R F, Chen X M.1996. Wheat and barley stripe rust in North America. In:Proc 9th European and Mediterranean Cereal Rusts and Powdery Mildews Conf,2-6 September 1996, Lunteren, the Netherlands, pp 101-104
    Lin F, Chen X M.2007. Genetic and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet,114:1277-1287
    Line R F.2002. Stripe rust of wheat and barley in North America:Aretrospective historical review. Annu. Rev. Phtopathol,40:75-118
    Liu J, Chang Z J, Zhang X J, Yang Z J, Li X, Jia J Q, Zhan H X, Guo H J, Wang J M.2013. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet,126:265-274
    Li Z F, Zheng T C, He Z H.2006. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet,112:1098-1103
    LoweL,Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet,2011,123:143-157
    Luo PG, Ren ZL, Zhang HQ, Zhang HY.2005. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology,95:1266-1270
    Lupton F G H, and Macer R C F.1962. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss., and Henn.) in seven varieties of wheat. Trans Br Myco Soc,45:21-45
    Macer R C F.1966. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In Proceediings of the 2nd International Wheat Genetics Symposium.19-24 August 1963, Lund, Sweden. Edited by MacKey, J., Hereditas 2 (Suppl.):127-142
    Macer RCF.1975. Plant pathology in a changing world. Transactions of the British Mycological Society.65: 351-374
    Ma J, Zhou R, Dong Y, et al.2001. Molecualr mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using micorsatellite markers. Euphytica, 120:219-226
    Marais GF, Pretorius ZA, Wellings CR, McCallum B & Marais AS.2005. Leaf and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica,143:115-123
    Marais GF, McCallum B & Marais AS.2006. Leaf rust and stripe rust resistance genes derived from Triticum sharonense. Euphytica,149:373-380
    McDonald DB, McIntosh RA, Wellings C R.2004. Cytogenetical studies in wheat. XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica,136:239-248
    McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C.2009. Catalogue of gene Symbols for wheat:2009 supplement. Online:http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/ supplement 2009.pdf
    Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. In:Proceedings of the National Academy of Sciences of the United States of America,1991, Vol.88. pp 9828-9832
    Pahalawatta V, Chen X M.2005a. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogen. Phytopathology,95:427-432
    Pahalawatta V, Chen X M.2005b. Inheritance and molecular mapping of barley genes conferring resistance to wheat stripe rust. Phytopathology,95:884-889
    Priestley RH.1978. Detection of increased virulence in populations of wheat yellow rust. Plant Disease Epidemiology. Blackwell Scientific Publishers, Oxford. (Scott PR & Bainbridge A eds.):63-70
    Qayoum A, and Line R F.1985. High-temperature, adult-plant resistance to stripe rust of wheat.Phytopathology,75:1121-1125
    Ren R S, Wang M N, Chen X M. Zhang Z J. Characterization and molecular mapping of Yr52 for high temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet. DOI 10.1007/s00122-012-1877-8
    Riley R, Chapman V, and Johnson R.1968a. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsisi. Genet Res,12:713-715
    Riley R, Chapman V, Johnson R.1968b.Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature,217:383-384
    Roder M S, Korzun V, Wendehake K.1998. A microsatellite map of wheat. Genetics,149:2007-2023
    Rogers S O, Bendich A J.1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol,5:69-76
    Sears E R.1954. The aneuploids of common wheat. Mo Agric Exp Sta Res Bull,572:1-58
    Singh R P.1992a. Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat. Phytopathology,82:835-838
    Singh R P, Nelson J C, and Sorrells M E.2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci,40:1148-1155
    Singh RP, William HM, Huerta-Espino J & Crosby M. Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor. Proceedings 10th International Wheat Genetics Symposium, Instituto Sperimentale per la Cerealcoltura, Roma, Italy (Pogna NE, Romano N, Pogna EA & Galterio G eds.) 1:411-413
    Smith P H, Hadfield J, Hart N J.2007. STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome,50:259-265
    Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theor Appl Genet,2004,109:1105-1114
    Suenaga K, Singh R P, Huerta-Espino J, et al.2003. Microsatellite markers for genes Lr34/Yrl8 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology,6093: 881-890
    Sui X X, Wang M N, Chen X M.2009. Molecular mapping of a stripe rust resistance gene in spring wheat genotype'Zak'. Phytopathlogy,99:1209-1215
    Toojinda T, Broers L H, Chen X M.2000. Mapping quantitative and qualitative disease genes in a double haploid population of barley (Hordeum vulgare). Theor Appl Genet,101:580-589.
    Uauy C, Brevis J C, Chen X M.2005. High-temperature adult-plant(HTAP)stripe rust resistance gene Yr36 from triticium turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B 1. Theor Appl Genet,112:97-105.
    Wan A M, Zhao Z H, Chen X M. Wheat stripe rust epidemic and virulence of Puccinia striiformis f.sp.tritici in China in 2002. Plant Disease,2004,88:896-904
    Wellings C R, Mclntosh R A.1990. Puccinia striiformis f.sp. tritici in Australasia:pathogenic changes during the first 10 years. Plant Pathol,39:316-325
    William M, Singh R P, Huerta-Espino J.2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology,93:153-159
    William H M, Trethowan R, Crosby-Galvan E M.2007. Wheat breeding assisted by markers:CIMMYT's experience. Euphytica,157:307-319
    Worland A J & Law C N.1986. Genetic analysis of chromosome 2D of wheat I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Zeitschrift fur Pflanzenzuchtung,96:331-345
    Xu L S, Wang M N, Cheng P, Kang Z S, Hulbert S H, Chen X M. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet, DOI 10.1007/s00122-012-1998-0
    Yahiaoui N, Srichumpa P, Dudler R, Keller B.2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant Journal,37: 528-538
    Zahravi M, Bariana HS, Shariflou MR, Balakrishna PV, Banks PM & Ghannadha MR.2003. Bulk segregant analysis of stripe rust resitance in wheat (Triticum aestivum) using microsatellite markers. Proceedings 10th International Wheat Genetics Symposium, Instituto Sperimentale per Cerealcoltura, Rome (Pogna NE, Romano M, Pogna EA & Galterio, eds):861-863

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700