用户名: 密码: 验证码:
玉米对大斑病和南方锈病抗病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病(Northern Corn Leaf Blight,NCLB)是由大斑突脐蠕孢(Exserohlium turcicum)引起的叶部病害。本研究进行了玉米抗大斑病种质资源筛选、玉米抗大斑病Ht2基因应用性检测和大斑病菌侵染后玉米的差异蛋白质组学的研究,旨在筛选优良的抗性资源,为玉米抗大斑病机制提供线索。玉米南方锈病(Southern Corn Rust)病原是多堆柄锈菌(Puccinia polysora Underw.),该病害主要流行于热带和亚热带地区。本研究分析了4个玉米抗南方锈病自交系的抗性遗传特征,并定位了自交系冀库12携带的抗南方锈病基因,为更好的利用这些抗病资源提供了理论依据。主要研究内容及结果如下:
     1.鉴定了499份玉米种质对玉米大斑病菌0、1和N号生理小种的抗性,其中96份对0、1和N号生理小种表现抗(R)以上水平,占到总材料的19.24%;评价了150份种质对玉米大斑病菌0、1、N和123N共4个生理小种的抗性,8份材料对4个生理小种共同表现抗(R)以上水平的,占到总材料的5.33%。
     2.检测了新报道的5对与玉米抗大斑病Ht2基因连锁的分子标记在11份自交系材料中的扩增情况,包括3对SSR标记,1对SNP标记和1对CAPS标记。结果表明这5对标记在11份材料中都能扩增出条带,但是这些标记缺乏对不同遗传背景下Ht2基因的特异性扩增,即这些标记与Ht2基因不是共分离,标记缺乏普适性,不能用于检测玉米品系中是否携带Ht2基因。
     3.鉴定了玉米自交系A619Ht2感染大斑病菌13生理小种72h后叶片的差异表达蛋白质。接种叶片与对照比较,137个蛋白质点的表达变化达2倍以上,其中50个蛋白点上调表达,87个下调表达。质谱(MALDI-TOF MS)鉴定了48个蛋白质点,包括6个上调表达蛋白点、10个特异诱导表达蛋白点、20个下调表达点和12个不表达点。这些差异表达蛋白涉及了多种代谢活动,按功能分为9类,其中基础能量代谢类、抗病防御反应类和蛋白质加工存储类分别占到46%、18%和12%。一些重要的抗逆防御相关蛋白上调表达,例如β-葡聚糖酶、SOD、热激蛋白、多胺氧化酶和肽酰脯氨酰顺反式异构酶;而一些参与光合作用和碳水化合物代谢的蛋白质下调表达。
     4.4个抗玉米南方锈病自交系(冀库6、冀库12、5362和辽2204)分别与感病自交系黄早四杂交,构建了4个F2:3家系。通过田间抗玉米南方锈病的接种鉴定,4个抗病亲本和杂交F1代都表现抗病,F2:3家系出现明显的抗感分离,经鉴定只有冀库12与黄早四杂交的F2:3群体中,抗病家系、分离家系和感病家系分别为27、51和21,符合1:2:1的理论分离比(χ2=1.1633,P=0.5590),初步确定冀库12对玉米南方锈病的抗性是由一对显性基因控制。
     5.构建了冀库12/黄早四的F2:3家系共328个用于定位冀库12中的抗南方锈病基因,田间抗性鉴定表明冀库12、杂交F1代的抗性为抗或中抗,黄早四表现为高感, F2:3家系抗病家系、分离家系和感病家系分别为77、165和86,符合1:2:1的理论分离比(χ2=0.5061,P=0.7764),再次验证冀库12对玉米南方锈病的抗性是由一对显性基因控制。利用SSR标记和BSA法将抗病基因定位在10号染色体bin10.02,筛选到5对连锁标记,最近的标记phi063与抗病基因的遗传距离是4.2cM。抗病自交系冀库12和齐319的正反交F2代出现了感病株,表明他们所携带的抗病基因不是同一个基因,将冀库12中的抗病基因暂时命名为Rpp12。
Northern corn leaf blight (NCLB), caused by the fungus Exserohlium turcicum (Pass.) Leonard etSuggs, is a destructive foliar disease of maize. Identifying and screening the maize resistant germplasmresources to NCLB were conducted to find ideal resistant source. The practicabilities of5molecularmarkers linked to Ht2gene were detected. A comparative proteomic study was conducted to explore themolecular mechanisms underlying the defense responses of the maize resistant line A619Ht2to S.turcica race13. Southern corn rust induced by Puccinia polysora Underw., mainly occurres in tropicaland subtropical area. Four F2:3populations from crossing four resistant inbred lines and susceptible lineHuangzaosi were identified their resistance to southern corn rust and the resistant inheritancecharacteristics were explored. The resistant gene of Jiku12was mapped. Main results of our study weresummarized as follows:
     1.499maize germplasms inoculated with0,1and N races of S. turcica respectively to identifytheir resistance to NCLB. Among the499germplasms,96germplasms displayed resistant to all thethree tested races and accounted for19.24%of499germplasms.150maize germplasms inoculated with0,1, N and123N races of S. turcica respectively and only8germplasms were resistant to all fore raceswhich accounted for5.33%of499germplasms.
     2.11maize inbred lines with/without Ht2gene were used by detecting the practicability of5molecular markers linked to Ht2gene, including3SSR markers,1SNP marker and1CAPS marker.The resultes indicated that there was almost none amplified band or sequence which was specific to Ht2gene. Those5markers can not be used for identifying the present of Ht2gene in various maize lines.
     3. Leaf proteins were extracted from mock and S. turcica race13infected maize resistant lineA619Ht2after inoculated for72h and analyzed for differential protein expression usingtwo-dimensional electrophoresis and mass spectrometry identification. One hundred and thirty-sevenproteins showed reproducible differences in abundance by more than2-fold at least, including50up-regulated proteins and87down-regulated proteins. Forty-eight protein spots were successfullyidentified by MS analysis, which included10unique,6up-regulated,20down-regulated and12disappeared protein spots. These identified proteins were classified into9functional groups andinvolved in multiple functions, particularly in energy metabolism (46%), protein destination and storage(12%), and disease defense (18%). Some defense-related proteins were upregulated such asβ-glucosidase, SOD, polyamines oxidase, HSC70and PPIases; while the expressions ofphotosynthesis-and metabolism-related proteins were downregulated by inoculation with S. turcica.
     4. Four F2:3segragated populations were constructed by using four inbred lines resistant tosouthern corn rust which were Jiku6, Jiku12,5362and Liao2204as resistance-donor crossed tosusceptible line Huangzaosi. Four inbred lines and all the members of F1population were resistant tosouthern corn rust, while the inbred line Huangzaosi was susceptible. The resistant inheritance analysisindicated that only the segregation ratio of resistance and susceptibility of F2:3populations from Jilu12/Huangzaosi fited a ratio of1:2:1, as indicated by the χ2=1.1633and P=0.5590. The resistanceconditioned by Jiku12was controlled by one dominant gene.
     5. A328F2:3populations were constructed from Jilu12/Huangzaosi to conduct the gene mappingexperiment. Results of resistance identification furthern showed that the resistance gene of Jiku12wasone dominat gene, since77resistant lines,165segragating lines and86susceptible lines were obserbedand fited the segregation ratio of1:2:1.5SSR markers located on the chromosome bin10.02wereidentified to be linked to resistance gene of Jiku12and the distance of this gene from the nearest markerphi063was4.2cM. According to an allelism test between Jiku12and Qi319, the resistance gene ofJiku12was non-allelic to the RppQ of Qi319. We suggested designating the resistant gene conferred byJiku12as Rpp12temporarily.
引文
1.陈翠霞,邢全华,梁春阳,于元杰,梁凤山,王洪刚,王振林,王斌.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报.2003,30(4):341-344.
    2.陈翠霞,杨典洱,王振林,金德敏,王洪刚,王斌.齐319携带的南方玉米锈病抗性基因的遗传初析.遗传学报.2002,29(10):903-906.
    3.陈翠霞,赵延兵,刘保申,叶金才,王斌,王振林.不同玉米自交系南方锈病的抗性评价.作物学报.2004,30(10):1053-1055.
    4.程品冰,王晓鸣,高卫东.玉米抗大斑病基因Ht2, Ht3分子标记的应用检测.植物遗传资源学报.2007,8(3):285-288.
    5.段定仁,何宏珍.海南岛玉米上的多堆柄锈菌.真菌学报.1984,3(2):125-126.
    6.鄂洋,林凤,张春宇,崔娜,许玉凤.玉米大斑病抗性基因Ht1定位区域内候选序列的生物信息学分析.遗传.2009,6:638-644.
    7.范怀忠,王焕如,植物病理学.1980,北京:农业出版社.
    8.高金欣,吕淑霞,高增贵,庄敬华,张小飞,张硕.东北地区2009年玉米大斑病菌生理小种鉴定与动态分析.玉米科学.2011,19(3):138-140.
    9.谷守芹,范永山,韩建民,董金皋.利用DDRT-PCR技术分离和克隆玉米抗大斑病相关基因片段.河北师范大学学报:自然科学版.2005,29(5):503-507.
    10.郝敏,谷守芹,张莹,董金皋,韩建民.玉米抗大斑病相关基因片段的表达研究.华北农学报.2008,23(4):85-88.
    11.何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报(自然科学版).2002,38(4):558-562.
    12.黄锦文,李忠,陈军,张志兴,李奇松,郑家团,林文雄.不同杂交水稻籽粒灌浆期叶片蛋白的差异表达分析.中国生态农业学报.2011,19(1):75-81.
    13.李少博,宋伟,王凤格,赵久然,余晖,蔚荣海.分子标记辅助玉米自交系京24抗南方锈病的改良.分子植物育种.2012,10(4):440-445.
    14.李振岐,商鸿生.中国农作物抗病性及其利用.中国农业出版社,2005.
    15.梁克恭,武小菲.我国玉米锈病的发生与为害情况.植物保护.1993,19(5):34.
    16.刘章雄,王守才.玉米锈病研究进展.玉米科学.2003,11(4):76-79.
    17.刘章雄,王守才,戴景瑞,黄烈健,曹海河.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报.2003,30(8):706-710.
    18.王会伟,李洪杰,朱振东,武小菲,王晓鸣.玉米中QM同源基因的克隆及其差异表达分析.作物学报.2009,35(8):1439-1444.
    19.王晓鸣.玉米病虫害田间手册:病虫害鉴别与抗性鉴定.中国农业科技出版社,2010.
    20.武冰冰,林凤,张春雨,崔娜,许玉凤,李楠,孙权.玉米大斑病抗性基因Ht2定位区域内候选序列的生物信息学分析.玉米科学.2009,17(4):11-16.
    21.肖清铁,戎红,周丽英,刘杰,林文雄,林瑞余.水稻叶片对镉胁迫响应的蛋白质差异表达.应用生态学报.2011,22(4):1013-1019.
    22.叶金才.育成我国首例对玉米南方锈病免疫系齐319.中国农业科学.2000,33(4):110-110.
    23.叶忠川.玉米锈病之研究.中华农业研究.1986,35(1):81-93.
    24.于舒怡,傅俊范,周如军,严雪瑞,康晓军.辽宁玉米大斑病流行监测及原因分析.湖北农业科学.2011,50(7):1375-1377.
    25.尹小燕,王庆华,杨继良,金德敏,王飞,王斌,张举仁.玉米大斑病抗性基因Ht2的精细定位.科学通报.2002,47(23):1811-1814.
    26.张小飞,李晓,崔丽娜,邹成佳,杨晓蓉,钟尧,黄芸.西南地区玉米大斑病菌生理小种鉴定.玉米科学.2012,20(004):143-148.
    27.张彩霞,李壮,陈莹,田义,张利益,丛佩华.植物与病原菌互作的蛋白质组学研究进展.西北植物学报.2010,(003):626-632.
    28.张秀霞,高增贵,周晓锟,张硕,周艳波.东北地区玉米大斑病菌生理分化研究.华北农学报.2012,27(3):227-230.
    29.朱友林,刘纪麟.3个单基因对玉米大斑病抗性的比较研究.华中农业大学学报.1995,14(2):111-114.
    30. Acharya K., Pal A.K., Gulati A., Kumar S., Singh A.K., Ahuja P.S. Overexpression of Camelliasinensis Thaumatin-Like Protein, CsTLP in Potato Confers Enhanced Resistance toMacrophomina phaseolina and Phytophthora infestans Infection. Molecular Biotechnology2012:1-14.
    31. Adam A., Jourdan E., Ongena M., Duby F., Dommes J., Thonart P. Resistance induced incucumber and tomato by a non-pathogenic Pseudomonas putida strain. Parasitica2005,61:13-22.
    32. Adamiec M., Drath M., Jackowski G. Redox state of plastoquionone pool regulates expression ofArabidopsis thaliana genes in response to elevated irradiance. Acta Biochimica Polonica2008,55(1):161.
    33. Ahn I.P., Kim S., Lee Y.H. Vitamin B1functions as an activator of plant disease resistance. PlantPhysiology2005,138(3):1505-1515.
    34. Alvarado V.Y., Odokonyero D., Duncan O., Mirkov T.E., Scholthof H.B. Molecular andPhysiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relationwith Candidatus Liberibacter Contents in Psyllid Vectors. PloS One2012,7(5): e37345.
    35. Angelova S., Buchheim M., Frowitter D., Schierhorn A., Roos W. Overproduction of alkaloidphytoalexins in california poppy cells is associated with the co-expression of biosynthetic andstress-protective enzymes. Molecular Plant2010,3(5):927-939.
    36. Apweiler R., Bairoch A., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H.,Lopez R., Magrane M. UniProt: the universal protein knowledgebase. Nucleic Acids Research2004,32(suppl1): D115-D119.
    37. Asano T., Kimura M., Nishiuchi T. The defense response in Arabidopsis thaliana againstFusarium sporotrichioides. Proteome Science2012,10(1):61.
    38. Assefa T., Mengestu H., Welz H.G. Assessment of damage and grain yield loss in maize caused bynorthern leaf blight in western Ethiopia. Journal of Plant Diseases and Protection1996,103:353-363.
    39. Badu-Apraku B., Gracen V., Bergstrom G. A major gene for resistance to anthracnose stalk rot inmaize. Phytopathology1987,77(6):957-959.
    40. Batchvarova R., Reddy V., Bennett J. Cellular resistance in rice to cercosporin, a toxin ofCercospora. Phytopathology1992,82(6):642-646.
    41. Bentolila S., Guitton C., Bouvet N., Sailland A., Nykaza S., Freyssinet G. Identification of anRFLP marker tightly linked to the Ht1gene in maize. Theoretical and Applied Genetics1991,82(4):393-398.
    42. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., VanStaveren M., Stiekema W. Analysis of1.9Mb of contiguous sequence from chromosome4ofArabidopsis thaliana. Nature1998,391(6666):485-488.
    43. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry1976,72:248-254.
    44. Carson M. Inheritance of latent period length in maize infected with Exserohilum turcicum. PlantDisease1995a,79(6):581-585.
    45. Carson M. A new gene in maize conferring the "chlorotic halo" reaction to infection byExserohilum turcicum. Plant Disease1995b,79(7):717-720.
    46. Carson M., Van Dyke C. Effect of light and temperature on expression of partial resistance ofmaize to Exserohilum turcicum. Plant Disease1994,78(5):519-522.
    47. Chen Z.Y., Brown R., Damann K., Cleveland T. Identification of maize kernel endosperm proteinsassociated with resistance to aflatoxin contamination by Aspergillus flavus. Phytopathology2007,97(9):1094-1103.
    48. Chisholm S.T., Coaker G., Day B., Staskawicz B.J. Host-microbe interactions: shaping theevolution of the plant immune response. Cell2006,124(4):803-814.
    49. Chivasa S., Simon W.J., Yu X.L., Yalpani N., Slabas A.R. Pathogen elicitor-induced changes inthe maize extracellular matrix proteome. Proteomics2005,5(18):4894-4904.
    50. Chivasa S., Tomé D.F.A., Hamilton J.M., Slabas A.R. Proteomic analysis of extracellularATP-regulated proteins identifies ATP synthase β-subunit as a novel plant cell death regulator.Molecular&Cellular Proteomics2011,10(3):1-13.
    51. Chung C.-L., Poland J., Kump K., Benson J., Longfellow J., Walsh E., Balint-Kurti P., Nelson R.Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseasesof maize. Theoretical and Applied Genetics2011,123(2):307-326.
    52. Chung C.L., Jamann T., Longfellow J., Nelson R. Characterization and fine-mapping of aresistance locus for northern leaf blight in maize bin8.06. Theoretical and Applied Genetics2010,121(2):205-227.
    53. Cona A., Rea G., Botta M., Corelli F., Federico R., Angelini R. Flavin-containing polyamineoxidase is a hydrogen peroxide source in the oxidative response to the protein phosphataseinhibitor cantharidin in Zea mays L. Journal of Experimental Botany.2006,57(10):2277-2289.
    54. Cooper B., Campbell K.B., Feng J., Garrett W.M., Frederick R. Nuclear proteomic changes linkedto soybean rust resistance. Molecular BioSystems2011,7(3):773-783.
    55. County B. Quantitative comparison and evaluation of two commercially available,two-dimensional electrophoresis image analysis software packages, Z3and Melanie.Electrophoresis2002,23:2194-2202.
    56. Dahal D., Pich A., Braun H.P., Wydra K. Analysis of cell wall proteins regulated in stem ofsusceptible and resistant tomato species after inoculation with Ralstonia solanacearum: aproteomic approach. Plant Molecular Biology2010,73(6):643-658.
    57. Day B., Henty J.L., Porter K.J., Staiger C.J. The pathogen-actin connection: a platform fordefense signaling in plants. Annual Review of Phytopathology2011,49:483-506.
    58. Dick R., Rattei T., Haslbeck M., Schwab W., Gierl A., Frey M. Comparative analysis ofbenzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization andactivation functions. Plant Cell2012,24(3):915-928.
    59. Dolezal W., Tiwari K., Kemerait R., Kichler J., Sapp P., Pataky J. An unusual occurrence ofsouthern rust, caused by Rpp9-virulent Puccinia polysora, on corn in southwestern Georgia. PlantDisease2009,93(6):676-676.
    60. Du H., Liang Y., Pei K., Ma K. UV radiation-responsive proteins in rice leaves: a proteomicanalysis. Plant and Cell Physiology2011,52(2):306-316.
    61. Duressa D., Soliman K., Taylor R., Senwo Z. Proteomic analysis of soybean roots underaluminum stress. International Journal of Plant Genomics2011,2011:1-12.
    62. Edwards G.E., Franceschi V.R., Voznesenskaya E.V. Single-cell C4photosynthesis versus thedual-cell (Kranz) paradigm. Annual Review of Plant Biology2004,55,173-196.
    63. Freymark P., Lee M., Woodman W., Martinson C. Quantitative and qualitative trait loci affectinghost-plant response to Exserohilum turcicum in maize (Zea mays L.). Theoretical and AppliedGenetics1993,87(5):537-544.
    64. Futrell M., Hooker A., Gene S.E. Resistance in maize to corn rust, controlled by a single dominantgene. Crop Science1975,15(4):597-599.
    65. Gao X., Brodhagen M., Isakeit T., Brown S.H., G bel C., Betran J., Feussner I., Keller N.P.,Kolomiets M.V. Inactivation of the lipoxygenase ZmLOX3increases susceptibility of maize toAspergillus spp. Molecular Plant-Microbe Interactions2009,22(2):222-231.
    66. Gevers H.O. A new major gene for resistance to Helminthosporium turcicum leaf blight in maize.Plant Disease Reporter1975,59:296-299.
    67. Heath M.C. Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology2000,3(4):315-319.
    68. Holland J., Uhr D., Jeffers D., Goodman M. Inheritance of resistance to southern corn rust intropical-by-corn-belt maize populations. Theoretical and Applied Genetics1998,96(2):232-241.
    69. Hooker A. A second major gene locus in corn for chlorotic-lesion resistance to Helminthosporiumturicum. Crop Science1977,17(1):132-135.
    70. Hooker A.L. Inheritance of chlorotic-lesion resistance to Helminthosporium turcicum in seedlingcorn. Phytopathology1963:660-662.
    71. Hooker A.L. Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporatedinto corn. Maize Genetics Cooperation1981,55:87-88.
    72. Huang X., Liu L., Chen J., Zhai Y. Comparative proteomic analysis of the response in resistantand susceptible maize inbred lines to infection by Curvularia lunata. Progress in Natural Science2009,19(7):845-850.
    73. Ishikawa T., Yoshimura K., Tamoi M., Takeda T., Shigeoka S. Alternative mRNA splicing of3'-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea)chloroplasts. Biochemical Journal1997,328:795-800.
    74. Jiang Y., Yang B., Harris N.S., Deyholos M.K. Comparative proteomic analysis of NaClstress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany2007,58(13):3591-3607.
    75. Jines M., Balint-Kurti P., Robertson-Hoyt L., Molnar T., Holland J., Goodman M. Mappingresistance to Southern rust in a tropical by temperate maize recombinant inbred topcrosspopulation. Theoretical and Applied Genetics2007,114(4):659-667.
    76. Jung M., Weldekidan T., Schaff D., Paterson A., Tingey S., Hawk J. Generation-means analysisand quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theoretical andApplied Genetics1994,89(4):413-418.
    77. Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R.Cytosolic HSP90and HSP70are essential components of INF1-mediated hypersensitive responseand non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Molecular PlantPathology2003,4(5):383-391.
    78. Kim S.K., You Y.N., Park J.C., Joung Y., Kim B.G., Ahn J.C., Cho H.S. The rice thylakoidlumenal cyclophilin OsCYP20-2confers enhanced environmental stress tolerance in tobacco andArabidopsis. Plant Cell Reports2012,31:417-426.
    79. Kirsch R., Vogel H., Muck A., Reichwald K., Pasteels J.M., Boland W. Host plant shifts affect amajor defense enzyme in Chrysomela lapponica. Proceedings of the National Academy ofSciences2011,108(12):4897-4901.
    80. Kobayashi S.D., Voyich J.M., Burlak C., DeLeo F.R. Neutrophils in the innate immune response.Archivum Immunologiae et Therapiae Experimentalis2005,53(6):505-517.
    81. Kregel K.C. Invited review: heat shock proteins: modifying factors in physiological stressresponses and acquired thermotolerance. Journal of Applied Physiology2002,92(5):2177-2186.
    82. Lavy M., Prigge M.J., Tigyi K., Estelle M. The cyclophilin DIAGEOTROPICA has a conservedrole in auxin signaling. Development2012,139(6):1115-1124.
    83. Li J., Zhao P.J., Ma C.L., Zeng Y. A chitosan induced9-lipoxygenase in Adelostemma gracillimumseedlings. International Journal of Molecular Sciences2012,13(1):540-551.
    84. Li K., Xu C., Zhang J. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stageafter long-term adjustment to rice black-streaked dwarf virus infection. Gene2011,485(2):106-113.
    85. Lin Y.H., Huang H.E., Chen Y.R., Liao P.L., Chen C.L., Feng T.Y. C-terminal region of plantferredoxin-like protein is required to enhance resistance to bacterial disease in Arabidopsisthaliana. Phytopathology2011,101(6):741-749.
    86. Liu Y., Du H., He X., Huang B., Wang Z. Identification of differentially expressed salt-responsiveproteins in roots of two perennial grass species contrasting in salinity tolerance. Journal of PlantPhysiology2011,169:117-126.
    87. Lopez M.F., Kristal B.S., Chernokalskaya E., Lazarev A., Shestopalov A.I., Bogdanova A.,Robinson M. High-throughput profiling of the mitochondrial proteome using affinity fractionationand automation. Electrophoresis2000,21(16):3427-3440.
    88. Lowe I., Cantu D., Dubcovsky J. Durable resistance to the wheat rusts: integrating systemsbiology and traditional phenotype-based research methods to guide the deployment of resistancegenes. Euphytica2011,179(1):69-79.
    89. Méchin V., Balliau T., Chateau-Joubert S., Davanture M., Langella O., Négroni L., Prioul J.-L.,Thévenot C., Zivy M., Damerval C. A two-dimensional proteome map of maize endosperm.Phytochemistry2004,65(11):1609-1618.
    90. Méchin V., Thévenot C., Le Guilloux M., Prioul J.-L., Damerval C. Developmental analysis ofmaize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. PlantPhysiology2007,143(3):1203-1219.
    91. Mahmood T., Jan A., Kakishima M., Komatsu S. Proteomic analysis of bacterial-blightdefense-responsive proteins in rice leaf blades. Proteomics2006,6(22):6053-6065.
    92. Majeran W., Cai Y., Sun Q., Van Wijk K.J. Functional differentiation of bundle sheath andmesophyll maize chloroplasts determined by comparative proteomics. The Plant Cell Online2005,17(11):3111-3140.
    93. Marra R., Ambrosino P., Carbone V., Vinale F., Woo S.L., Ruocco M., Ciliento R., Lanzuise S.,Ferraioli S., Soriente I. Study of the three-way interaction between Trichoderma atroviride, plantand fungal pathogens by using a proteomic approach. Current Genetics2006,50(5):307-321.
    94. Martin T., Biruma M., Fridborg I., Okori P., Dixelius C. A highly conserved NB-LRR encodinggene cluster effective against Setosphaeria turcica in sorghum. BMC Plant Biology2011,11(1):
    151.
    95. Michelmore R.W., Meyers B.C. Clusters of resistance genes in plants evolve by divergentselection and a birth-and-death process. Genome Research1998,8(11):1113-1130.
    96. Mohammadi M., Anoop V., Gleddie S., Harris L.J. Proteomic profiling of two maize inbredsduring early gibberella ear rot infection. Proteomics2011,11(18):3675-3684.
    97. Molloy M.P. Two-dimensional electrophoresis of membrane proteins using immobilized pHgradients. Analytical Biochemistry2000,280(1):1-10.
    98. Moschou P.N., Sarris P.F., Skandalis N., Andriopoulou A.H., Paschalidis K.A., Panopoulos N.J.,Roubelakis-Angelakis K.A. Engineered polyamine catabolism preinduces tolerance of tobacco tobacteria and oomycetes. Plant Physiology2009,149(4):1970-1981.
    99. Mullineaux P.M., Rausch T. Glutathione, photosynthesis and the redox regulation ofstress-responsive gene expression. Photosynthesis Research2005,86(3):459-474.
    100. N gele E., Vollmer M., H rth P. Two-dimensional nano-liquid chromatography–massspectrometry system for applications in proteomics. Journal of Chromatography A2003,1009(1):197-205.
    101. Nejat N., Vadamalai G., Dickinson M. Expression patterns of genes involved in the defense andstress response of Spiroplasma citri infected Madagascar periwinkle Catharanthus roseus.International Journal of Molecular Sciences2012,13(2):2301-2313.
    102. Ogliari J.B., Guimar es M.A., Camargo L.E.A. Chromosomal locations of the maize (Zea mays L.)HtP and rt genes that confer resistance to Exserohilum turcicum. Genetics and Molecular Biology2007,30(3):630-634.
    103. Ogliari J.B., Guimar es M.A., Geraldi I.O., Camargo L.E.A. New resistance genes in the Zeamays: Exserohilum turcicum pathosystem. Genetics and Molecular Biology2005,28(3):435-439.
    104. Okamoto T., Higuchi K., Shinkawa T., Isobe T., L rz H., Koshiba T., Kranz E. Identification ofmajor proteins in maize egg cells. Plant and Cell Physiology2004,45(10):1406-1412.
    105. Palsson B., Zengler K. The challenges of integrating multi-omic data sets. Nature ChemicalBiology2010,6(11):787-789.
    106. Patterson J., Ford K., Cassin A., Natera S., Bacic A. Increased abundance of proteins involved inphytosiderophore production in boron-tolerant barley. Plant Physiology2007,144(3):1612-1631.
    107. Pechanova O., Pechan T., Williams W.P., Luthe D.S. Proteomic analysis of the maize rachis:Potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infectionand aflatoxin accumulation. Proteomics2011,11(1):114-127.
    108. Poland J.A., Bradbury P.J., Buckler E.S., Nelson R.J. Genome-wide nested association mappingof quantitative resistance to northern leaf blight in maize. Proceedings of the National Academy ofSciences2011,108(17):6893-6898.
    109. Rampitsch C., Bykova N.V., McCallum B., Beimcik E., Ens W. Analysis of the wheat andPuccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics2006,6(6):1897-1907.
    110. Rapala-Kozik M., Kowalska E., Ostrowska K. Modulation of thiamine metabolism in Zea maysseedlings under conditions of abiotic stress. Journal of Experimental Botany2008,59(15):4133-4143.
    111. Rhind D., Waterston J., Deighton F. Occurrence of Puccinia polysora Underw. in West Africa.Nature1952,169:631.
    112. Robbins Jr W., Warren H. Inheritance of resistance to Exserohilum turcicum in PI209135,“Mayorbela” variety of maize. Maydica1993,38(3):209-213.
    113. Robert A.L. Host ranges and races of the Corn rusts. Phytopathology1962,52(10):1010-1012.
    114. Rodriguez-Ardon R., Scott G.E., King S.B. Maize yield losses caused by southern corn rust. CropScience1980,20(6):812-814.
    115. Roepstorff P. Mass spectrometry in protein studies from genome to function. Current Opinion inBiotechnology1997,8(1):6-13.
    116. Ruan S.L., Ma H.S., Wang S.H., Fu Y.P., Xin Y., Liu W.Z., Wang F., Tong J.X., Wang S.Z., ChenH.Z. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice(Oryza sativa L.) seedlings when overexpressed. BMC Plant Biology2011,11(1):34-48.
    117. Scott G.E., King S.B., Armour J.W. Inheritance of resistance to southern corn rust in maizepopulations. Crop Science1984,24(2):265-267.
    118. Simcox K.D., Bennetzen J.L. The use of molecular markers to study Setosphaeria turcicaresistance in maize. Phytopathology1993,83(12):1326-1330.
    119. Sivaguru M., Pike S., Gassmann W., Baskin T.I. Aluminum rapidly depolymerizes corticalmicrotubules and depolarizes the plasma membrane: evidence that these responses are mediatedby a glutamate receptor. Plant and Cell Physiology2003,44(7):667-675.
    120. Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A.A., Jazii F.R., Motamed N., Komatsu S.Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome science2010,8(1):19.
    121. Spasojevi I., Mojovi M., Blagojevi D., Spasi S.D., Jones D.R., Nikoli-Koki A., Spasi M.B.Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical.Carbohydrate Research2009,344(1):80-84.
    122. Storey H., Howland A. Resistance in maize to the tropical American rust fungus, Pucciniapolysora Underw. Heredity1957,11:289-301.
    123. Storey H., Howland A.K. Resistance in maize to the Tropical American rust fungus, Pucciniapolysora. Heredity1959,13:61-65.
    124. Ullstrup A. Inheritance and linkage of a gene determining resistance in maize to an American raceof Fuccinia polysora. Phytopathology1965,55(4):425-428.
    125. Van Breusegem F., Dat J.F. Reactive oxygen species in plant cell death. Plant Physiology2006,141(2):384-390.
    126. Van Inghelandt D., Melchinger A., Martinant J.P., Stich B. Genome-wide association mapping offlowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vastcommercial maize germplasm set. BMC Plant Biology.2012,12(1):56-70.
    127. Van Staden D., Lambert C.A., Lehmensiek A. SCAR markers for the Ht1, Ht2, Ht3and Htn1resistance genes in maize. Maize Genetics Conference Abstract2001,43:134.
    128. Vasanthaiah H.K.N., Katam R., Basha S.M. Characterization of unique and differentiallyexpressed proteins in anthracnose-tolerant Florida hybrid bunch grapes. Applied Biochemistry andBiotechnology2009,157(3):395-406.
    129. Wang H., Li H., Zhu Z., Wang X. Expression of Ht2-related genes in response to the HT-Toxin ofExserohilum turcicum in maize. Annals of Applied Biology2010,156(1):111-120.
    130. Wang X., Yang P., Zhang X., Xu Y., Kuang T., Shen S., He Y. Proteomic analysis of the cold stressresponse in the moss, Physcomitrella patens. Proteomics2009,9(19):4529-4538.
    131. Washburn M.P., Wolters D., Yates J.R. Large-scale analysis of the yeast proteome bymultidimensional protein identification technology. Nature Biotechnology2001,19(3):242-247.
    132. Welz H., Geiger H. Genes for resistance to northern corn leaf blight in diverse maize populations.Plant Breeding2000,119(1):1-14.
    133. Welz H., Schechert A., Geiger H. Dynamic gene action at QTLs for resistance to Setosphaeriaturcica in maize. Theoretical and Applied Genetics1999a,98(6):1036-1045.
    134. Welz H., Xia X., Bassetti P., Melchinger A., Lübberstedt T. QTLs for resistance to Setosphaeriaturcica in an early maturing Dent×Flint maize population. Theoretical and Applied Genetics1999b,99(3):649-655.
    135. Xu C., Huang B. Differential proteomic responses to water stress induced by PEG in two creepingbentgrass cultivars differing in stress tolerance. Journal of Plant Physiology2010,167(17):1477-1485.
    136. Xu P., Roes J., Segal A.W., Radulovic M. The role of grancalcin in adhesion of neutrophils.Cellular Immunology2006,240(2):116-121.
    137. Yin X.Y., Wang Q.H., Yang J.L., Jin D.M., Wang F., Wang B., Zhang J.R. Fine mapping of theHt2(Helminthosporium turcicum resistance2) gene in maize. Chinese Science Bulletin2003,48(2):165-169.
    138. Yoda H., Hiroi Y., Sano H. Polyamine oxidase is one of the key elements for oxidative burst toinduce programmed cell death in tobacco cultured cells. Plant Physiology2006,142(1):193-206.
    139. Z rb C., Schmitt S., Mühling K.H. Proteomic changes in maize roots after short-term adjustmentto saline growth conditions. Proteomics2010,10(24):4441-4449.
    140. Zaitlin D., DeMars S.J., Gupta M. Linkage of a second gene for NCLB resistance to molecularmarkers in maize. Maize Genetics Cooperation News Letter1992,66:69-70.
    141. Zhang C., Guy C. In vitro evidence of Hsc70functioning as a molecular chaperone during coldstress. Plant Physiology and Biochemistry2006,44(11):844-850.
    142. Zhang M., Su R., Qi W., He Z. Enhanced enzymatic hydrolysis of lignocellulose by optimizingenzyme complexes. Applied Biochemistry and Biotechnology2010a,160(5):1407-1414.
    143. Zhang Y., Xu L., Zhang D.F., Dai J.R., Wang, S.C. Mapping of southern corn rust-resistant genesin the W2D inbred line of maize (Zea mays L.). Molecular Breeding2010b,25(3):433-439.
    144. Zhang Y.M., Zhao J.M., Xiang Y., Bian X.C., Zuo Q.M., Shen Q., Gai J.Y., Xing H. Proteomicsstudy of changes in soybean lines resistant and sensitive to Phytophthora sojae. Proteome Science2011,9(1):52-64.
    145. Zhao P., Zhang G., Wu X., Li N., Shi D., Zhang D., Ji C., Xu M., Wang S. Fine mapping ofRppP25, a southern rust resistance gene in maize. Journal of Integrative Plant Biology2013, DOI:
    10.1111/jipb.12027.
    146. Zhou C., Chen C., Cao P., Wu S., Sun J., Jin D., Wang B. Characterization and fine mapping ofRppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics2007,278(6):723-728.
    147. Zhu M., Simons B., Zhu N., Oppenheimer D.G., Chen S. Analysis of abscisic acid responsiveproteins in Brassica napus guard cells by multiplexed isobaric tagging. Journal of Proteomics2010,73(4):790-805.
    148. Zieske L.R. A perspective on the use of iTRAQ reagent technology for protein complex andprofiling studies. Journal of Experimental Botany2006,57(7):1501-1508.
    149. Zwonitzer J.C., Coles N.D., Krakowsky M.D., Arellano C., Holland J.B., McMullen M.D., PrattR.C., Balint-Kurti P.J. Mapping resistance quantitative trait Loci for three foliar diseases in amaize recombinant inbred line population-evidence for multiple disease resistance?Phytopathology2010,100(1):72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700