用户名: 密码: 验证码:
棉花黄萎病生防链霉菌的抗病促生作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病是由大丽轮枝菌Verticillium dahliae Kleb.引起的土传性病害,是我国棉花生产的主要限制因素,寻找合适有效的防治途径是目前解决棉花产业可持续发展的首要任务。国内外关于棉花黄萎病防治采取的措施主要有抗性品种选育、改善栽培措施、化学农药等。由于抗病育种无重大进展,其他措施效果不佳,探索新的防治途径已成为目前亟待解决的问题。对土传根系真菌病害而言,生物防治具有化学农药所不具备的优点。在生防微生物中,放线菌可产多种抗生素、胞外酶等活性物质,且孢子抗逆性强,在土传病害防治方面具有较好的应用前景,但在防治棉花黄萎病上缺乏系统研究。本研究从土壤微生态修复需要出发,对拮抗大丽轮枝菌的放线菌进行筛选和鉴定,系统研究放线菌对棉花黄萎病的防病促生效果、生防机理,以及生防放线菌与大丽轮枝菌、棉花植株的互作机理,为棉花黄萎病防治提供高效多功能生防放线菌菌株,并为后期生防放线菌活菌制剂的实际应用提供理论依据。论文主要研究结果如下:
     1.从本研究室保藏的分离自我国新疆、青海、陕西、西藏和黑龙江作物根区土壤中的712株拮抗放线菌中,通过琼脂块法拮抗性和发酵液抑菌活性逐级筛选,得到11株对棉花黄萎病原大丽轮枝菌均有较强抑菌作用的放线菌;入选放线菌及其发酵液可有效的抑制大丽轮枝菌生长、孢子形成和萌发;并能利用酚酸类棉花自毒物质(对羟基苯甲酸、阿魏酸和没食子酸)作为唯一碳源生长。通过形态学特征、生理生化特征、聚类分析及16S rRNA序列分析对其进行分类鉴定,11株放线菌属于链霉菌属(Streptomyces)的蓝微褐链霉菌(S. cyaneofuscatus)、卡那霉素链霉菌(S. kanamyceticus)、娄彻氏链霉菌(S. rochei)、黄三素链霉菌(S. flavotricini)和弗氏链霉菌(S. fradiae)。
     2.供试11株链霉菌对NaCl具有一定的耐受性,在培养基中NaCl含量在15g·L~(-1)以下时,11株链霉菌均可以生长,含量在7g·L~(-1)以下时,对菌株正常菌落形态及拮抗活性影响较小,表明供试链霉菌可用于新疆等含盐量较高的土壤中施用。在NaCl含量为3g·L~(-1)的高氏1号培养基上,供试链霉菌垂直传代15代后,其菌丝生长速度、产孢量及抑菌活性均优于普通高氏1号培养基。
     3.以大丽轮枝菌菌体为唯一碳能源时,可诱导供试生防链霉菌同步合成几丁质酶、β~(-1),3-葡聚糖酶、β-葡萄糖苷酶、纤维素酶、多酚氧化酶及蛋白酶6种细胞壁溶解酶;当菌体添加量为10g·L~(-1),28℃培养7d时,上述诱导酶活性可达峰值;链霉菌粗酶液对大丽轮枝菌菌丝有溶解作用;供试生防链霉菌菌丝均可缠绕在大丽轮枝菌菌丝上,并在缠绕处使病原菌菌丝溶解;以大丽轮枝菌菌体为碳氮能源时供试链霉菌能产生活性较强的抑菌物质;当菌体添加量为20g·L~(-1),发酵液稀释5倍时菌株B49所产生抑菌活性物质的最大抑菌率达95.7%。
     4.采用菌丝生长速率法研究了培养基pH、盐分浓度与种类及链霉菌发酵液对病原菌生长及微菌核形成的影响。结果表明:供试大丽轮枝菌菌落生长最适pH为7.0,偏酸或偏碱会抑制菌落生长。但培养基偏碱可显著促进微菌核形成,当pH值为8.0时,大丽轮枝菌菌落生长受抑制较小,同时微菌核区面积较pH为7.0时增加22.6%。盐分浓度影响大丽轮枝菌菌丝生长及微菌核形成。随培养基NaCl浓度增加,供试大丽轮枝菌生长受到抑制,菌落面积和菌丝面积均逐渐减小,但微菌核形成量却显著增加;当NaCl浓度为10g·L~(-1)时,微菌核区面积较对照(NaCl浓度为0)增加40.7%。不同种类盐分对供试大丽轮枝菌生长均有影响。氯化物(NaCl和KCl)和硫酸盐(Na_2SO_4和MgSO_4)均随盐分浓度增加而促进大丽轮枝菌微菌核形成;而CaCl2则显著促进菌丝生长并在浓度大于7g·L~(-1)时抑制微菌核形成。11株链霉菌的无菌发酵滤液对大丽轮枝菌菌落生长、菌核形成和微菌核萌发有明显抑制作用。菌株B49和D184的5倍稀释发酵液对微菌核形成的抑制率达100%。并且,将经链霉菌发酵液处理后丧失形成微菌核能力的大丽轮枝菌菌株,转接至不含发酵液的PDA培养基,连续传代至第5代,其仍然不能恢复形成微菌核的能力。微菌核在含有菌株D1845倍稀释发酵液培养基上培养168h时,微菌核萌发率仅为38.3%。
     5.播种时向灭菌土壤中接种生防链霉菌,棉花幼苗对大丽轮枝菌毒素危害的防御反应能力及抗逆性大幅度提高。主要表现在:棉花叶片、根系的防御酶活性,二元酚及木质素含量在温室培养6周后显著提高。在毒素处理后,棉苗的保护性反应在24h内即可迅速响应。大丽轮枝菌毒素的毒害作用减轻;其中丙二醛(MDA)在棉苗叶片及根系中的积累减少,棉苗根系活力、叶绿素含量及叶片含水量的下降幅度减缓。最终,接种链霉菌减弱了毒素在棉苗上的毒害作用及致萎作用,72h时生防效率最高,为68.2%。
     6.生防链霉菌单独接种或与病原菌混合接种时,供试链霉菌均可有效提高棉花植株不同生长时期的诱导抗病性。生防链霉菌可显著提高棉花叶片、根系的过氧化物酶(POD)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性,增加棉花叶片内单宁、二元酚、木质素及游离脯氨酸含量,减少棉花叶片中MDA积累,减缓根系活力和叶片含水量的下降幅度。
     7.生防链霉菌可制成活菌粉状制剂,并可采用种子包衣或土壤接种的方法施用链霉菌菌剂。在苗期、盆栽和田间病圃试验中,生防链霉菌菌剂对棉花黄萎病均表现出良好、稳定的抗病效果,有效降低了黄萎病病情指数及病情进展曲线下面积(AUDPC)。其中链霉菌X4对棉花黄萎病的生防效果总体表现最好,苗期、盆栽和田间病圃中的最高生防效率分别达到59.3%、59.2%及51.4%。
     8.生防链霉菌具有产吲哚乙酸(IAA)的能力,培养17d时,无菌发酵滤液中IAA含量可达47.56~56.19μg·mL~(-1);用发酵滤液浸种可促进棉花种子发芽和棉苗胚轴及胚根的生长。在盆栽、田间试验中,生防链霉菌菌剂接种可显著提高棉花植株高度和根茎直径,促进总生物量、地上部分、根系和棉铃重量的增加,并对叶片绿色度和光合作用有促进作用。其中链霉菌X4对植株高度、总鲜重、根鲜重、棉铃鲜重及净光合速率的促进作用总体表现最好,最高增幅可分别达24.4%、62.4%、107.7%、45.1%及31.9%。
     9.生防链霉菌可在棉花根区、根表土壤中有效定殖,其中链霉菌X4在盆栽和田间病圃根区土壤中的最高定殖量分别为2.85×10~6和2.44×10~6CFU g~(-1)干土。生防链霉菌可有效改善棉花根区、根表土壤的微生物生态,降低真菌总数量和比例,增加土壤中细菌、放线菌总数量和比例,促使棉花根域土壤微生物由“真菌型”向“细菌型”转变。当生防链霉菌与病原菌混合接种时,链霉菌X4对棉花根区土壤中细菌、放线菌总数量的增幅分别为40.6%、32.1%,而真菌总数量则降低64.6%。
Verticillium wilt of cotton, caused by Verticillium dahliae Kleb., is a serious soil-bornedisease that limits cotton production in China. Finding effective disease control approaches isthe first priority to solve the problem of sustainable cotton production. Conventionalmanagement options for Verticillium wilt of cotton include the development of partiallyresistant cultivars, tillage management, and the application of chemical fungicides. However,there was no significant progress in breeding for disease resistance, and other managementoptions are ineffective for controlling Verticillium wilt of cotton. Exploring new ways ofcontrolling this disease has become the current problems to be solved. Microbial biocontrolagents have been proposed as a more effective and environmentally friendly means ofcontrolling soil-borne diseases. Actinomycetes are widely used in control of soil-bornediseases for their production of various antibiotics, extracellular enzymes and survivablespores. However, few specialized studies have been conducted about the biocontrolmechanism and efficacy of actinomycetes against Verticillium wilt of cotton. This study wasconducted from the perspective of soil microbial ecological restoration. The authorsinvestigated the occurrence of cotton Verticillium wilt, screened and identified antagonisticactinomycetes against V. dahliae, evaluated biocontrol and growth promoting effects ofselected actinomycete strains, and finally explored mechanisms of interaction amongpathogenic fungi, biocontrol actinomycetes and cotton plants. Biocontrol actinomycetes withhigh efficacy and stability were obtained for control of cotton Verticillium wilt andmanagement cotton continuous cropping obstacles. Results provided a scientific basis forfuture commercial production and practical application of biocontrol actinomycete agents.The results and conclusions are listed below:
     1. A total of712antagonistic actinomycete were previously isolated from croprhizosphere in Xinjiang, Qinghai, Shaanxi, Tibet and Heilongjiang, primarily in northwest ofChina. Of these,11actinomycete isolates with high inhibitory activity against V. dahliaewere selected by stepwise screening using the agar diffusion method and mycelium growthrate measurement. The selected actinomycete isolates efficiently inhibited V. dahliae growth, conidia production, and germination, and utilized cotton self-toxic phenolic acids (i.e.,p-hydroxybenzoic acid, ferulic acid and gallic acid) as the sole carbon source. Morphologicaland physiological tests, cluster analysis, combined with16S rRNA-based molecularidentification indicate that these11isolates are members of the genus Streptomycescyaneofuscatus, S. kanamyceticu, S. rochei, S. flavotricini and S. fradiae, respectively.
     2. The11Streptomyces isolates showed certain tolerance to NaCl and survived in thepresence of <15g·L~(-1)content. There were few changes in colony morphology andantagonistic activity of these Streptomyces isolates with <7g·L~(-1)NaCl. This result indicatesthat the tested Streptomyces can be used in the salt soil of Xinjiang. The mycelia growth rate,spores production and antagonistic activity of the11Streptomyces isolate grown with3g·L~(-1)NaCl were better than that with0.5g·L~(-1)NaCl Gause No.1agar medium.
     3. With V. dahliae mycelium as the sole carbon source, the11biocontrol Streptomycesproduced6extracellular fungal cell-wall degrading enzymes, i.e., chitinase,β~(-1),3-glucosidase, β-glucosidase, cellulose, polyphenol oxidas and protease. Maximumenzyme activities were observed in extracellular hydrolases fermentation of the Streptomycessupplied with10g·L~(-1)fungi mycelium at28℃for7d. The Streptomyce crude enzymeinduced disintegration of V. dahliae mycelia and hypha. All tested Streptomyces isolates werecapable of twining with V. dahliae hypha, leading to fungal cell wall lysis. The Streptomycesisolates produced antifungal active substances with V. dahliae mycelium as the sole carbonand nitrogen source. When supplied with20g·L~(-1)fungi mycelium, the5-fold diluted fermentfiltrate of isolate B49showed maximum inhibition rate against V. dahliae,95.7%.
     4. The influence of salinity (concentration and type) and pH on the microsclerotiaformation in V. dahliae was evaluated by determination of the mycelium growth rate usinglaboratory culture medium. The colony growth of V. dahliae was inhibited at acidic andalkaline pH, with optimal colony growth observed at pH7.0. The microsclerotia formation ofV. dahliae was enhanced at alkaline pH, and the microselerotia area was increased by22.6%at pH8.0compared with that at pH7.0. The mycelium growth and microsclerotia formationof V. dahliae was affected by salinity concentration. With an increasing concentration ofNaCl in the culture medium, the colony growth and mycelium area of V. dahliae wereinhibited and decreased, respectively, whereas the formation of microsclerotia was enhanced.The microselerotia area in the culture medium with10g·L~(-1)NaCl was increased by40.7%compared with that in the medium without NaCl. The growth of V. dahliae was affected bydifferent salinity types. With an increasing concentration of chloride (i.e., NaCl, KCl) orsulfate (i.e., Na_2SO_4, MgSO_4) salts in the culture medium, the microsclerotia formation of V.dahliae was accelerated, whereas the mycelium growth was enhanced in the presence of CaCl2, and the microsclerotia formation of V. dahlia was inhibited at concentrations wasgreater than7g·L~(-1)in culture medium. The mycelium growth, microsclerotia formation andgermination of V. dahlia were significantly inhibited by culture filtrates of11Streptomycesisolates.5-fold-diluted ferment filtrates of Streptomyces isolates B49and D184displayedcompletely inhibitory effects on microsclerotia formation of V. dahlia with100%ofinhibitory rate. The mutant strains of V. dahliae was obtained from these3Streptomycesferment filtrate treatments, which produced no microsclerotia. The mutants were not reversedto the wild type after transferred5times in the PDA medium containing no Streptomycesferment filtrate. Its germination rate was38.3%at168h in the PDA medium containing5-fold-diluted ferment filtrate of Streptomyces D184.
     5. Under greenhouse conditions, the application of a powdered Streptomyces biocontrolagent to soil at the time of sowing considerably enhanced the plant defense-related enzymeactivities as well as the ortho-dihydric phenol and lignin contents in cottons after6-weekcultivation. When treated with V. dahliae phytotoxin, the defense-related responses of cottonwere accelerated and strengthened in Streptomyces-inoculated cottons relative tonon-inoculated cottons within24h. The changes in the defense-related responses furthersuppressed the accumulation of malondialdehyde (MDA), and reduced the loss of rootactivity, leaf total chlorophyll, and leaf water contents during V. dahliae phytotoxin treatment.The pathogenic effect of V. dahliae phytotoxin on Streptomyces-inoculated cottons waseventually weakened, and the biocontrol efficacy was68.2%at72h.
     6. When inoculated individually or mixed with V. dahliae, the biocontrol Streptomyceseffectively improved the induced disease resistance in cotton plants during different growthstages. The Streptomyces treatment considerably enhanced the activities of peroxidase (POD),polyphenol oxidase (PPO) and phenylalanine ammonialyase (PAL) in cotton leaf and rootwhile increasing the tannin, ortho-dihydric phenol, lignin and free proline contents,decreasing the accumulation of malondialdehyde (MDA) in cotton leaf, and reducing the lossof root activity and leaf water contents.
     7. The selected Streptomyces isolates were prepared as powdered biocontrol agents forapplication through seed coating or soil inoculation. The ability of the powdered biocontrolStreptomyces agents showed excellent and stable efficacies in control of Verticillium wiltduring the seedling stage in wilt-related pot and field experiments. The disease severity andthe area under the disease progress curve (AUDPC) of cotton Verticillium wilt were bothreduced. Among the tested Streptomyces isolates, X4showed the best biocontrol effect, withbiocontrol efficacies up to59.3%,65.8%and51.4%during the seedling stage in wilt-relatedpot and field experiments, respectively.
     8. The selected Streptomyces isolates produced indoleacetic acid (IAA) up to47.56and56.19μg·mL~(-1)in ferment filtrate at17d. Treatment with Streptomyces ferment filtratepromoted the seed germination and the growth of cotton hypocotyl and radicle. In pot andfield experiments, inoculation of Streptomyces considerably increased plant height, rhizomediameter, total biomass, above-ground weight, root weight, and boll weight of cotton, andprompted the greenness and photosynthesis of cotton leaf. Among the tested Streptomycesisolates, X4showed the most significant growth promoting effect, increasing the plant height,fresh weight of total plant, root and boll, and net photosynthetic rate by24.4%,62.4%,107.7%,45.1%and31.9%, respectively.
     9. The selected biocontrol Streptomyces survived in the rhizosphere and rhizoplane soilsof cotton. In pot and field experiments, the abundance of the isolate X4in the rhizospheresoil of cotton was up to2.85×10~6and2.44×10~6CFU g~(-1)dry soil, respectively. The biocontrolStreptomyces improved the microbial ecology of cotton rhizosphere and rhizoplane soils bydecreasing soil fungi and increasing soil bacteria and actinomyces, leading to the transition ofmicrobial populations from “fungal-type” to “bacteria-type”. When inoculated by mixingwith V. dahliae, the isolate X4increased the abundance of bacteria and actinomycespopulation in rhizosphere soil of cotton by40.6%and32.1%, respectively, while decreasingthe fungi population by64.6%.
引文
安德荣.2002.生物制药的原理及方法——抗生素的制备.北京:中国科学文化出版社:266~295
    白霜,薛泉宏,赵邑尘,曹书苗,同延安,王晓辉,徐万里.2009b.新疆棉区不同含盐土壤棉花健株与黄萎病株根区放线菌研究.西北农林科技大学学报:自然科学版,37(7):183~190
    白霜.2009a.棉花黄萎病生防菌筛选及其防病促生作用的研究.[硕士学位论文].陕西:西北农林科技大学
    白应文,胡东芳,胡小平,赵俊兴,朱荷琴,杨家荣.2011.大丽轮枝孢微菌核的形成条件.菌物学报,30(5):695~701
    蔡应繁,叶鹏盛,江怀仲,何洪华,谭永久,裴炎,郭余龙,李名扬,侯磊.2000.抗真菌基因导入棉花创造高抗黄萎病材料研究.西南农业学报,13(4):45~49
    常二华,杨建昌.2006.根系分泌物及其在植物生长中的作用.耕作与栽培.(5):13~16
    陈兵林,周治国,陈兵林,周治国,束红梅,卞海云.2006.麦棉套作棉花根际非根际土壤微生物和土壤养分.生态学报,26(10):3485~3490
    陈吉棣,陈松生,王俊英.1980.棉花黄萎病种子内部带菌的研究.植物保护学报,7(3):159~164
    陈蕾蕾,王未名,祝清俊,刘孝永,杜方岭.2010.木霉胞外蛋白酶的研究进展.中国生物防治,26(3):359~364
    陈其煐.1980.科学技术成果报告《棉花枯萎病和黄萎病综合防治》.科学技术出版社
    陈旭升,陈永萱,黄骏麒.1996.黄萎病菌致萎毒素引起棉苗维管系统变化的电镜观察.棉花学报,8(5):111~112
    陈旭升,陈永萱,黄骏麒.1998.棉花黄姜病菌株VD~8外泌毒蛋白的生化特性.江苏农业学报,14(2):126~128
    陈旭升,陈永萱,黄骏麒.2000.棉花黄萎病菌致萎峰蛋白氨基酸组分及其有关生化特性分析.江苏农业学报,16(1):10~14
    陈旭升,陈永萱,黄骏麒.2001.棉花黄萎病菌致病性生理生化研究进展.棉花学报,13(3):183~187
    陈毓荃.2002.生物化学实验方法和技术.北京:科学出版社
    程红梅,简桂良,倪万潮,杨红华,王志兴,孙文姬,张保龙,王晓峰,马存,贾士荣.2005.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性.中国农业科学,38(6):1160~1166
    程丽娟,薛泉宏.2000.微生物学实验技术.西安:世界图书出版公司
    程效宽,樊亚利,叶涛.2006.新疆植棉业“半壁江山”战略目标的可行性分析—由我国三大棉区棉花成本收益比较展望新疆植棉业发展前景.新疆农垦经济,(4):12~18
    程智慧,沈永杰.2008.大蒜紫斑病菌的分离及培养条件研究.西北农业学报,17(2):280~284
    仇元,吕金殿.1979.棉花黄萎病菌培养液及其应用.西北农学院学报,(l):1~11
    储昭庆,贾军伟,周向军,陈晓亚.1999.大丽轮枝菌分泌糖蛋白的分离及其致萎性研究.植物学报,41(9):972~976
    邓先明.1982.棉花黄萎病菌种的鉴定.西南农学报,(1):49~57
    丁泳.2007.棉花主要种传病害及其检测方法.植物保护,(1):35
    董合忠,李维江,刘锐,张玉娜.2002.植物诱导抗病性及其在棉花病害防治中的利用.山东农业科学,(2):42~46
    董合忠,辛承松,李维江,唐薇,张冬梅,罗振.2009.山东滨海盐渍棉田盐分和养分特征及对棉花出苗的影响.棉花学报,21(4):290~295
    段春梅,薛泉宏,赵娟,呼世斌,陈秦,王玲娜,申光辉,薛磊.2010.放线菌剂对黄瓜幼苗生长及叶片PPO活性的影响.西北农业学报,19(9):48~54
    段维军,李国英,张莉,郭立新,冶海林,龚双军.2004.新疆棉花黄萎病菌致病性分化监测研究.新疆农业科学,41(5):324~328
    范莉莉,涂晓嵘,涂国全.2008.弗氏链霉菌变种S-221产弹性蛋白酶发酵培养基的优化研究.江西科学,26(5):707~710
    范玲.2002.微生物农药研究进展及产业发展对策.中国生物工程杂志,22(5):83~86
    房卫平,祝金水,季道潘.2001.棉花黄萎病菌与抗黄萎病遗传育种研究进展.棉花学报,13(2):116~120
    傅艳萍.2009.盐碱极端环境中抗动物病原菌的放线菌资源研究.[硕士学位论文].陕西:西北农林科技大学
    甘莉,吕金殿,汪沛洪.1995.棉花黄萎病菌分泌的糖蛋白毒素与其致病力的关系.中国农业科学,28(2):58~65
    甘莉,吕金殿,俞征,汪沛洪.1992.棉黄萎病对棉叶脯氨酸含量及光合蒸腾作用的影响.西北农业学报,1(1):8~11
    甘莉,吕金殿.1989.棉花品种中糖及单宁含量与抗黄萎病的关系.陕西农业科学,(6):13~14
    甘莉,吕金殿.1991.棉花黄萎病菌毒素的分离提纯及致萎活性测定.西北农业大学学报,19(1):49~54
    高俊凤.2000.植物生理学实验技术.世界图书出版公司
    高小宁,涂璇,黄丽丽,娄鹏.2009.产β-1,3-葡聚糖酶植物内生放线菌的筛选及抑菌活性研究.微生物学通报,36(8):1189~1194
    高智谋,曹君,潘月敏,吴向辉,章战华.2007.哈茨木霉TH~1对棉花枯萎病菌和黄萎病菌的拮抗机制研究.棉花学报,19(3):168~172
    顾美英,徐万里,茆军,梁智,宋素琴,霍向东.2009.新疆棉花黄萎病发病株根际土壤微生物生态特征.西北农业学报,18(2):276~279
    关统伟,张利莉,赵震宇.2007.新疆干旱区土壤放线菌拮抗植物病原真菌的研究.甘肃农业大学学报,42(2):71~74
    郭海军,董志强,林永增,李振山,李俊兰,黄国存,崔四平,潘学标.1995.黄萎病对棉花叶片SOD、POD酶活性和光合特性的影响.中国农业科学,28(6):40~46
    郭坚华,王玉菊,李瑾,任欣正.1996.抑菌圈—定殖力双重测定法筛选青枯病生防细菌.植物病理学报,26(1):49~54
    郭荣.2005.对棉花生产构成严重威胁的病害—棉花曲叶病毒病.中国植保导刊,(2):46~47
    郭志英,薛泉宏,张晓鹿,杨斌,许英俊,周永强.2008.生防菌苗床接种对辣椒根域微生态及产量的影响.西北农林科技大学学报:自然科学版,36(4):159~165,170
    韩剑,张静文,徐文修,罗明,吴莉莉.2011.新疆连作、轮作棉田可培养的土壤微生物区系及活性分析.棉花学报,23(1):69~74
    韩雪,吴凤芝,潘凯.2006.根系分泌物与土传病害关系之研究综述.中国农学通报,22(2):316~318
    郝永丽,宗兆锋.2007.4株放线菌的防病促生作用研究.西北农业学报,16(3):257~259
    何茂华,慕卫,刘峰.2004.丙基双氢茉莉酮酸酯诱导棉花耐黄萎病的效应.棉花学报,16(2):108~111
    何旭平,潘光照,张敏健,冷苏凤,承泓良.1999.国外棉花枯萎病研究进展.中国棉花,26(5):4~5
    胡保民.2002.新疆棉花资源优势分析.新疆农业大学学报,25(3):87~90
    黄思良,卢维宏,陶爱丽,武爱波,王坦.2012.南阳市玉米穗腐病致病镰刀菌种群结构分析.南阳师范学院学报,11(3):54~57
    霍向东,张升待.2000.新疆棉花黄萎病菌致病性分化的研究.棉花学报,12(5):254~257
    籍秀琴,马存.1980.棉黄萎病发病消长与温度关系的分析.农业科技通讯,(8):30~31
    纪好勤,郭小平,潘家驹.1995.棉花黄萎病抗性的生理生化指标探讨.华北农学报,10(3):73~75
    纪文飞,高智谋,曹君,邹艳,杜雷,陈伟.2006.棉花黄萎病菌菌丝生长和产孢量的影响因素研究.安徽农业科学,34(17):4330~4331
    贾涛,裴国亮,杨家荣,徐进,简桂良.2007.棉田土壤中棉花黄萎病菌的致病力分化.植物保护学报,34(5):519~523
    贾涛,杨家荣,邢宏宜,易永华,王成.2005.棉花黄萎病菌在土壤、植株微生态系中的分布.中国农学通报,21(3):275~276
    简桂良,孙文姬,马存.2001.棉花黄萎病抗性鉴定新方法——无底塑钵菌液浇根法.棉花学报,13(2):67~69
    简桂良,邹亚飞,王天存,马存.2003.不同强度温度刺激对棉花黄萎病的影响.棉花学报,15(2):83~86
    姜永幸,杨雪梅.1996.几种抗虫棉花材料菇烯类化合物含量分析初报.植物保护,22,(1):24~26
    蒋玉蓉,房卫平,祝水金,季道藩.2005.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报,31(3):337~341
    金利容,万鹏,喻大昭,黄民松,黄薇,孔令甲.2009.不同温度下棉花黄萎病菌培养性状及致病力的初步研究.湖北农业科学,48(8):1874~1877
    景忆莲,刘耀斌,范万法,校百才.1999.棉花黄萎病及其抗性育种研究进展.西北农业学报,8(3):106~110
    康金辉,张建明.2006.新疆及我国棉花供求分析及发展预测.新疆农垦经济,(1):41~46
    李才生,周运宁.1998.棉田有害生物综合治理.北京,中国农业科技出版社
    李国英,霍向东,田新莉,张升,张云.2000.新疆棉花黄萎病菌的培养特性及致病性分化的研究.石河子大学学报,4(1):9~15
    李国英.2000.新疆棉花主要病害发生趋势及对策.植物保护,(4):23~25
    李洪连,王守正,张明智.1990.棉花抗、感枯萎病品种根际微生物数量研究.河南农业大学学报,24(l):49~56
    李洪连,王守正,张明智.1991.棉花抗、感枯萎病品种根际真菌区系分析.河南农业大学学报,25(4):424~431
    李洪连,袁红霞,王烨,黄俊丽,柴俊霞,王守正.1998.根际微生物多样性与棉花品种对黄萎病抗性关系研究Ⅰ.根际微生物数量与棉花品种对黄萎病抗性的关系.植物病理学报,28(4):341~345
    李洪连,袁红霞,王烨,黄俊丽,柴俊霞,王守正.1999.根际微生物多样性与棉花品种对黄萎病抗性关系研究Ⅱ.不同抗性品种根际真菌区系分析及其对棉花黄萎病菌的抑制作用.植物病理学报,29(3):242~246
    李洪连,袁虹霞,黄俊丽,王振跃,邢小萍.2002.不同有机改良剂对棉花黄萎病的防病作用及其机制.植物保护学报,29(4):313~319
    李辉.2006.世界棉花市场的现状、特点与提高中国棉花出口竞争力的对策.世界农业,(6):7~9
    李佳,李术娜,郭晓军,朱莹,朱宝成.2009.一株大丽轮枝菌拮抗细菌7-47菌株的分离与鉴定.棉花学报,21(2):156~158
    李俊兰,李妙,翟学军,李之树,王国印,黄国存,崔四平.1995.棉花感染黄萎病后叶片组分内生化特性分析.华北农学报,10(增刊):134~138
    李莉,曲延英,陈全家,夏瑜华,兰杰,尤春源.2005.新疆陆地棉转木霉几丁质酶基因棉花的初步筛选.新疆农业科学,42(3):178~180
    李钠,章骥,闵航,邵爱萍,周红军.2006.菲和其他芳香族化合物降解菌多酚氧化酶的变化研究.浙江大学学报:农业与生命科学版,32(5):495~499
    李琼芳.2006.不同连作年限麦冬根际微生物区系动态研究.土壤通报,37(3):563~565
    李社增,鹿秀云,马平,高胜国,刘杏忠,刘干.2005.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定.植物病理学报,35(5):451~455
    李社增,马平.2001.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,20(5):410~414
    李术娜,马平,胡明,袁洪水.2008.棉花黄萎病拮抗细菌筛选与B~101菌株抗茵蛋白分离.植物病理学报,38(4):445~448
    李伟杰,姜瑞波.2007.番茄青枯病拮抗菌的筛选.微生物学杂志,27(1):5~8
    李炜,刘志恒.2001.链霉菌分类研究进展.微生物学报,41(1):121~125
    李文均,唐蜀昆,王栋,徐丽华,姜成林.2004.新疆青海中度嗜盐放线菌生物多样性初步研究.微生物学报,44(2):1~7
    李晓明,杨劲松,刘梅先,余世鹏.2011.南疆膜下滴灌棉花花铃期土壤盐分分布研究.土壤,43(2):289~292
    李晓宇,胡明,朱宝成,马平.2004.氨基酸铜对棉花黄萎病株几种酶活性的影响.棉花学报,16(3):152~155
    李雪玲,厉云,张天宇.2003.利用拮抗真菌防治棉花黄萎病.棉花学报,15(1):26~28
    李延军,菲利蒲,李庆基.1990.中国棉花黄萎病菌营养体亲和性的研究.棉花病虫害综合防治及研究进展.中国农业科技出版社.364~369
    李彦斌,刘建国,李凤,刘淑娟,耿伟.2008.棉花植株水浸提液化感效应的研究.中国生态农业学报,16(6):1489~1494
    李艳,杨家荣,张慧霞,周书涛,许楠.2007b.棉花黄萎病菌营养亲和性研究.西北农业学报,16(6):203~206
    李艳,杨家荣.2007a.土壤棉花黄萎病菌致病力分化的初步研究.棉花学报,19(4):291~295
    李艳宾,张琴,万传星,龚明福,张利莉.2009.棉秆腐解物的化感作用及其主要化学成分分析.棉花学报,21(6):497~502
    李毅.2004.根际链霉菌对棉花黄萎病的防病作用初步研究.[硕士学位论文].长沙:湖南农业大学
    李颖章,韩碧文,简桂良.2000.黄萎病菌毒素诱导棉花愈伤组织中POD、SOD活性和PR蛋白的变化.中国农业大学学报,5(3):73~79
    李增波,薛泉宏,梁军峰,石国亮,李文斌.2009.一株生防放线菌AL-04的防病促生作用.农药,48(1):74~76
    李正里,李荣敖.1980.棉花黄萎病病叶解剖.植物学报,22(1):11~15
    梁军锋,薛泉宏,牛晓磊,李增波.2005.7株放线菌在辣椒根部定殖及对辣椒叶片的PAL与PPO活性的影响.西北植物学报,25(10):2118~2123
    梁军锋.2006.辣椒疫病的防病促生效应、作用机制及应用研究.陕西:西北农林科技大学
    梁启美,齐东梅,贾洁,惠明,牛天贵.2005.棉花黄、枯萎病拮抗菌的筛选及抗菌蛋白B110-a的初步测定.植物保护,31(5):25~28
    梁亚萍,宗兆锋,马强.2005.6株野生植物内生放线菌防病促生作用的初步研究.西北农林科技大学学报:自然科学版,35(7):131~137
    廖中元,柴勇,何正明,邓先明,朱玉香,秦森荣.2001.人工接种棉花黄萎病菌种子包衣效果研究.西南农业大学学报,23(1):16~21
    林玲,张爱香,陈志石,顾本康,王跃.江苏省棉花黄萎病菌培养特性与致病力的相关性研究.江苏农业科学,(2):49~51
    刘大群,杨文香.1999.拮抗链霉素菌Men-myco-93-63及其发酵液对棉花黄萎病菌生长的影响.河北农业大学学报,22(4):79~82
    刘海洋,王兰,努尔孜亚,武刚,毕海燕,杨森.棉田深翻对棉花黄萎病发病及其微菌核分布影响的初步研究.新疆农业科学,47(5):932~935
    刘建国.2008.新疆棉花长期连作的土壤环境效应及其化感作用的研究.[博士学位论文].江苏:南京农业大学
    刘蕾.2009.新疆土壤盐分的组成和分布特征.干旱环境监测,23(4):227~229
    刘润进,裘维蕃.1994.内生菌根菌诱导植物抗病性研究的新进展.植物病理学报,24(1):1~5
    刘新虎,赵小亮,万传星,张利莉.2009.棉花根系分泌物对棉苗生长及生理活性的影响.棉花学报,21(4):33~封三
    刘学堂,宋晓杆,郭金城,孙君灵.1995.棉花黄萎病诱导抗性研究初报.棉花学报,7(2):128
    刘学堂,宋晓轩,郭金城.1998.棉花黄萎病菌的研究及最新进展.棉花学报,10(1):6~13
    刘振伟,史秀娟,崔爱平.2001.棉花黄萎病菌提取物对棉花的抗病效果.中国生物防治,17(2):96
    陆家云,佘长夫,鞠理红,方中达.1983.江苏省棉花黄萎病菌致病力的分化.南京农学院学报,(1):36~43
    吕金殿,甘莉,郭西风.1990.棉花黄萎病菌毒素研究:粗毒素与致萎力.棉花病虫害综合防治及研究进展.中国农业科技出版社.354~357
    吕金殿,甘莉,牛淑贞,郭西风.1988.棉花黄萎病菌致萎毒素的初步研究.西北农业大学学报,16(1):17~21
    吕金殿,甘莉,阎龙飞.1991.棉花黄萎病菌毒素的纯化与特性研究.植物病理学报,21(2):129~133
    吕跃东,王勇,张文革,何璐,张丽,孟野,孔宪滨.2007.绿色木霉烯酰吗啉水分散片剂防治棉花黄萎病的研究.安徽农业科学,35(3):772~773
    马存,陈其瑛.1992.我国棉花抗枯黄萎病育种研究进展.中国农业科学,25(l):30~77
    马存,简桂良,孙文姬.1997.我国棉花抗黄萎病病育种现状、问题及对策.中国农业科学,23(3):12~19
    马存,简桂良.1978.荆州棉区棉花黄萎病发生与气象因子关系的研究.植物保护,23(1):35~36
    马存,朱颖初.1985.棉花黄萎病发病与温度的关系.中国棉花,10(6):35~36
    马存.1987.80年代我国棉花抗病育种工作的新进展.中国农学通报,(3):33~34
    马存.2007.棉花枯萎病和黄萎病的研究.中国农业出版社
    马家璋.1989.我国棉花生产发展历程及今后战略.中国棉花,(6):7~10
    马江锋,张丽萍,易海艳,高峰,李国英.2007.地膜棉田黄萎病发生与气象因子关系的初步研究.石河子大学学报,25(5):541~544
    马林,陈红兵,韩巨才,刘慧平.2008.植物内生放线菌Lj20的鉴定及其抗真菌物质的合成.微生物学报,48(7):900~904
    马平,李社增, Huang H C,唐文华,陈新华.2001.利用棉花体内非致病镰刀菌防治棉花黄萎病.中国生物防治,17(2):71~74
    马平.2003.棉花黄萎病生物防治研究进展.河北农业科学,7(3):38~44
    马远莉,甘莉,吕金殿.1990a.棉花各部位黄萎病菌在导管中的分布.陕西农业科学,(5):1~2
    马远莉,甘莉,吕金殿.1990b.棉花黄萎病株解剖.中国棉花,(5):44~45
    马峙英,刘叔青,王省芬,张桂寅,孙济中,刘金兰.2000.过氧化物酶同工酶与棉花黄萎病抗性的相关研究.作物学报,26(4):43l~437
    马峙英,孙济中,刘金兰,王省芬.1998.现代生物技术在棉花黄萎病菌分化研究中的应用.河北农业大学学报,21(2):102~111
    马峙英,王省芬,张桂寅,李兴红,刘叔倩,吴立强,刘占国,孙济中,刘金兰.1997.河北省棉花黄萎病菌致病性的研究.棉花学报,9(1):15~20
    毛宁,薛泉宏,唐明.2010.两株放线菌对土壤中苯甲酸和对羟基苯甲酸的降解作用.西北农林科技大学学报:自然科学版,38(5):143~148
    毛树春,刑金松,刘传亮,宋美珍.1996.棉花抗氧化系统对黄萎病的反应.棉花学报,8(2):92~96
    孟娜,汤斌,欧阳明,王岚岚,刘海涛.2007.木霉菌对棉花黄萎病菌拮抗的作用.植物生理科学,23(1):88~91
    孟庆芳,张汀,杨文香,田世民,刘大群.2002.拮抗链霉菌S23发酵条件的研究.中国生物防治,18(2):79~81
    孟亚利,王瑛,王立国,陈兵林,张立桢,束红梅,周治国.2006.麦棉套作复合根系群体对棉花根系生长的影响.中国农业科学,39(11):2228~2236
    缪卫国,田逢秀.1999.新疆棉花枯、黄萎病发生趋势及研究现状.新疆农业科学,(3):107~109
    缪卫国,王灵燕,张升,努尔孜亚,盛明东,金伟,谭志环.2004.含hrp基因生物诱抗剂对棉花黄萎病调控作用研究.新疆农业科学,41(5):299~302
    牟金明,李万辉,张凤霞,姜岩.1996.根系分泌物及其作用.吉林农业大学学报,18(4):114~118
    睦书祥.1995.棉花抗黄萎病育种研究初级报.中国棉花,22(6):12~13
    倪国荣,潘晓华,张智平,涂国全.2011.生防菌弗氏链霉菌S-221所产抗菌物质的抗菌活性测定.江西农业大学学报,33(2):355~359
    牛赡光,张淑静,王太明,吴玉柱,刘乃芸,吕宁.2006.化学农药对棉花黄萎病菌和生防菌的选择毒性.中国生物防治,22(1):49~53
    努尔孜亚亚力买买提,刘海洋,玛依拉吐拉普,杨森.2010.新疆棉花黄萎病菌生物学特性及致病性分化研究.新疆农业科学,47(6):1157~1161
    潘学标,邓绍华,崔秀稳.1994.黄萎病对棉花叶片光合效率和棉株生长的影响.棉花学报, S1:64
    裴炎,张风鑫,梅选民.1989.对黄萎病不同抗性的棉花品种(系)的酯酶同工酶等电聚焦谱带分析.西南农业大学学报,11(1):90~92
    齐东梅,梁启美,惠明,牛天贵.2005.棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性.微生物学通报,32(4):42~46
    全国棉花枯、黄萎病综合防治研究协作组.1976.棉花枯萎病和黄萎病.北京:农业出版社
    任爱霞,胡家恕,祝水金,季道藩.2002.棉花黄萎病抗性与过氧化物酶同工酶分析.棉花学报,14(5):273~276
    任旭,朱振东,李洪杰,段灿星,王晓鸣.2012.轮枝镰孢SSR标记开发及在玉米分离群体遗传多样性分析中的应用.中国农业科学,45(1):52~66
    阮继生.1977.放线菌分类基础.北京:科学出版社:77~104
    阮继生.2005.放线菌纲内亚纲、目、亚目、科的16S rDNA/rRNA特征序列简介.微生物学通报,32(3):129~134
    阮维斌,王敬国,张福锁,申建波.1999.根际微生态系统理论在连作障碍中的应用.中国农业科技导报,(4):53~57
    申建波,张福锁.1994.根分泌物的生态效应.中国农业科技导报,(4):21~27
    沈其益.1992.棉花病害-基础研究与防治.科学出版社
    石磊岩,冯洁,王莉梅,简桂良.1997.北方植棉区棉花黄萎病菌生理分化类型研究.棉花学报,9(5):273~280
    石磊岩,王波,文学.1993.我国棉花黄萎病菌类型分化及培养特性研究.植物保护学报,20(3):247~252
    石磊岩.1994.棉花黄萎病菌的研究.世界农业.(3):38~39.
    石磊岩.1999.棉花黄萎病灾害因素分析.中国棉花,26(7):8~9
    石岩磊.1995.我国棉花黄萎病研究进展.棉花学报,7(4):243~245
    史俊东,杨苏龙,陈艳英,张卫民,石跃进.2007.“根正”防治棉花苗病及黄枯萎病试验报告.中国棉花,(11):17
    宋凤鸣,郑重.1995.细胞壁羟脯氨酸和游离脯氨酸与棉花对枯萎病抗性的关系.植物生理学报,21(3):235~241
    宋晓妍,陈秀兰,孙彩云,解树涛,张玉忠.2005.棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究.山东大学学报:理学版,40(6):98~102
    宋兴舜,任静,刘雪梅,马双,杨传平.2009.光合菌对黄瓜光合及抗氧化同工酶的影响.植物学报,44(5):587~593
    孙炳剑,杨凤翔,刘建华,汪敏,李洪连,胡松林.2008.不同种子处理剂对棉苗病虫害的防治效果及促生作用.中国棉花,(2):20~21
    孙济中,陈布圣.1999.棉作学.北京:中国农业出版社
    孙敬祖,薛泉宏,唐明,曹书苗,刑胜利.2009.放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用.西北农林科技大学学报:自然科学版,37(12):153~158
    孙君灵,宋晓轩,朱荷琴.1998.棉花枯、黄萎病种子带菌量的探讨.中国棉花,25(6):11~12
    孙婷,来航线,索岩军.2010.高盐环境中抗动物病原菌拮抗放线菌筛选及发酵条件优化.西北农业学报,19(5):177~181
    孙小芳,刘友良.1998.棉花耐盐性研究进展.棉花学报,10(3):118~124
    孙洋,王春玲,曹小红.2008.家蝇蛹中多酚氧化酶的分离纯化及抑菌活性的研究.天津科技大学学报,23(3):13~15
    谭斌.2007.新疆棉花产量的分析与预测.安徽农业科学,35(19):5693~5694
    谭联望.1982.我国棉花抗枯黄萎病育种的进展.中国农业科学,(3):16~22
    唐启义,冯光明.2002.使用统计分析及其DPS数据处理系统.北京:科学出版社
    唐蜀昆,李文均,张永光,徐丽华,姜成林.2003.嗜盐放线菌生物学特性初步研究.微生物学通报,30(4):15~19
    田黎,王克荣,陆家云.1998a.多菌灵、三环唑对大丽轮枝菌微菌核、黑色素形成及致病力的影响.植物病理学报,28(3):263~268
    田黎,王克荣,陆家云.1998b.匐柄霉对大丽轮枝菌生长及微菌核形成的影响.中国生物防治,14(1):14~17
    田秀明,杜利锋.1991.棉花对枯黄萎病的抗性与过氧化物酶活性的关系.植物病理学报,21(2):94
    田秀明.1995.山西棉花黄萎病菌致病力分化与其类型和生理的关系.植物保护,21(3):8~10
    涂璇,薛泉宏,张宁燕,牛晓磊.2007.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响.西北农林科技大学学报:自然科学版,35(6):141~146
    汪红,刘辉,袁红霞,王烨,李洪连.2001.棉花黄萎病不同抗性品种接菌前后体内酶活性及酚类物质含量的变化.华北农学报,16(3):46~51
    汪红,王烨,袁红霞,房卫平,李洪连,王家典.1999.酚类物质含量与棉花抗黄萎病性能关系研究.中国棉花,26(10):16~17
    王倡宪,郝志鹏.2008.丛枝菌根真菌对黄瓜枯萎病的影响.菌物学报,27(3):395~404
    王倡宪,李晓林,宋福强,王贵强,李北齐.2012.两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响.中国生态农业学报,20(1):53~57
    王春霞,王道本,周启.1997.棉花根际促生菌筛选菌株的分类鉴定.华中农业大学学报,16(1):29~32
    王法宏,王旭清,刘素英,王晓理.1997.根系分布与作物产量的关系研究进展.山东农业科学,(4):48~51
    王克荣,陆家云.1982.大丽轮枝菌培养性状的变异.植物病理学报,12(1):19~22
    王兰英,宗兆锋,刘正坪.2005.大丽轮枝孢和灰葡萄孢生防放线菌的分离筛选.西北农林科技大学学报:自然科学版,33(增刊):153~156
    王娜,许雷.2007.棉花黄萎病、枯萎病拮抗细菌的筛选及其生长特性的研究.植物保护,33(6):39~43
    王攀,杨自文,胡洪涛,王开梅,张凤.2007.作物根际拮抗菌的筛选及其活性的研究.湖北农业科学,46(2):236~238
    王璞,赵秀琴.2001.几种化感物质对棉花种子萌发及幼苗生长的影响.中国农业大学学报,6(3):26~31
    王茹华,张启发,周宝利,廉华,马光恕.2007.浅析植物根分泌物与根际微生物的相互作用关系.土壤通报,38(1):167~172
    王汝贤,杨之为,李有志,王瑶.1998.棉花抗枯萎病品种连作田微生物数量变化Ⅱ:棉花枯萎病抑病土成因.西北农业学报,7(3):54~58
    王淑民,魏晓文,项时康.1997.21世纪初期我国棉业发展趋向预测.中国棉花,24(10):2~7
    王淑民.2007.世界棉花生产与政府政策.世界农业,(7):8~10
    王涛,王占利,李术娜,郭晓军,朱宝成.2010.棉花黄萎病拮抗细菌DS45~2菌株在土壤和棉花根内的定殖.棉花学报,22(2):169~174
    王未名,陈建爱,孙永堂,曾昭海,时香玉.1999.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治,15(3):142~143
    王燕,宗兆锋,程联社.2005.放线菌在植物病害生物防治中的应用.杨凌职业技术学院学报,4(3):21~23
    王宜磊,赵良田.1999.彩绒革盖菌多酚氧化酶活性研究.植物学通报,16(4):454~456
    王永卫,卢国政,卢凤超,宋妹芝.2004.生物制剂9.5%克黄枯防治棉花枯、黄萎病效果好.中国棉花,31(2):33~34
    王友升,陈玉娟,张燕.2012.李果实贮藏期间4株病原真菌的分离、鉴定及碳源代谢指纹图谱分析.食品科学,33(13):235~239
    王忠义,赵敬霞.1994.棉花黄萎病的抗性表现及选择.中国棉花,21(7):181
    危晓薇,师维军,葛峰,徐利民,王义琴,黄全生,吾买尔江.2007.新疆陆地棉转基因抗病品系材料的获得.新疆农业科学,44(4):402~407
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社:609~615
    魏晓文.1996.中国棉花生产特性与生产预测.中国棉花,23(2):9~12
    魏晓文.2000.加入WTO对我国棉花生产的影响.中国棉花,27(8):20~21
    吴蔼民,顾本康,傅正擎,胡波.2000.内生菌对棉花黄萎病的田间防效及增产作用.江苏农业科学,5:38~39
    吴蔼民,顾奉康,傅正擎,蒋正峰.2002.内生菌73a防治棉花黄萎病机理.江苏农业学报,18(1):48~51
    吴蔼民,夏正俊,顾本康.1998.棉花不同生育期SOD同工酶与品种抗黄萎病性相关性的研究.棉花学报,10(2):96~100
    吴凤芝,赵凤艳.2003.根系分泌物与连作障碍.东北农业大学学报,34(1):114~118
    吴进菊,陈红兵,高金燕,刘潇,程伟.2010.多种食用菌中多酚氧化酶活性的初步比较.食品与机械,26(2):79~81
    吴献忠.1992.棉花黄萎病菌致病机理的初步研究.莱阳农学院学报,9(3):235~237
    吴询耻,王学军.1990.诱导棉花抗黄萎菌的研究Ⅱ尖抱镰刀菌的诱导作用.植物病理学报,20(3):225~228
    吴洵耻,李桂舫.1986.棉花黄萎病菌毒素生物测定技术初探.山东农业大学学报,17(1):82~89
    吴洵耻,刘波.1987.棉花黄萎菌菌株间交叉保护作用的研究.植物病理学报,17(4):215~216
    吴洵耻,杨翠云,姜士理.1984.山东省棉花黄萎病菌“种”的鉴定.山东农业大学学报,(1-2):105~112
    吴玉香,沈晓佳,房卫平,金奎英,祝水金.2007.陆地棉根系分泌物对黄萎病菌生长发育的影响.棉花学报,19(4):286~290
    夏正俊,顾本康,李经仪,陈春泉.1991.棉花品种抗黄萎病性与生化成分相关分析.中国农业科学,24(1):92
    夏正俊,顾本康,吴蔼民,李经仪,陈轶林,陈小波.1994.棉花品种抗黄萎病性与体内生化成分相关分析.植物保护学报,21(4):305~310
    夏正俊,顾本康,吴蔼民.1996.植物体内生及根土壤内生细菌诱导棉花对大丽轮枝菌抗性的研究.中国生物防治,12(l):7~10
    夏正俊,顾本康,吴蔼民.1997.棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化.江苏农业学报,13(2):99~101
    徐丽华,李文均,刘志恒,姜成林.2007.放线菌系统学—原理、方法及实践.北京:科学出版社:40~45
    徐平,李文均,姜成林.2002.链霉菌分类方法学研究近展.微生物学杂志,22(5):54~57
    徐荣旗,石磊岩.2000.棉花黄萎病菌致害棉株叶片内源激素的动态变化.棉花学报,12(6):310~312
    徐瑞富,陆宁海,李小丽,陈翠玲.2004.土壤微生物群落对棉花黄萎病的影响.棉花学报,16(6):357~359
    徐同,宋凤鸣,沈瑛.2003.哈茨木霉NF9菌株对水稻的诱导抗病性.中国生物防治,(3):111~114
    许楠,张慧霞,杨家荣,李艳.2008.陕西关中地区棉花黄萎菌营养亲和性研究.棉花学报,20(5):364~367
    许英俊,薛泉宏,邢胜利,周永强,张晓鹿,郭志英,杨斌.2008.3株放线菌对草莓的促生作用及对PPO活性的影响.西北农业学报,17(1):129~136
    雪玲,张天宇,王立新.1997.棉黄萎病菌微菌核研究进展.植物保护,(5):35~37
    闫建芳,齐小辉,高晓梅,刘秋,刘炳辉,程浩.2008.拮抗放线菌B-20的种类鉴定及其16S rDNA序列分析.微生物学杂志.28(3):26~29
    阎逊初.1992.放线菌的分类和鉴定.科学出版社
    颜霞,林雁冰,李慧芬.2009.拮抗放线菌111A202的种类鉴定及其16S rDNA序列分析.中国农学通报,25(14):67~69
    杨合同,唐文华,王加宁,徐砚珂,肖斌.2002.几丁质和杀菌剂对生物防治菌生长及其防治棉花病害效果的影响.植物病理学报,32(4):326~331
    杨家荣,吕金殿,吉冉中.1994. Nit突变体营养亲和性技术在棉花黄萎病菌生理型测定中的应用.植物病理学报,24(3):257~258
    杨家荣,商鸿生,高立强.2004.土壤环境因素对棉花黄萎病菌微菌核存活的影响.植物病理学报,34(2):180~183
    杨家荣.1992.大丽轮枝菌Nit突变体产生及其营养亲和性测定.西北农业学报,1(1):47~52
    杨良,史应武,吴忠红,娄恺.2009.甜瓜细菌性斑点病拮抗菌P-13的鉴定及其抑菌物质的初步研究.微生物学通报,36(6):881~886
    杨之为,王汝贤,宗兆峰,王守明,王春江.1995.棉花枯萎病抑菌土成因初探Ⅰ棉根系分泌物对棉花枯萎菌的影响.西北农业学报,(4):63~68
    姚焕章,王玉梅.1981.木霉对棉黄萎菌拮抗作用的研究.中国棉花,(2):43~44
    姚明镜,张献龙,刘金兰,孙济中.1995.陆地棉抗黄萎病细胞系几个生理生化指标的测定.华中农业大学学报,14(4):338~343
    姚耀文,朱颖初,石磊岩.1984.长江流域棉区黄萎病菌“种”的鉴定简报.植物保护,10(4):145~148
    叶鹏盛,曾华兰,谭永久,韦树谷,何炼.2006.棉花抗黄萎病性与经济性状的遗传关系分析.西南农业学报,19(2):231~234
    尹莘耘,陈吉棣,杨开宇,陈騳,耿殿棨.1955.防治棉病中抗生菌的选择、繁殖及其田间效果初报.植物病理学报,1(1):101~114
    尹莘耘,耿殿棨,杨开宇,陈騳.1957.棉花黄萎病生物防治试验续报.植物病理学报,3(1):55~61
    游长芬.1986.土壤微生物中的放线菌.土壤学进展,(3):1~5
    俞苓,刘民胜,陈有容.2003.杏鲍菇液体培养中胞外酶活性变化.食用菌,(1):7~8
    喻宁莉,陶小谷,王雪薇,蔡瑞伟.2000.新疆棉花黄萎病菌营养体亲和性的量化评估及其营养体亲和群体研究.新疆农业大学学报,23(1):7~11
    袁红霞,秦粉菊.2006.棉花黄萎病菌激发子对棉花黄萎病的诱抗作用.湖北农业科学,45(6):716~719
    袁洪水,马平,李术娜,胡明,朱宝成.2007.棉花黄萎病拮抗细菌的筛选与抗菌物分析.棉花学报,19(6):436~439
    袁虹霞,李洪连,王烨,房卫平,王振跃.2002.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,32(2):127~131
    张波,吴文君,宗兆锋.2005.放线菌Z139菌株的分离、鉴定及其生物活性.西北农林科技大学学报:自然科学版,33(8):69~72
    张铎,解莉,张丽萍,赵宝华.2007.棉花黄萎病生物防治研究.安徽农业科学,35(11):3302~3303
    张铎,谢莉,张蕾,张丽萍,赵宝华.2008.棉花黄萎病拮抗内生菌的筛选鉴定及抗菌物质研究.河北师范大学学报,32(5):673~678
    张福锁,申建波.1999.根际微生态系统理论框架的初步构建.中国农业科技导报,1(4):15~19
    张福锁.1992.根系分泌物及其在植物营养中的作用.北京农业大学学报,18(4):353~356
    张海涛,靳艳,虞星炬,张卫.2005.16S rDNA-RFLP分析繁茂膜海绵可培养放线菌的多样性.微生物学报,45(6):828~831
    张洪涛,于频频,艾山江·阿布都拉,徐田枚,吾甫尔·米吉提.2007.棉花黄萎病高效拮抗菌XJUL-6的筛选鉴定及其特性研究.微生物学报,47(6):1084~1087
    张纪忠.1990.微生物分类学.上海:复旦大学出版社
    张进霞,袁洪水,王士英,韩继刚,朱宝成.2006.几种氨基酸铜对大丽轮枝菌微菌核形成的抑制作用.棉花学报,18(1):58~59
    张克诚,李研学,贾恩宽,林德忻,张福锁.2002.拮抗链霉菌S-5对棉花病害的防治作用.中国农学通报,18(2):26~29
    张莉,段维军,李国英,杨之为.2006.新疆棉花黄萎病菌病原种群监测研究.西北农林科技大学学报:自然科学版,34(11):189~193
    张丽萍,李国英,刘政.2006.不同灌水方式对棉花黄萎病发病的影响.石河子大学学报,24(2):190~191
    张利平,陈冠华.1997.放线菌化学分类学的现状及发展趋势.微生物学通报,24(5):310~312
    张世平.1996.棉花枯黄萎病生物防治新途径.中国棉花,23(7):4~6
    张绪振,张树琴,陈吉棣,李庆基,陈壁,姚跃文.1981.我国棉花黄萎病菌“种”的鉴定.植物病理学报,11(3):13~18
    张雪林,宣望清.1995.我国棉花黄萎病的研究进展.棉花学报,22(4):4~6
    张妍,张建丽,牛宁昌.2007.放线菌的分子分类.微生物学杂志,27(4):79~82
    张楹.2006.侧孢芽孢杆菌产生的抑真菌蛋白酶.中国生物防治,22(2):146~149
    张豫,王立洪,陈秀龙,王则玉,胡顺军.2009.土壤含盐量对棉花发芽率及幼苗生长的影响.中国棉花,12:13~16
    张志铭,宋福,孙淑贞,赵文胜.2003.河北鸭梨黑斑病病原菌的鉴定.植物检疫,17(4):212~214
    张宗海.2008.棉花病害防治技术.河北农业科技,(4):21
    章元寿,王建新,方中达.1992.大丽轮枝菌毒素的脂肪组分对棉花致萎活性研究.真菌学报,11(3):229~233
    章元寿,王建新,刘经芬,方中达.1989.大丽轮枝菌毒素的分离、提纯及生物测定.真菌学报,8(2):140~141
    章元寿,王建新,周明国.1991.大丽轮枝菌毒素的多糖组份对棉花致萎作用的研究.真菌学报,10(2):155~158
    赵冰梅,李贤超,王俊刚.2012.2011年新疆兵团棉花病虫害发生特点及原因分析.中国棉花,39(3):9~11
    赵建军,孔宪良,李保良,徐勤卫,张勇,邓长军,王芹,夏冬力,陈守亮,马丽,王飞飞.2007.2%宁南霉素对棉花黄萎病的防治效果.中国棉花,(11):16
    赵娟,薛泉宏,唐明.2009.伽师甜瓜猝倒病生防放线菌的筛选.西北农林科技大学学报:自然科学版,37(5):144~148
    赵娟.2012.连作甜瓜蔓根真菌病害发生与放线菌生物防治研究.[博士学位论文].陕西:西北农林科技大学
    赵昕,宋瑞清,阎秀峰.2009.接种AM真菌对喜树幼苗生长及光合特性的影响.植物生态学报,33(4):783~790
    郑倩,李俊华,危常州,褚贵新.2012.不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响.棉花学报,4:363~369
    中国科学院微生物研究所放线菌分类组.1975.链霉菌鉴定手册.北京:科学出版社
    周德庆.2002.微生物学教程.高等教育出版社
    周关印.1999.论我国棉花生产的可持续性发展.中国棉花加工,(5):40~41
    周艳芬,杜红方,袁洪水,张元亮,朱宝成.2007.棉花黄萎病拮抗蛋白的分离与纯化.棉花学报,19(2):98~101
    周永强,薛泉宏,杨斌,张晓鹿,许英俊,郭志英,林超峰.2008.生防放线菌对西瓜根域微生态的调整效应.西北农林科技大学学报:自然科学版,36(4):143~150
    朱荷琴,冯自力,李志芳,赵丽红,师勇强,尹志新.2011.转几丁质酶和葡聚糖酶双价基因棉花株系对黄萎病的抗性.棉花学报,23(1):58~63
    朱荷琴,冯自力,宋晓轩,刘雪英.2007.22种中药提取物对棉花黄萎病菌的抑菌活性.棉花学报,19(6):489~492
    朱荷琴,宋晓轩,简桂良.2004.棉花黄萎病菌致病力变异生理机制的初步研究.棉花学报,16(5):275~279
    朱荷琴,宋晓轩,孙君灵,苗子胜.1999.棉花黄萎病菌安阳菌系致病类型变异研究.棉花学报,11(6):312~317
    朱荷琴,宋晓轩,孙君灵,徐春英.1998.国家棉花品种区域试验90年代参试品种抗病性评述.棉花学报,10(6):303~306
    朱荷琴,宋晓轩,刑金松,郭金城.1995.棉花的抗氧化系统与其抗黄萎病的关系.华北农学报,10(增刊):130~133
    朱荷琴,宋晓轩,邢金松,郭金城.1994.不同抗性品种抗氧化系统对棉花黄萎病的反应.棉花学报,6(4):256
    朱荷琴,宋晓轩,简桂良.2003.温度胁迫对棉花黄萎病菌致病力的影响.棉花学报,15(1):33~36
    朱启荣,田新建,张旭青.2004.基于比较利益的中国棉花种植空间布局变化的成因分析—对湖北、山东和新疆三省(区)的实证分析.农业现代化研究,25(5):340~343
    朱忠彬,吴秉奇,丁延芹,陈晓明,张长华,杜秉海,王玉军.2012.短短芽孢杆菌DZQ3对烟草的促生及系统抗性诱导作用.中国烟草科学,33(3):92~96
    宗兆锋,卫亚红,高利,薛洋,杨之为.2003.几丁质降解放线菌对棉花枯、黄萎菌的作用.西北农林科技大学学报:自然科学版,31(6):63~65
    邹勇,周鑫,王落霞,徐定良,胡德玉.1997.江汉植棉区黄萎病发病规律研究初报.中国棉花,24(10):10~12
    左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若.2009. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系.植物病理学报,39(6):600~607
    Alexopoulos C J, Mims C W, Blackell M.1996. Introductory Mycology. New York: John Wiley&Sons Inc.25~38
    Antonopoulos D F, Tjamos S E, Antoniou P P, Rafeletos P, Tjamos E C.2008. Effect of Paenibacillusalvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. BiologicalControl,46(2):166~170
    Aquino-Bola os E N, Mercado-Silva E.2004. Effects of polyphenol oxidase and peroxidase activity,phenolics and lignin content on the browning of cut jicama. Postharvest Biology and Technology,33:275~283
    Arai T, Mikami Y.1972. Chromogenicity of Streptomyces. Applied and Environmental Microbiology,23(2):402~406
    Bahaev F V.1964. Role of tannins in the resistance of varieties of cotton wilt. Chemistry Abstract,64:1021~1028
    Baharlouei A, Sharifi-Sirchi G R, Shahidi BGH.2010. Identification of an antifungal chitinase from apotential biocontrol agent, Streptomyces plicatus strain101, and its new antagonistic spectrum ofactivity. The Philippine Agricultural Scientist,93(4):439~445
    Ball A S, Betts W B, McCarthy A J.1989. Degradation of Lignin-related compounds by actinomycetes.Applied Environmental Microbiology,55(6):1642~1644
    Barakate M, Ouhdouch Y, Oufdou K, Beaulieu C.2002. Characterization of rhizospheric soilStreptomycetes from Moroccan habitats and their antimicrobial activities. World Journal ofMicrobiology and Biotechnology,18:49~54
    Basak K, Majumdar SK.1973. Utilization of carbon and nitrogen sources by streptomyceskanamyceticus for kanamycin production. Antimicrobial Agents and Chemotherapy,4(1):6~10
    Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji M, BarakateM.2012. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacteriumatrosepticum by Moroccan actinobacteria isolates. World Journal of Microbiology andBiotechnology,28:303~311
    Bedi P S, Presley J T.1969. Temperature effects upon resistance and phytoalexin synthesis in cottoninoculated with Verticillium albo-atrum. Phytopathology,59:1141~1146.
    Bell A A.1967. Formation of gossypol in infected or chemically irritated tissues of Gossypium species.Phytopathology,57:759~764
    Bell A A.1969. Phytoalexin production and Verticillium wilt resistance in cotton. Phytopathology,59:1119~1127
    Berg G, Ballin G.1994. Bacterial antagonists to Verticillium dahliae Kleb. Journal ofPhytopathology-Phytopathologische Zeitschrift,141(1):99~110
    Booth, J. A.1969. Gossypium hirsutum tolerance to Verticillium albo-atrum infection. I. Amino acidexudation from aseptic roots of tolerant and susceptible cotton. Phytopathology,9:43~46
    Boukaew S, Chuenchit S, Petcharat V.2011. Evaluation of Streptomyces spp. for biological control ofSclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl,56(3):365~374
    Budi S W, Tuinen Dvan, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S.2000.Hydrolytic enzyme activity of paenibacillus sp. strain b2and effects of the antagonisticbacterium on cell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology,15(2):191~199
    Buxton E W, Richards M G.1955. Pathogenic strains of Fusarium oxysporum fr. distinguished bytheir differential tolerance to inhibition by various actinomycetes. Journal of GeneralMicrobiology,13:99~102
    Chang Y C, Chang C Y, Baker R.1986. Increased growth of plants in the presence of the biologicalcontrol agent Trichoderma harzianum. Plant Disease,70(2):145~148
    Chen F, Wang M, Zheng Y, Luo J M, Yang X R, Wang X L.2010. Quantitative changes of plantdefense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilisB579. World Journal of Microbiology and Biotechnology,26:675~684
    Chen K, Arora J.2011. Dynamics of the antioxidant system during seed osmopriming, post-priminggermination, and seedling establishment in Spinach (Spinacia oleracea). Plant Science,180:212~220
    Chen S Y, Dong H Z, Fan Y Q, Li W J, Cohen Y.2006. Dry mycelium of Penicillium chrysogenuminduces expression of pathogenesis-related protein genes and resistance against wilt diseases inBt transgenic cotton. Biological Control,39(3):460~464
    Chun J, Lee JH, Jung Y, Kim M., Kim S, Kim BK, Lim YW.2007. EzTaxon: a web-based tool for theidentification of prokaryotes based on16S ribosomal RNA gene sequences. International Journal ofSystematic and Evolutionary Microbiology,57,2259~2261
    Cimen I, Basbag S, Temiz M, Sagir A.2004. The effect of Paclobutrazol, growth retardant, on cottongrowth and Verticillium wilt (Verticillium dahliae Kleb.). Plant Pathology Journal,3(1):35~39
    Colson-Hanks E S, Deverall B J.2000. Effects of2,6-dichloroisonicotinic acid, its formulation materialsand benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathology,49(2):441~456
    Conn V M, Walker A R, Franco, C M M.2008. Endophytic actinobacteria induce defense pathways inArabidopsis thaliana. Molecular Plant-Microbe Interactions,21:208~218
    Cubukcu N, Benlioglu K.2007. Biological control of Verticillium wilt of cotton by endophytic bacteria.Bulletin OILB/SROP,6(2):371~375
    Cui Y X, Bell A A, Joost O, Magill C.2000. Expression of potential defense response genes in cotton.Physiological and Molecular Plant Pathology,56:25~31
    Daayf F, Nicole M, Geiger J P.1995. Differentiation of Verticillium dahliae populations on the basis ofvegetative compatibility and pathogenicity on cotton. European Journal of Plant Pathology,101(1):69~79
    Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, H fte M.2007. Biosurfactants areinvolved in the biological control of Verticillium microsclerotia by Pseudomonas spp. Journal ofApplied Microbiology,103(4):1184~1196
    Devereux R, He S H, Doyle C L, Orkland S, Stahl D A, LeGall J, Whitman W B.1990. Diversity andorigin of Desulfovibrio species: phylogenetic definition of a family. Journal of Bacteriology,172(7):3609~3619
    Dilbagh S, Brinkerhoff L A, Guinn G.1971. Effect of alanine on development of Verticillium with incotton cultivars with different levels of resistance. Phytopathology,61:881~882
    Dimond, A E.1970. Biophysics and biochemistry of the vascular wilt syndrome. Annual Review ofPhytopathology,8:301~322
    Dong H Z, Li W J, Zhang D G, Tang W.2003. Differential expression of induced resistance by anaqueous extract of killed penicillium chrysogenum against Verticillium wilt of cotton. CropProtection,22(1):129~134
    Dong H Z, Zhang X K, Choen Y, Zhou Y, Li W J, Li Z H.2006. Dry mycelium of Penicilliumchrysogenum protects cotton plants against wilt diseases and increases yield under field conditions.Crop Protection,25(4):324~330
    Dubery Ian A, Slater V.1997. Induced defence response in cotton leaf disks by elicitors from Verticilliumdahliae. Phytochemistry,44:1429~1434
    Dutta B K, Isaac I.1979. Effects of organic amendments to soil on the rhizosphere microflora ofantirrhinum infected with Verticillium dahliae Kleb. Plant and Soil,53:99~103
    El-Mehalawy A A, Naziha H M., Hend K M, El-Zahraa K A, Youssef Y A.2004. Influence of maize rootcolonization by the rhizosphere actinomycetes and yeast fungi on plant growth and on the biologicalcontrol of late wilt disease. International Journal of Agriculture and Biology,6:599~605
    El-Tarabily K A., Nassar A H, Hardy G, Sivasithamparam K.2009. Plant growth promotion and biologicalcontrol of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. Journalof Applied Microbiology,106:13~26
    Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K.2003. Enzymological characterization of EpoA,a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry,133(5):671~677
    Erdogan O, Benlioglu K.2010. Biological control of Verticillium wilt on cotton by the use of fluorescentPseudomonas spp. under field conditions. Biological Control,53:39~45
    Errakhi R, Lebrihi A, Barakate M.2009. In vitro and in vivo antagonism of actinomycetes isolated fromMoroccan rhizospherical soils against Sclerotium rolfsii: A causal agent of root rot on sugar beet(Beta vulgaris L.). Journal of Applied Microbiology,107:672~681
    Fahima T.1988. Biological control of soil borne Plant Pathogens. Annual Review of Phytopathology,26:75~91
    Felse P A, Panda T.2000. Production of microbial chitinases-A revisit. Bioprocess and BiosystemsEngineering,23(2):127~134
    Fravel D R.1991. In situ evidence for role glucose oxidase in the biocontrol of Verticillium wilt byTalaromyces flavus. Biocontrol of Science and Technology, l(2):91~99
    Garas N A, Waiss A C Jr.1986. Differential accumulation and distribution of antifungal sesguiterpenoidsin cotton stems inoculated with Verticillium dahliae. Phytopathology,76(10):1011~1017
    Garber R H, Houston B R.1966. Penetration and development of Verticillium to pathology.Phytopathology,56:1121~1126
    Garber R H, Presley J T.1971. Relation of air temperature to development of Verticillium wilt on cottonin the field. Phytopathology,61:204~207
    Garmendia I, Aguirreolea J, Goicoechea N.2006. Defence-related enzymes in pepper roots duringinteractions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl,51:293~310
    Ghaffar A.1971. Interactions of actinomycetes with Macrophomina phaseoli (Maubl.) Ashby; the causeof root rot of cotton. Mycopathologia,44:271~276
    Ghose T K.1987. Measurement of cellulase activity. Pure and Applied Chemistry,59(2):257~268
    Gomes R C, Semêdo L, Soares R M, Alviano C S, Linhares LF, Coelho R R.2000. Chitinolytic activity ofactinomycetes from a cerrado soil and their potential in biocontrol. Letters in Applied Microbiology,30(2):146~150
    Goodfellow K, Williams S T.1983. Ecology of Actinomycetes. Annual Review of Microbiology,37:189~216
    Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran B K, Sandeep D, Vidya M S, Deepthi K,Rupela O.2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for thebiological control of Fusarium wilt of chickpea. Crop Protection,30:1070~1078
    G re M E, Caner K, AltIn N, AydIn M H, Erdogan O, Filizer F, Büyükd gerlioglu A.2009. Evaluationof cotton cultivars for resistance to pathotypes of Verticillium dahliae. Crop Protection,28:215~219
    Griffin D H.1994. Fungal physiology. New York: Wiley-Liss.
    Guinn G, Brinkerhoff L A.1970. Effect of root aeration on amino acid levels in cotton plants. CropScience,10(2):175~178
    Gupta R, Saxena R K, Chaturvedi P, Virdi J S.1995. Chitinase production by Streptomyces viridificans:Its potential in fungal cell wall lysis. Journal of Applied Microbiology,78(4):378~383
    Han Y, Wang Y, Bi J L, Yang X Q, Huang Y, Zhao X, Hu Y, Cai Q N.2009. Constitutive and inducedactivities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of Wheat.Journal of Chemical Ecology,35:176~182
    Harrison N A, Beckman C H.1982. Time/space relationships of colonization and host response inwilt-resistance and wilt-susceptible cotton (Gossypium) cultivars inoculated with Verticillium dahliaeand Fusarium oxysporum f. sp. vasinfectum. Physiological Plant Pathology,21(2):193~207
    Hawke M A, Lazarovits G.1994. Prodution and manipulation of individual microselerotia of Verticilliumdahliae for use in studies of survival. Pathology,84(9):883~890
    Huang J L, Li H L, Yuan H X.2006. Effect of organic amendments on Verticillium wilt of cotton. CropProtection,25(11):1167~1173
    Igarashi Y, Iida T, Yoshida R, Furumai T.2002. Pteridic acids A and B, novel plant growth promoterswith auxin-like activity from Streptomyces hygroscopicus TP-A0451. Journal of Antibiotics,55(8):764~767
    Jabnoun-Khiareddine H, Daami-Remadi M, Ayed F, El-Mahjoub M.2009. Biocontrol of tomatoVerticillium wilt by using indigenous Gliocladium spp. and Penicillium sp. isolates. Dynamic SoilDynamic Plant,3(1):70~79
    Jain P K, Jain P C.2007. Isolation, characterization and antifungal activity of Streptomyces sampsonii GS1322. Indian Journal of Experimental Biology,45:203~206
    Jane S W, Richard M C.2003. Elemental sulphur is produced by diverse plant families as a component ofdefence against fungal and bacterial pathogens. Physiological and Molecular Plant Pathology,63(1):3~16
    Jian G L, Ma C, Zhang C L, Zuo Y F.2003. Advances in cotton breeding for resistance to Fusarium andVerticillium wilt in the last fifty years in China. Agricultural Sciences in China,2(3):280~288
    Joaquim T R, Rowe R C.1990. Reassessment of vegetative compatibility relationships among strains ofVerticillium dahliae using nitrate-nonutilizing mutants. Phytopathology,80(11):1160~1166
    Kaur J, Munshi G D, Singh R S, Koch E.2005. Effect of carbon source on production of lytic enzymes bythe sclerotial parasites Trichoderma atroviride and Coniothyrium minitans. Journal ofPhytopathology,153(5):274~279
    Kazakov I, Akhmedzhanov I G, Zel'tser S.Sh, Avazkhodzhaev, M K.1989. Membrane active properties oftoxic metabolite-agent of cotton Verticillium wilt [Study of the mechanism of infection and spreadingof the disease]. Uzbekskij Biologicheskij Zhurnal.(5):8~10
    Keen N T, Long M, Erwin D C.1972b. Possible involvement of a pathogen-producedprotein-lipopolysaccharide complex in Verticillium wilt of cotton. Physiological Plant Pathology,2:317~331
    Keen N T, Long M.1972a. Isolation of a protein lipopolysaccharide complex from Verticilliumalbo-atrum. Physiological Plant Pathology,2(4):307~315
    Keeratipibul S, Sugiyama M, Nimi O, Nimi R.1984. Streptothricin production by a new isolate ofStreptomyces from Thailand Soil. Journal of fermentation technology,62(1):19~28
    Khamna S, Yokota A, Lumyong S.2009. Actinomycetes isolated from medicinal plant rhizosphere soils:Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production.World Journal of Microbiology&Biotechnology,25(4):649~655
    Kirby R.2005. Actinomycetes and lignin degradation. Advances in Applied Microbiology,58:125~168
    Kleopper J W, Schipper B, Bakker P.1992. Proposed elimination of the term endorhizosphere.Phytopathol,82:726~727
    Korolev N, Pérez-Artés E, Bejarano-Alcázar J, Rodríguez-Jurado D, Katan J, Katan T, Jiménez-Díaz R M.2001. Comparative study of genetic diversity and pathogenicity among populations of Verticilliumdahliae from cotton in Spain and Israel. European Journal of Plant Pathology,107(4):443~456
    Korolev N, Pérez-Artés E, Mercado-Blanco J, Bejarano-Alcázar J, Rodríguez-Jurado D, Jiménez-Díaz RM, Katan T, Katan J.2008. Vegetative compatibility of cotton-defoliating Verticillium dahliae inIsrael and its pathogenicity to various crop plants. European Journal of Plant Pathology,112(4):603~617
    Kortemaa H, Pennanen T, Smolander A, Haahtela K.1997. Distribution of antagonistic Streptomycesgriseoviridis in rhtzosphere and nonrhizosphere sand. Journal of Phytopathology,145(4):137~143
    Krasil'nikov N A, Zenova G M, Bushueva O A.1974. Phenol oxidase activity of chromogenicactinomycetes. Mikrobiologiia,43(4):606~608
    Krassilnikov N A, Khodjibayeva C M, Mirchink T G.1969. Properties of toxins of Verticillium dahliae,the causative agent of cotton wilt disease. The Journal of General and Applied Microbiology,15:1~9
    Kublanivskaia G M.1952. Utilization of actinomycetes antagonists against Fusarium infection of cottonplant. Mikrobiologiia,21(3):340~347
    Kurt S, Dervis S, Sahinler S.2003. Sensitivity of Verticillium dahliae to prochloraz andprochloraz-manganese complex and control of Verticillium wilt of cotton in the field. CropProtection,22:51~55
    Lehr N A, Schrey S D, Hampp R, Tarkka M T.2008. Root inoculation with a forest soil Streptomyceteleads to locally and systemically increased resistance against phytopathogens in Norway spruce. NewPhytologist,177:965~976
    Li H L, Yuan H X, Huang J L, Tang W H.2005. The effects of organic amendments on cottonVerticillium wilt and microbes in rhizosphere. Shandong Science,18(3):26~29
    Li J J, ZingenSell I, Buchenauer H.1996. Induction of resistance of cotton plants to Verticillium wilt andof tomato plants to Fusarium wilt by3-aminobutyric acid and methyl jasmonate. Journal of PlantDiseases and Protection,103(3):288~299
    Li Y Z, Zheng X H, Tang H L, Zhu J W, Yang J M.2003. Increase of β-1,3-Glucanase and chitinaseactivities in cotton callus cells treated by salicylic acid and toxin of Verticillium dahliae. ActaBotanica Sinica,45:802~808
    Lia S B, Fang M, Zhou R C, Huang J.2012. Characterization and evaluation of the endophyte BacillusB014as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae–induced blight of anthurium. Biological Control,63:9~16
    Liu R J.1995. Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza,5:293~297
    López-Escudero F J, Blanco-Lopez M A.2005. Effect of drip irrigation on population of Verticilliumdahliae in olive orchards. Journal Phytopathol,153:238~239
    López-Escudero F J, Mwanza C, Blanco-López M A.2007. Reduction of Verticillium dahliaemicrosclerotia viability in soil by dried plant residues. Crop Protection,26(2):127~133
    Mace M E, Bell A A, Beckman C H.1976. Histochemistry and identification of disease induced terpenoidaldehydes in Verticillium wilt resistant and susceptible cotton. Canadian Journal of Botany,54:2095~2099
    Mace M E, Stipanovic R D, Bell A A.1985. Toxicity and role of terpenoid phytoalexins in Verticilliumwilt resistance in cotton. Physiological Plant Pathology,26:206~218
    Mace M E.1978. Contribution of tylose and terpenoid aidedyde phytoalexins to Verticillium wiltresistance in cotton. Physiological Plant Pathology,12(1):1~11
    Mahoney N E.1985. High performance liquid chromatographic analysis of terpene aldehydes in cotton.Journal of Chromatography A,329:91~98
    Mandal K, Saravanan R, Maiti S.2008. Effect of different levels of N, P and K on downy mildew(Peronospora plantaginis) and seed yield of isabgol (Plantago ovata). Crop Protection,27:988~995
    Marois J J, Fravel D R, Papavizas G C.1984. Ability of Talaromyces flavus to occupy the rhizosphere andits interaction with Verticillium dahliae. Soil Biology and Biochemistry,16:387~390
    Mauch F, Mauch-Mani B, Boller T.1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungalgrowth by combinations of chitinase and β-1,3-glucanase. Plant Physiology,88(3):936~942
    Meyera R, Dubery I A.1993. High-affinity binding of a protein-lipopolysaccharide phytotoxin fromVerticillium dahliae to cotton membranes. FEBS Letters,335(2):203-206
    Mikiciński A, Sobiczewski P, Sulikowska M, Pu awska J, Treder J.2010. Pectolytic bacteria associatedwith soft rot of calla lily (Zantedeschia spp.) Tubers. Journal of Phytopathology,158(4):201~209
    Minuto A, Spadaro D, Garibaldi A, Gullino M.L.2006. Control of soilborne pathogens of tomato using acommercial formulation of Streptomyces griseoviridis and solarization. Crop Protection,25(5):468-475
    Mishra SK, Taft WH, Putnam AR, Ries SK.1987. Plant growth regulatory metabolites from novelactinomycetes. Journal of Plant Growth Regulation,6(2):75~83
    Mohammadi A H, Banihashemi Z, Maftoun M.2007. Interaction between salinity stress and Verticilliumwilt disease in three pistachio rootstocks in a calcareous soil. Journal of Plant Nutrition,30(2):241~252
    Nachmias A, Buchner V, Krikun J.1982. Comparison of protein-lipopolysaccharide complexes producedby pathogenic and non-pathogenic strains of Verticillium dahliae Kleb. from potato. PhysiologicalPlant Pathology,20:213~216
    Naik M K, Madhukar H M, Rani G S D.2009. Evaluation of biocontrol efficacy of Trichoderma isolatesand methods of its application against wilt of chilli (Capsicum annuum L.) caused by Fusariumsolani (Mart) Sacc. Journal of Biological Control,23:31~36
    Naraghi L, Heydari A, Ershad D.2006. Sporulation and survival of Talaromyces flavus on different plantmaterial residues for biological control of cotton wilt caused by Verticillium dahliae. Iranian Journalof Plant Pathology,42(3):117~120
    Naraghi L, Zareh-Maivan H, Heydari A, Afshari-Azad H.2007. Investigation of the effect of heating,vesicular arbuscular mycorrhiza and thermophilic fungus on cotton wilt disease. Pakistan Journal ofBiological Sciences,10(10):1596~1603
    Noronha E F, Kipnis A, Junqueira-Kipnis A P, Ulhoa C J.2000. Regulation of36-k Da β-1,3-glucanasesynthesis in Trichoderma harzianum. FEMS Microbiology Letters,188(1):19~22
    Palaniyandi, S A, Yang S H, Cheng J H, Meng L, Suh J W.2011. Biological control of anthracnose(Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of AppliedMicrobiology,111:443~455
    Prabavathy V R, Mathivanan N, Murugesan K,2006. Control of blast and sheath blight diseases of riceusing antifungal metabolites produced by Streptomyces sp. PM5. Biological Control,39:313~319
    Presley J T.1950. Verticillium wilt of cotton with particular emphasis on variation of the causal organism.Phytopathology,40:497~511
    Puhalla J E, Hummel M.1983. Vegetative compatibility groups within Verticillium dahliae.Phytopathology,73(9):1305~1308
    Puhalla J E.1979. Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility.Canadian Journal of Botany,69(11):1186~1189
    Reynolds, D M.1954. Exocellular chitinase from a Streptomyces sp. Journal of General Microbiology,11(2):150~159
    Richter A K, Frossard E, Brunner I.2007. Polyphenols in the woody roots of Norway spruce andEuropean beech reduce TTC. Tree Physiology,27:155~160
    Rodriguez E, Campos M, Fernandez M L, Ocampo J A, Garcia-Garrido J M.2007. Detection ofVerticillium dahliae in irrigation water. IOBC WPRS Bulletin,30(9):259
    Saadatmand A R, Banihashemi Z, Sepaskhah A R, Maftoun M.2008. Soil salinity and water stress andtheir effect on susceptibility to Verticillium wilt disease, Ion composition and growth of pistachio.Journal of Phytopathology,156(5):287~292
    Samac DA, Willert AM, McBride MJ, Kinkel LL.2003. Effect of antibiotic-producing Streptomyces onnodulation and leaf spot in alfalfa. Applied Soil Ecology,22(1):55~56
    Sancho M A, Forchetti S M, Pliego F, Valpuesta V, Quesada M A.1996. Peroxidase activity andisoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell, Tissue andOrgan Culture,44:161~167
    Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi G E, Nesli S.1992. Isolation of endophyticStreptomyces strains from surface-sterilized roots. Applied and Environmental Microbiology,58:2691~2698
    Schnathorst W C, Mathre D E.1966. Cross protection in cotton with strains of Verticillium albo-atrum.Phytopathology,56:1024~1029
    Schnathorst W C, Mathre D E.1966. Host range and differentiation of a severe form Verticilliumalbo-atrum in cotton. Phytopathology,5(6):1156~1161
    Shanmugaiah V, Mathivanan N, Balasubramanian N, Manoharan P T.2008. Optimization of culturalconditions for production of chitinase by Bacillus laterosporous MML2270isolated from ricerhizosphere soil. African Journal of Biotechnology,7(15):2562~2568
    Shao F. M, Christiansen, M. N.1982. Cotton seedling radicle exudates in relation to susceptibility toVerticillium Wilt and rhizoctonia root rot. Plant diseases,105(3~4):351~359
    Shi F M, Li Y Z.2008. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is majordependent on nitrate reductase. BMB reports,41:79~85
    Shirling, E B, Gottlieb D.1966. Methods for characterization of Streptomyces species. InternationalJournal of Systematic Bacteriology,16:313~340
    Sivan A, Chet I.1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum.Journal of General Microbiology,135(3):675~682
    Skujins J J, Potgieter H J, Alexander M.1965. Dissolution of fungal cell walls by a Streptomycetechitinase and β-1,3-glucanase. Archives of Biochemistry and Biophysics,111(2):358~364
    Smit F, Dubery I A.1997. Cell wall reinforcement in cotton hypocotyls in response to a Verticilliumdahliae elicitor. Phytochemistry,44(5):811~815
    Smith H.C.1965. The morphology of Verticillium albo-atrum, V. dahliae, and V. tricorpus. New Zealandjournal of Agricultural Research,8(3):450~478
    Stipanovic R D, Altman D W, Begin D L, Greenblatt G A, Benedict J H.1988. Terpenoic aldehydes inupland cotton: analysis by aniline and HPLC Methods. Journal of Agricultural and Food Chemistry,36(3):509~515
    Stipanovic R D, Bell A A, Mace M E, Howell C R.1975. Antimicrobial terpenoids of Gossypium:6~methoxygossypol and6,6’-dimethoxygossypol. Phytochemistry,14(4):1077~1081
    Taboys P W.1958. Association of tylosis and hyperplasia of the xylem with vascular invasion of the hopby Verticillium albo-atrum. Transactions British Mycological Society,41(2):249~260
    Taechowisan T, Peberdy J F, Lumyong S.2003. Chitinase production by endophytic Streptomycesaureofaciens CMUAc130and its antagonism against phytopathogenic fungi. Annals of Microbiology,53(4):447~461
    Telesnina G N, Krakhmaleva I N, Anisova L N, Bartoshevich Iu E, Sazykin Iu O.1986. Valinomycinbiosynthesis and the dynamics of the content of macroergic phosphorus compounds in Streptomycescyaneofuscatus. Antibiot Med Biotekhnol,31(1):3~7
    Thilagavathi R, Saravanakumar D, Ragupathi N, Samiyappan R.2007. A combination of biocontrol agentsimproves the management of dry root rot (Macrophomina phaseolina) in greengram. PhytopatholMediterr,46:157~167
    Tyshchenko A A, Filatova O F, Khodzhibaeva S M, Davranov K D.2004. Free-radical gossypolderivatives for cotton Verticillium Wilt. Chemistry of Natural Compounds,40(1):75~78
    Tzeng D D, De Vay J E.1985. Physiological responses of gossypium hirsutum L. to infection bydefoliating and non-defoliating pathotypes of Verticillium dahliae Kleb. Physiologial Plant Pathology,26(1):57~72
    Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinki R, Beaulieu C.1996. Glucanolyticactinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot.Applied and Environmental Microbiology,62(5):1630~1635
    Vitgeft, A E.1960. Antagonistic effect of actinomycetes on the cotton wilt pathogen. Antibiotiki,5:111~113
    Vladimír.1957. Determination of phenol oxidase using a manometric method by Streptomycesantibioticus. Nature,179:966~967
    Wiese M V, Devay J E.1970. Growth regulator changes in cotton associated with defoliation caused byVerticillium albo-atrum. Plant Physiology,45:304~309
    Willert A, Mcbride M, Kinkel L.2003. Effects of antibiotic-producing Streptomyces spp. on nodulationsand leaf spot in alfalfa. Applied Soil Ecology,22:55~66
    Xia Z J, Achar P N, Gu B K.1998. Vegetative compatibility groupings of Verticillium dahliae from cottonin mainland China. European Journal of Plant Pathology,104(9):871~876
    Xiao C L, Subbarao K V, Schulbach K F, Koike S T.1998. Effects of crop rotation and irrigation onVerticillium dahliae microsclerotia in soil and wilt in cauliflower. Phytopathology,88:1046~1055
    Xue L, Xue Q H, Chen Q, Lin C F, Shen G H, Zhao J.2013. Isolation and evaluation of rhizosphereactinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection,43:231~240.
    Yuan W M, Crawford D L.1995. Characterization of Streptomyces lydicus WYEC108as a potentialbiocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology,61(8):3119~3128
    Zaki A L, Keen N J.1972. Implication of vergosin and hemigossypol in the resistance of cotton toVerticillium albo-atrum. Phtopathology,62:1402~1406
    Zhang D J, Wei G, Wang Y, Si C C, Tian L, Tao LM, Li Y G.2011. Bafilomycin K, a new antifungalmacrolide from Streptomyces flavotricini Y12-26. The Journal of Antibiotics,64:391~393
    Zhang S Y, Wang J X, Liu J F, Fang Z D.1989. Studies on the isolation, purification and bioassay of toxinfrom Verticillium dahliae Kleb.. Mycosystema,8:140~147
    Zhao J, Xue Q H, Shen G H, Xue L, Duan J L, Wang D S.2012a. Evaluation of Streptomyces spp. forbiocontrol of gummy stem blight (Didymella bryoniae) and growth promotion of Cucumis melo L..Biocontrol Science and Technology,22(1):23~37
    Zhao S, Du C M, Tian C Y.2012b. Suppression of Fusarium oxysporum and induced resistance of plantsinvolved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087. WorldJournal of Microbiology and Biotechnology,28(9):2919~2927
    Zhen X H, Li Y Z.2004. Ultrastructural changes and location of beta-1,3-glucanase in resistant andsusceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylicacid. Journal of Plant Physiology,161:1367~1377
    Zheng Y, Xue Q Y, Xu L L, Xu Q, Lu S, Gu C, Guo J H.2011. A screening strategy of fungal biocontrolagents towards Verticillium wilt of cotton. Biological Control,56:209~216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700