用户名: 密码: 验证码:
水土流失时空过程及其生态安全效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重的水土流失是生态恶化的集中反映,是我国生态环境最突出的问题之一,已成为生态安全的重要威胁因素。尽管水土流失是生态安全的关键因子,但目前鲜见水土流失与生态安全两者之间的系统研究。本文以浙江省安吉县为例,从水土流失的角度出发,基于水土流失动态监测、生态安全动态分析,以及水土流失对生态安全影响研究这条主线对水土流失时空过程及其生态安全效应进行了较为系统深入的研究。
     首先,利用修正通用水土流失方程(Revised Universal Soil Loss Equation, RUSLE),综合遥感(Remote Sensing, RS)和地理信息系统(Geographic Information System, GIS),构建基于背景因子和动态因子的水土流失的遥感定量化监测技术,对研究区1985-2008年间的水土流失进行时空动态监测,并利用探索性空间数据分析(Explotory Spatial Data Analysis, ESDA)方法对水土流失的时空分异规律进行分析;其次,以突变理论为基础,构建基于景观尺度的生态安全评价模型,并对研究区1985-2008年的生态安全进行了动态监测;第三,基于前两部分的研究结果,运用地理权重回归(Geographically Weighted Regression, GWR)模型对水土流失和生态安全的关系进行了定量的研究。
     主要研究结论如下:
     1、水土流失的遥感定量化监测:基于修正通用水土流失方程,将方程中相关的因子划分为背景因子和动态因子,对研究区1985、1994、2003、2008年的水土流失进行监测。结果表明,安吉县水土流失恶化与恢复过程并存。但是,由于水土流失的恶化速度大于恢复速度,且水土流失恶化区面积始终大于恢复区面积,总体上呈现恶化趋势。
     2、水土流失的时空分异规律:利用全局Moran's I和局部空间关联指数Local Indicators of Spatial Association (LISA),从定量的统计学和可视化角度研究水土流失的时空变异规律。结果再次表明,水土流失呈现恶化趋势。水土流失的热点区域,包括严重的水土流失区域和水土流失恶化区不断扩大,且呈现较为集中的态势,研究区受水土流失影响的范围和影响的程度越来越大,水土流失越来越成为制约该区生态环境的主导因素。
     3、生态安全的时空分异规律:基于压力-状态-响应的理论框架,构建适合景观尺度的生态安全评价指标体系,并利用突变级数法进行研究区生态安全评价。结果表明,在1985-2008年间研究区生态安全以比较安全为主(占全区的55%以上),生态状况总体上较为良好。然而,随着不安全和很不安全区域比重的上升,生态安全性呈现持续的下降趋势。
     4、水土流失的生态安全效应:在500m×500m格网尺度下,利用地理权重回归(GWR)模型进行1985、1994、2003、2008年水土流失对生态安全及2000-2012年水土流失变化对生态安全变化的影响研究。结果表明,研究区水土流失的变化决定着生态环境的变化。随着时间的推移,研究区水土流失的持续恶化使得生态状况变得越来越不安全,水土流失问题已越来越成为该区生态环境最主要的问题。
     本研究主要创新点:依据RUSLE以及区分背景因子和动态因子,构建了适合区域长期监测的水土流失遥感定量化监测方法,并将探索性空间分析技术引入到水土流失的时空分异规律研究,兼顾了定量的统计学和可视化方法研究水土流失的时空分异规律;利用突变理论进行生态安全评价,最大可能地克服了以往模型权重确定的主观性,使评价结果更具可比性;将地理权重回归模型引入水土流失与生态安全关系研究,为充分体现两者关系的空间异质性和尽可能消除两者关系的空间自相关性提供了可能。
     受数据和能力的限制,仍有一些理论及技术问题需要进一步的探讨。本文所选择的时空尺度较为单一,致使对水土流失演变及水土流失的生态安全效应的时间和空间特征的分析有待进一步深入,水土流失时空过程及生态安全效应研究的尺度问题,也有待在今后的研究中做进一步的探讨;在基于景观尺度的生态安全评价中,受所获数据的限制,评价指标的选取在很大程度上依赖数据的可获取性,而这些指标是否完善、是否合理,如何与行政尺度或流域尺度评价指标体系进行匹配,有待在今后的研究中进一步深入;GWR模型采用的仅是线性拟合,存在一定的局限性,在今后的研究中,需对其模型进行改进。
Severe soil erosion, indicative of the deterioration of eco-environment, has become one of the most critical ecological problems in China and a major threat to the nation's eco-security. Despite the fact that soil erosion is a key factor of eco-security, there are few systematic reports focusing on uncovering their relationship. With a case study in Anji County, Zhejiang Province, south-eastern China, this work monitored the dynamics of soil erosion, analyzed the varions of eco-security, and assessed the impact of soil erosion on eco-security. Thus, a relatively systematic study was conducted into the spatiotemporal dynamics of soil erosion and their responses to eco-security.
     Firstly, by using Revised Universal Soil Loss Equation (RUSLE) and by integrating remote sensing (RS) and geographic information system (GIS), a quantitative method that separates background factors and dynamic factors in RUSLE was developed to estimate the spatiotemporal dynamics of soil erosion in the study area during1985-2008. The Exploratory Spatial Data Analysis (ESDA) was used to analyze the soil erosion dynamics; Then, a catastrophe theory was employed to generate a grid scale-based model for evaluating eco-security, which was then used to monitor the eco-security dynamics of the study area during1985-2008; At last, based on above results, a Geographically Weighted Regression (GWR) model was utilized to quantify the relationship between soil erosion and eco-security.
     The major findings of this study are as follows:
     1. Quantitative monitoring of soil erosion:On the basis of RUSLE, background and dynamic factors were employed to monitor soil erosion in the study area in1985,1994,2003and2008. The results revealed the co-existence of the deterioration and mitigation of soil erosion. There is, however, an overall trend of erosion deterioration, with both the scale and the range of deterioration exceeding that of mitigation.
     2. Spatiotemporal dynamics of soil erosion:The Moran's I and Local Indicators of Spatial Association (LISA) were used to identify the spatial and temporal dynamics of soil erosion from the perspectives of quantitative statistics and visualization. The results revealed a trend of erosion deterioration. The hot spots of soil erosion, including areas with serious erosion and deteriorated erosion, were found expanding and clustering. The scale and degree of soil erosion in the area kept going up and erosion became an increasingly critical factor affecting the local eco-environment.
     3. Spatiotemporal dynamics of eco-security:A system of eco-security assessment indicators, adapted to the grid scale, was established on the basis of the pressure-state-response model. Then catastrophe theory was employed to evaluate the eco-security of the study area. The results showed that the eco-environment in major parts (accounting for over55%) of the study area was relatively secure, indicative of a relatively good eco-environment. However, with the increase of areas featuring insecure and very insecure eco-environment, the overall eco-security was on a trend of deterioration.
     4. Eco-security responsive to soil erosion:The Geographically Weighted Regression (GWR) model was used to quantify the relationship between soil erosion and eco-security at500m×500m grid scale. The results showed that the change of erosion regulated the change of eco-environment. Continuous erosion deterioration rendered the eco-environment increasingly less safe in the study area, and erosion gradually became the most important threat to the local eco-environment.
     New methods developed in this study are as follows:1) by separating background factors from dynamic factors, a quantitative method was developed to monitor soil erosion on a long-term basis. And the Exploratory Spatial Data Analysis (ESDA) was introduced to the study of spatial and temporal dynamics of erosion by integrating quantitative statistics and visualization;2) The use of catastrophe theory in eco-security assessment helped avoid the subjectivity in deciding the weight of different factors in a model and made the assessment results more comparable;3) The introduction of GWR to the analysis of the relationship between soil erosion and eco-security made it possible to fully reveal the spatial heterogeneity of the relationship and to get rid of their spatial autocorrelation at its best.
     With the limitation of data, further research is still required into some methods and theories:The selection of limited number of temporal/spatial scales caused an inadequate analysis of soil erosion change and the temporal/spatial features of eco-security responsive to soil erosion. Further research is to be conducted about the scales of study on the temporal/spatial dynamics of erosion and the responses of eco-security; the selection of indicators for landscape grid-based assessment of eco-security is mainly subject to data availability. A further study could be done on the reasonableness of the indicators and the methods of matching them up with those used in administrative or watershed scale assessment; As GWR model was established mainly with linear interpolation in this study, a further research could be performed to improve the GWR model.
引文
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control,1974,19:716-723.
    Amore E, Modica C, Nearing MA, Santoro VC. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. Journal of Hydrology,2004,293: 100-114.
    Angima SD, Stott DE, Neill MKO, Ong CK, Weesies GA. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment,2003,97: 295-308.
    Angulo-Martinez M, Begueria S. Estimating rainfall erosivity from daily precititation records:A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 2009,379:111-121.
    Anselin L. Local indicators of spatial association-LISA. Geographical Analysis,1995,27:93-115.
    Arnoldus JMJ. Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. Food Agric Org Soils Bull,1977,34:39-51.
    Atkinson PM, Curran PJ. Choosing an appropriate spatial resolution for remote sensing invest-igations. Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351.
    Atkinson PM, Tate NJ. Spatial scale problems and geostatistical solutions:A review. Professional Geographer,2000,52(4):607-623.
    Bagarello V, Ferro V. Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosystems Engineering,2010,105:411-422.
    Boardman J. Soil erosion science:Reflections on the limitations of current approaches. Catena, 2006,68:73-86.
    Bochet E, Rubio JL, Poesen J. Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate (Valencia, Spain). Geomorphology,1998,23:139-150.
    Boix-Fayos C, Martinez-Mena M, Arnau-Rosalen E, Calvo-Cases A, Castillo V, Albaladejo J. Measuring soil erosion by field plots:Understanding the sources of vartiation. Earth-Science Reviews,2006,78:267-285.
    Bowman AW. An alternative method of cross-validation for the smoothing of density estimaties. Biometrika,1984,71:353-360.
    Brunsdon C, Fotheringham AS, Charlton ME. Geographically Weighted Regression:A Method for Exploring Spatial Nonstationarity. Geographical Analysis,1996,28:281-298.
    Cao HC, Luan ZQ, Wang JD, Zhang XL. Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin Province, China. Stochastic Environmental Research and Risk Assessment,2009,23:57-64.
    Chander G., Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment,2009, 113:893-903.
    Chen LD, Tian HY, Fu BJ, Zhao XF. Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese Geographical Science,2009, 19:37-45.
    Cohen MJ, Shepherd KD, Walsh MG. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma,2005,124:235-252.
    De Asis AM, Omasa K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. Isprs Journal of Photogrammetry and Remote Sensing,2007,62:309-324.
    De Asis AM, Omasa K, Oki K, Shimizu Y. Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds. International Journal of Remote Sensing,2008,29:4151-4171.
    de Vente J, Poesen J. Predicting soil erosion and sediment yield at the basin scale:Scale issues and semi-quantitative models. Earth-Science Reviews,2005,71:95-125.
    Diodato N., Ceccarelli M. Environinformatics in ecological risk assessment of agroecosystems pollutant leaching. Stoch Environ Res Risk Assess,2004,19:292-300.
    EPA. Framework for ecological risk assessment. Risk Assessment Forum.1992.
    Ferro V, Porto P. A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 1999,44:3-24.
    Fotheringham AS, Brunsdon C, Charlton M. Geographically Weighted Regression:The Analysis of Spatially Varying Relationships. Chichester:Wiley,2002.
    Fortheringham AS, Chanrlton M, Brunsdon C. The geographically of parameter space:An investigation of spatial nonstationarity. International Journal of Geographical Information Systems,1996,10:605-627.
    Fu BJ. Blue skies for China. Science,2008,321:611.
    Gao J, Li S. Decting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using greographically weighted regression. Applied Geography,2011,31:292-302.
    Gao J, Liu YS. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. International Journal of Applied Earth Observation and Geoinformation,2010,12:9-16.
    Gong JZ, Liu YS, Xia BC, Zhao GW. Urban ecological security assessment and forecasting, based on a cellular automata model:A case study of Guangzhou, China. Ecological Modelling,2009, 220:3612-3620.
    Goossens CH, Berger A. Annual and seasonal climatic variation over the Northern Hemisphere and Europe during the last century. Annales Geophysicae Series B-Terrestrial and Planetary Physics,1986,4:385-400.
    Govers G, Oost KV, Poesen J. Responses of a semiarid landscape to human disturbance:A simulation study of the interaction between rock fragment cover, soil erosion and land use change. Geoderma,2006,133:19-31.
    Hong Q, Meng QB, Wang P, Qang HY, Liu RM. Regional aquatic ecological security assessment in Jinan, China. Aquatic Ecosystem Health & Management,2010,13:319-327.
    Huang Q, Wang RH, Ren ZY, Li J, Zhang HZ. Regional ecological security assessment based on long periods of ecological footprint analysis. Resources, Conservation and Recycling,2007, 51:24-41.
    Herrmarm S, Dabbert S, Raumer HS. Threshold for nature protection areas as indicators for bio-diversity:a regional evaluation of economic and ecological consequences. Agriculture, Ecosystems and Environment,2003,98:493-506.
    Hyppanen H. Spatial autocorrelation and optimal spatial resolution of optical remote sensing data in boreal forest environment. International Journal of Remote Sensing,1996,17(17): 3441-3452.
    Jiang ZL, Qi JG, Su SL, Zhang ZH, Wu JP. Water body delineation using index composition and HIS transformation. International Journal of remote sensing,2012a,33(11):3402-3421.
    Jiang ZL, Su SL, Jing CW, Lin SP, Fei XF, Wu JP. Spatiotemporal dynamics of soil erosion risk for Anji County, China. Stochastic Environmental Research and Risk Assessment,2012b, 26(6):751-763.
    Johnston RM, Barson MM. Remote Sensing of Australian wetlands:an evaluation of Landsat TM data for inventory and classification. Australian Journal of Marine and Freshwater Research, 1993,44:235-252.
    Iwasa Y, Hakoyama H, Nakamaru M, Nakanishi J. Estimate of population extinction risk and its application to ecological risk management. Population Ecology,2000,42:73-80.
    King C, Delpont G. Spatial assessment of erosion:contribution of remote sensing, areview. Remote Sensing Reviews,1993,7:223-232.
    Knight AW, Tindall DR, Wilson BA. A multitemporal multiple density slice method for wetland mapping across the state of Queensland, Australia. International Journal of Remote Sensing, 2009,30:3365-3392.
    Kumar AB, Dwivedi RS, Tiwari KN. The effects of image scale on delineation of eroded lands using remote sensing data. International Journal of Remote Sensing,1996,17:2135-2143.
    Leys A, Govers G, Gillijns K et al. Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage:The role of residue cover. Journal of Hydrology, 2010,390:143-154.
    Li H, Cai LY. Regional eco-security assessment based on the perspective of complex system science:a case study of Chongming in China. Human and Ecological Risk Assessment:An Intemation Journal,2011,17:1210-1228.
    Li YF, Sun X, Zhu XD, Cao HH. An early earning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China. Ecological Modelling, 2010,221:2251-2260.
    Liang XQ, Xu L, Li H, He MM, Qian YC, Liu J, Nie ZY, Ye YS, Chen YX. Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Physics and Chemistry of the Earth,2011,36:395-400.
    Liang Y, Li DC, Lu XX, Yang X, Pan XZ, Mu H, Shi DM, Zhang B. Soil Erosion Changes over the Past Five Decades in the Red Soil Region of Southern China. Journal of Mountain Science, 2010,7:92-99
    Lu D, Li G, Valladares GS, Batistella M. Mapping soil erosion risk in Rondonia, Brazilian Amazonia:Using RULSE, remote sensing and GIS. Land Degradation & Development,2004, 15:499-512.
    Lubchenco J, Olson AM, Brubaker LB, Carpenter SR, Holland MM, Hubbell SP, Levin SA, et al. The sustainable biosphere in itiative:An ecological research agenda. Ecology,1991,72: 371-412.
    Luo J, Wei YHD. Modeling spatial variations of urban growth patterns in Chinese cities:The case of Nanjing. Landscape and Urban Planning,2009,91:51-64.
    Ma JW, Xue Y, Ma CF, Wang ZG. A data fusion approach for soil erosion monitoring in the Upper Yangtze River Basin of China based on Universal Soil Loss Equation (USLE) model. International Journal of Remote Sensing,2003,24:4777-4789.
    Manavalan P, Sathyanath P, Rajegowda GL. Digital image analysis techniques to estimate waterspread for capacity evaluations of reservoirs. Photogrammetric Engineering and Remote Sensing,1993,59:1389-1395.
    Mann HB. Non-parametric test against trend. Econometrica,1945,13:245-259.
    Masoudi M, Patwardhan AM, Gore SD. Risk assessment of water erosion for the Qareh Aghaj subbasin, southern Iran. Stochastic Environmental Research and Risk Assessment,2006,21: 15-24.
    Mertens B, Liu H, Belcher B, Ruiz-Perez M, Fu MY, Yang XS. Spatial patterns and processes of bamboo expansion in Southern China. Applied Geography,2008,28:16-31.
    Meusburger K, Banninger D, Alewell C. Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation,2010,12:201-207.
    Mische PM. Global issues series:ecological security & the UN system:past, present, future. Global Education Associations, New York.1998.
    Morgan RPC. Soil Erosion and Conservation. Longman Group Limited, Essex, UK,1995:198.
    Myers N. Environment and security. Foreign Policy,1989,74:23-41.
    Nearing MA, Govers G, Darrell Norton L. Variability in soil erosion data from replicated plots. Soil Science Society of America Journal,1999,63:1829-1835.
    Noel Bonfilio PJ, Joaquin BS, Montserrat GD. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 2010,30:576-591.
    Onyando JO, Kisoyan P, Chemelil MC. Estimation of potential soil erosion for River Perkerra catchment in Kenya. Water Resources Management,2005,19:133-143.
    Ouyang W, Skidmore AK, Hao FH, Wang TJ, Soil erosion dynamics response to landscape pattern. Science of the Total Environment,2010,408:1358-1366.
    Ouma YO, Tateishi R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes:an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing,2006,27:3153-3181.
    Poesen J, Nachtergaele J, Verstraeten G, Valentin C. Gully erosion and environmental change: Importance and research needs. Catena,2003,50:91-133.
    Rahman MR, Shi ZH, Cai CF. Soil erosion hazard evaluation-An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling,2009,220:1724-1734.
    Rapport DJ. Evaluating and monitoring the health of largescale ecosystems. Springer, Heidelberg. 1995.
    Rapport DJ, Costanza R, Mcmichael AT. Assessing ecosystem health. Trends in Ecology & Evolution,1998,13:397-402.
    Renard KG, Freimund JR. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology,1994,157:287-306.
    Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC. Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Handbook#703. US Department of Agriculture:Washington, DC.1997.
    Renschler CS, Mannaerts C, Diekkruger B. Evaluating spatial and temporal variability in soil erosion risk-rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena,1999,34: 209-225.
    Sadeghi SH, Moosavi V, Karami A, Behnia N. Soil erosion assessment and proritization of affecting factors at plot scale using the Taguchi method. Journal of Hydrology,2012,448: 174-180.
    Servenay A. Prat C. Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis. Geoderma,2003,117:367-375.
    Shi ZH, Cai CF, Ding SW, Wang TW, Chow TL. Soil conservation planning at the small watershed level using RUSLE with GIS:a case study in the Three Gorge Area of China. Catena,2004, 55:33-48.
    Shi X, Zhao J, Ouyang Z. Assessment of eco-security in the knowledge Grid e-science environment. The Journal of Systems and Software,2006,79:246-252.
    Shrestha DP, Zinck JA, Van Ranst E. Modelling land degradation in the Nepalese Himalaya. Catena,2004,57:135-156.
    Soti V, Tran A, Bailly JS, Puech C, Lo Seen D, Begue A. Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas. International Journal of Applied Earth Observation and Geoinformation,2009,11:344-351.
    Stefanescu L, Constantin V, Surd V, Ozunu A, Vlad SN. Assessment of soil erosion potential by the USLE method in Rosia Montana mining area and associated natech enents. Carpathian Journal of Earth and Environmental Sciences,2011,6:35-42.
    Steve L, Victoria BC. Global environmental change and human security (IHDP Report No.11). www.gechs.org,1999-07-15.
    Su MR, Yang ZF, Chen B, Ulgiati S. Urban ecosystem health assessment based on emergy and set pair analysis-a comparative study of typical Chinese cities. Ecological Modelling,2009,220: 2341-2348.
    Su SL, Chen X, DeGloria SD, Wu JP. Integrative fuzzy set pair model for land ecological security assessment:a case study of Xiaolangdi Reservoir Region, China. Stochastic Environmental Research and Risk Assessment,2010,24:639-647.
    Su SL, Li D, Yu X, Zhang ZH, Zhang Q, Xiao R, Zhi JJ, Wu JP. Assessing land ecological security in Shanghai(China) based on catastrophe theory. Stochastic Environmental Research and Risk Assessment,2011a,25:737-746.
    Su SL, Li D, Zhang Q, Xiao R, Huang F, Wu JP. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Research,201 lb, 45:1781-1795.
    Su SL, Zhang ZH, Xiao R, Jiang ZL, Chen T, Zhang LM, Wu JP. Geospatial assessment of agroecosystem health:development of an integrated index based on catastrophe theory. Stochastic Environmental Research and Risk Assessment,2012,26,321-334.
    Suo AN, Xiong YC, Wang TM, Yue DX, Ge JP. Ecosystem health assessment of the Jinghe River watershed on the Huangtu Plateau. EcoHealth,2008,5:127-136.
    Tao XY. Synthetic assessment of ecosystem health in typical resource-exhausted cities in China. International Workshop on Geoscience and Remote Sensing,2008,1:193-196.
    Tefera B, Sterk G. Land management, erosion problems and soil and water conservation in Fincha'a watershed, western Ethiopia. Land Use Policy,2010,27:1027-1037.
    Tucker CJ. Red and photographic infrared linear combination for monitoring vegetation. Remote Sensing of Environment,1979,8:127-150.
    Van Rompaey AJJ, Govers G. Data quality and model complexity for regional scale soil erosion prediction. International Journal of Geographical Information Science,2002,16:663-680.
    Vadrevu KP, Cardina J, Hitzhusen F, Bayoh I, Moore R, Parker J, Stinner B, Stinner D, Hoy C. Case study of an integrated framework for quantifying agroecosystem health. Ecosystems, 2008,11:283-306.
    Vezina K, Bonn F, Van CP. Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam's northern highlands. Landscape Ecology,2006,21:1311-1325.
    Vrieling A. Satellite remote sensing for water erosion assessment:A review. Catena,2006,65: 2-18.
    Vrieling A, Sterk G, de Jong SM. Satellite-based estimation of rainfall erosivity for Africa. Journal of Hydrology,2010,395:235-241.
    Wang GX, Wente S, Gertner GZ, Anderson A. Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. International Journal of Remote Sensing,2002a,23:3649-3667.
    Wang GX, Gertner GZ, Singh V, Shinkareva S, Parysow P, Anderson A. Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation:A case study of the rainfall-runoff erosivity R factor. Ecological Modelling,2002b,153:143-155.
    Wang K, Wang HJ, Shi XZ, Weindorf DC, Yu DS, Liang Y, Shi DM. Landscape analysis of dynamic soil erosion in Subtropical China:A case study in Xingguo County, Jiangxi Province. Soil & Tillage Research,2009,105:313-321.
    Wang M, Bai Y, Chen W, Markert B, Peng C, Ouyang Z. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China. Environmental Pollution,2012, 161:235-242.
    Wang SJ, Li J, Wu DQ, Liu J, Zhang K, Wang RQ. The strategic ecological impact assessment of urban development policies:a case study of Rizhao City, China. Stochastic Environmental Research and Risk Assessment,2008,23:1169-1180.
    Wang X, Zhong X, Gao P. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 2010,91:1981-1990.
    Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J. The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology,2009,103:389-400.
    Wei W, Chen L, Yang L, Fu b, Sun R. Spatial scale effects of water erosion dynamics: complexities, variabilities, and uncertainties. Chinese Geographic Science.2012,22:127-143.
    Williams JR, Jones CA, Dyke PT. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the Asae,1984,27:129-144.
    Wischmeier WH, Smith DD. Predicting Rainfall Erosion Losses-A Guide to Conservation. Agricultural Handbook 537. US Department of Agriculture:Washington, DC.1978.
    Woodcock CE, Strahler AH. The factor of scale in remote sensing[J]. Remote Sensing of Environment,1987(21):311-332.
    Wu J, Nellis MD, Ransom MD, Price KP, Egbert SL. Evaluating soil properties of CRP land by using remote sensing and GIS techniques, J. Soil & Water Conserv,1997,52:352-358.
    Wu J, Ransom MD, Nellis MD, Seyler HL, Kluitenberg GJ. Assessing and managing the Conservation Reserve Program with GIS for Finney County, Kansas. Photogrammetric Engineering & Remote Sensing,2002,68(7):735-744.
    Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing,2006,27:3025-3033.
    Xu XL, Ma KM, Fu BJ, Song CJ, Liu W. Influence of three plant species with different morphologies on water runoff and soil loss in a dry-warm river valley, SW China. Forest Ecology and Management,2008,256:656-663.
    Xu LF, Xu XG, Meng XG, Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model:A case study of Bohai Rim, China. Catena,2013,100:74-82.
    Yang T, Xu CY, Zhang Q. DEM-based numerical modelling of runoff and soil erosion processes in the hilly-gully loess regions. Stochastic Environmental Research and Risk Assessment,2012, 26:581-597.
    Yelena OH, Hamil P, Rahul R. Concrete evidence & geographically weighted regression:A regional analysis of wealth and the land cover in Massachusetts. Applied Geography,2009,29: 478-487.
    Yu ES, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology,2002,259:254-271.
    Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing,2003,24:583-594.
    Zhang Q, Xu C, Tao H, Jiang T, Chen YD. Climate changes and their impacts on water resources in the arid regions:a case study of the Tarim River basin, China. Stochastic Environmental Research and Risk Assessment,2010,24:349-358
    Zhang KL, Shu AP, Xu XL, Yang QK, Yu B. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environment,2008,72:1002-1011.
    Zhang Y, Degroote J, Wolter C., Sugumaran R. Integration of modified universal soil loss equatio (MUSLE) into a gis framework to assess soil erosion risk. Land Degradation & Development, 2009,20:84-91.
    Zhao YW, Yang ZF. Integrative fuzzy hierarchical model for river health assessment:a case study of Yong River in Ningbo City, China. Selective Communications in Nonlinear Science & Numerical Simulation,2009,14:1729-1736.
    Zhao YZ, Zou XY, Cheng H, Jia HK, Wu YQ, Wang GY, Zhang CL, Gao SY. Assessing the ecological security of the Tibetan plateau:methodology and a case study for Lhaze County. Environmental Management,2006,80:120-131.
    Zhou P, Luukkanen O, Tokola T, Nieminen J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena,2008,75:319-325.
    Zhu MY. Soil erosion risk assessment with CORINE model:case study in the Danjiangkou Reservoir region, China. Stochastic Environmental Research and Risk Assessment,2012,26: 813-822.
    Zhu Z, Liu L, Zhang J. Using state and trend analysis to assess ecological security for the vulnerable agricultural ecosystems of Pengyang County in the loess hilly region of China. International Journal of Sustainable Development and World Ecology,2009,16:15-21.
    安吉县统计局.安吉县统计年鉴[M].安吉县统计局.2009.
    陈国阶.论生态安全[J].重庆环境科学,2002,24(3):1-3,18.
    陈星,周成虎.生态安全国内外研究综述[J].地理科学进展,2005,24(6):8-20.
    程叶青,邓吉祥,房艳刚.吉林省中部粮食主产区城乡关联的空间分析[J].地理研究,2010,29(4):727-736.
    陈云峰,孙殿义,陆根法.突变级数法在生态适宜度评价中的应用-以镇江新区为例[J].生态学报,2006,26(8):2587-2593.
    党维勤.水土流失区灾害问题的对策及作用[J].陕西农业科学,2008,(4):124-128.
    高长波,陈新庚,韦朝海,彭晓春.广东省生态安全状态及趋势定量评价[J].生态学报.2006,26(7):2191-2197.
    龚建周,夏北成著.城市景观生态学与生态安全—以广州为例[M].北京:科学出版社.2008.
    龚建周,夏北成,陈健飞.快速城市化区域生态安全的空间模糊综合评价以广州市为例[J].生态学报,2008,28(10):4992-5001.
    郭春华,史晓颖.我国土地生态安全管理对策建议[J].环境与可持续发展,2007,(1):17-19.
    胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究[J].土壤学报,2001,38(2):167-175.
    贾志军,王小平,李俊义.晋西黄土丘陵区降雨侵蚀力R指标的确定[J].中国水土保持,1987(6):18-20.
    江振蓝,荆长伟,李丹,虞湘,吴嘉平.运用Mann-Kendall方法探究地表植被变化趋势及其对地形因子的响应机制:以太湖苕溪流域为例[J].浙江大学学报(农业与生命科学版),2011a,37(6):684-692.
    江振蓝,苏世亮,荆长伟,林声盼,吴嘉平.基于探索性空间数据分析的安吉县水土流失空 间变异规律研究[J].浙江大学学报(理学版),2011b,38(6):708-715.
    荆长伟,支俊俊,张操,林声盼,肖锐,李丹,吴嘉平,等.浙江省中小比例尺土壤数据库的构建[J].科技通报,2012,28(11):99-105.
    李建国,刘金萍,刘丽丽,苏维词,邵景安,郭跃,郭晴晴,程晓昀,窦贤明.重庆市农业生态安全空间特征与政策建议[J].农业现代化研究.2010,31(4):462-466.
    李璐,姜小三,孙永远.基于地统计学的降雨侵蚀力插值方法研究-以江苏省为例[J].生态与农村环境学报,2011,27(1):88-92.
    李艳,陈晓宏,张鹏飞.突变级数法在区域生态系统健康评价中的应用[J].中国人口、资源与环境,2007,17(3):50-54.
    梁音,张斌,潘贤章,史德明.南方红壤丘陵区水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):22-27.
    林金石,张黎明,于东升,史学正.我国南方地区降雨侵蚀力特征及简易算法研究-以江西省鹰潭地区为例[J].水土保持通报,2011,31(2):113-116.
    刘会玉,王充,林振山,杨浩.基于RS和GIS的滇池流域水土流失动态监测[J].南京师大学报(自然科学版),2012,35(2):120-124.
    刘明,刘淳,王克林.洞庭湖流域生态安全状态变化及其驱动力分析[J].生态学杂志,2007,26(8):1271-1276.
    刘振举,蔡强国,李国强.东北黑土区水土流失胁迫下的生态安全评价指标体系的建立[J].水土保持通报,2009,29(6):64-69,78.
    孟兆鑫,李春艳,邓玉林.沱江流域生态安全预警及其生态调控对策[J].生态与农村环境学报,2009,25(2):1-8.
    倪元龙,于东升,张黎明,史学正.土壤碳库研究中土壤数据从矢量到栅格的等精度转换[J].地理研究,2012,31(6):980-986.
    蒲英霞,葛莹,马荣华,黄杏元,马晓冬.基于ESDA的区域经济空间差异分析-以江苏省为例[J].地理研究,2005,24(6):965-974.
    卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究[J].农村生态环境学报,1995,11(1):5-9.
    曲格平.关注生态安全之二:影响中国生态安全的若干问题[J].环境保护.2002,(7):3-6.
    曲格平著.关注中国生态安全[M].北京:中国环境科学出版社.2004.
    曲衍波,齐伟,商冉,李乐.基于GIS的山区县域土地生态安全评价[J].中国土地科学,2008, 22(4):38-44.
    任志远.陕北黄土高原生态安全动态变化定量分析[J].干旱区地理,2005,28(5):642-646.
    任志远,黄青,李晶.陕西省生态安全及空间差异定量分析[J].地理学报,2005,60(4):597-606.
    水利部太湖流域管理局.太湖流域及东南诸河2010水资源公报[M].2011.
    田刚,梁音,陈效民,刘通.几种降雨侵蚀力模型在潋水河流域的对比研究[J].土壤学报,2010,47(1):7-12.
    于立.创立一个中国式的生态发展模式:安吉研究[J].城市发展研究,2009,16(10):86-91.
    汪邦稳,汤崇军,杨洁,喻荣岗,宋月君.基于水土流失的江西省生态安全评价[J].中国水土保持科学,2010,8(1):51-57.
    王计平,陈利顶,汪亚峰.黄土高原地区景观格局演变研究综述[J].地理科学进展,2010,29(5):535-542.
    汪言在,闫冬,李月臣,张述林,苟诗薇.日降雨对降雨侵蚀力年雨量简易算法的影响分析[J].水土保持通报,2012,32(3):150-155.
    王振祥,朱晓东,石磊,李杨帆,汪家权,贾良清.安徽省沿淮地区生态安全评价模型和指标体系[J].应用生态学报,2006,17(12):2431-2435.
    魏婷,朱晓东,李杨帆,孙翔,陈彬,王金坑.突变级数法在厦门城市生态安全评价中的应用[J].应用生态学报,2008,19(7):1522-1528.
    吴嘉平,胡义镰,支俊俊,荆长伟,林声盼,李丹,张超,等.浙江省大比例尺土壤普查数据库[J].土壤学报,2013,50(1):30-40.
    肖笃宁,陈文波,郭福良.论生态安全的基本概念和研究内容[J].应用生态学报,2002,13(3):354-358.
    徐宗学,张玲,阮本清.北京地区降水量时空分布规律分析[J].干旱区地理,2006,29(2):186-192.
    余健,房莉,仓定帮,朱琳,卞正富.熵权模糊物元模型在土地生态安全评价中的应用[J].农业工程学报,2012,28(5):260-266.
    张冰洁,宋戈.松嫩高平原黑土区典型地域耕地生态安全评价及驱动力分析-以黑龙江省绥化市为例[J].水土保持研究,2012,19(3):215-220.
    张长印编著.水土流失生态补偿[M].北京:中国大地出版社.2008.
    张建云,章四龙,王金星,李岩.近50年来中国六大流域年际径流变化趋势研究[J].水科学 进展,2007,18(2):230-234.
    张磊,鞠美庭,孟伟庆.基于能值改进生态足迹模型的天津市近10年生态安全趋势评价[J].安全与环境学报,2010,10(3):123-129.
    张玉珍,李延风,段勇.闽江流域生态安全预警研究[J].福州大学学报(自然科学版),2012,40(1):132-137.
    赵金,陈曦,包安明,段远斌.土地利用监测适宜尺度选择方法研究-以塔里木河流域为例[J].地理学报,2007,62(6):659-668.
    赵其国.我国南方当前水土流失与生态安全中值得重视的问题[J].水土保持通报.2006,26(2):1-8.
    赵先贵,肖玲,马彩虹,韦良焕,高利峰.基于生态足迹的可持续评价体系的构建[J].中国农业科学,2006,39(5):1202-1207.
    赵文武,傅伯杰,陈利顶,吕一河,刘永琴.黄土丘陵沟壑区集水区尺度土地利用格局变化的水土流失效应[J].生态学报,2004,24(7):1358-1364.
    赵文武,徐海燕,解纯营,黄土丘陵沟壑区延河降雨侵蚀力的估算[J].农业工程学报,2008,24(1):38-42.
    中华人民共和国环境保护部.2010年中国环境状况公报[M].中华人民共和国环境保护部,北京,2011.
    中华人民共和国水利部.土壤侵蚀分类分级标准[M].北京:中国水利水电出版,2007.
    邹爱平,陈志彪,陈志强.水土流失景观空间自相关与自相似的尺度特征分析-以长汀县根溪河小流域为例[J].国土与自然资源研究,2007,(3):31-33.
    朱运海,张百平,曹银璇,张运生.基于动态因子的区域生态安全评价-以河北省万全县为例[J].地理科学进展.2006,25(4):34-40.
    左太安,苏维词,马景娜,肖艳.三峡重庆库区针对水土流失的土地资源生态安全评价[J].水土保持学报,2010,24(2):74-78.
    左伟,王桥,王文杰,刘建军,杨一鹏.区域生态安全评价指标与标准研究[J].地理学与国土研究,2002,18(1):67-71.
    左伟,王桥,王文杰,吴秀芹,杨一鹏,杨丽静,朱晓华.区域生态安全综合评价模型分析[J].地理科学.2005,25(2):209-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700