用户名: 密码: 验证码:
感应滤波换流变压器的绕组振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电力工业迅速发展的今天,如何使资源与环境协调发展是我们面临的一个艰巨的挑战。对于我国的电力行业来说,既要为经济发展提供可靠的电力能源,还要保证输变电工程与环境的友好,这是电力行业非常关心的一项现实课题。直流输电对于实现全国范围内的资源优化配置和能源优化供给具有重要的意义,在我国的电力系统中已经得到了较为广泛的应用。但是,由于直流输电中电力电子器件的非线性行为的作用以及直流偏磁现象的发生,产生了大量的谐波电流和无功功率,这不仅仅污染了电能质量,对电网和系统带来不良影响,还将对换流站的各个器件,尤其是换流变压器造成危害。传统的直流输电滤波方案仅从电网的角度考虑,换流阀产生的特征次谐波仍然在变压器绕组中自由流通,此时绕组受到的电磁力将会增大,使得绕组电磁振动加剧。其危害表现为,一方面,绕组振动的加剧使得换流变压器的可听噪声严重超标;另一方面,还可能破坏变压器的绝缘结构,缩短换流变压器的使用寿命。
     本论文研究的感应滤波换流变压器是一种集成了感应滤波技术的新型换流变压器。旨在从谐波源处就近对谐波进行滤除,使得绝大部分的特征次谐波被屏蔽于阀侧绕组,网侧绕组中几乎没有谐波流过,从而达到抑制绕组电磁振动的作用。本论文主要目的就是对换流变压器的谐波电流与绕组电磁振动的关系进行研究,揭示在谐波条件下感应滤波换流变压器对绕组电磁振动的抑制作用。围绕上述问题,本文主要完成了如下研究工作:
     (1)研究了感应滤波换流变压器的接线方案和滤波机理,推导了感应滤波换流变压器的电压电流传递方程和绕组的匝比关系。详细推导了理想条件下,未投入和投入两种情况下感应滤波换流变压器的绕组电流计算方法,并通过计算电流波形与实测波形的对比验证了计算方法的正确性,计算电流和实测电流都显示感应滤波换流变压器对绕组谐波电流具有优良的抑制作用。同时这也为谐波条件下绕组电磁力的计算打下了基础;
     (2)通过对毕奥-沙瓦定律和拉格朗日定理的详细比较,确定了采用拉格朗日定理对感应滤波换流变压器进行绕组电磁力计算。利用拉格朗日定理和多绕组变压器理论,对谐波条件下感应滤波器的绕组电磁力进行了详尽的推导,得到了各个绕组在未投和投入感应滤波装置时的径向和轴向电磁力,计算结果表明投入感应滤波装置能够有效的减小原边绕组和公共绕组径向力的幅值;
     (3)根据直流输电系统研究平台中的单相感应滤波换流变压器,建立了变压器绕组和铁心的有限元模型,确定了模态分析的方法,并分析了对感应滤波换流变压器振动模态分析的基本思路。通过振型比对,确定了绕组的边界条件为自由边界,而铁心模态分析的边界条件为底部约束。模态计算结果表明,绕组的固有频率避开了特征次谐波的两倍频避免了共振的发生,并且网侧绕组是各个绕组中最易于振动的部分。为了避免铁心可能发生的共振,提出了加载预紧力的解决措施,并重新计算了铁心模态,验证了措施的可行性;
     (4)建立了谐波条件下绕组振动的有限元模型,其网格剖分采用了扫掠的方式,保证了绕组节点分布的径向和轴向的对称性,这与绕组的受力和振动的性质相对应。对于铁心对绕组振动的影响做了合理的简化,确定了有限元瞬态动力学计算的边界条件。针对绕组电磁力为不规则的波形,对电磁力激励的加载采取了将电磁力均分为多个相等的载荷步的离散化处理。经过有限元计算得到了在四种工况下绕组的振动特性,计算结果表明,感应滤波技术对各个绕组的振动有明显的抑制作用,其中5、7次感应滤波装置对绕组振动有较大的抑制作用;
     (5)研究了感应滤波换流变压器在直流偏磁下的谐波抑制机理,建立了基于matlab的感应滤波换流变压器直流偏磁实验仿真模型,得到了两种直流偏置引入方式下的变压器励磁电流和各个绕组电流,验证了感应滤波换流变压器能够阻止谐波电流扩散至原边绕组。对绕组和相应铁心的有限元模型加载直流偏磁下的电磁力激励,经有限元计算得到了各个绕组在两种直流侵入方式下的振动特性。对绕组的振动特性分析显示,在投入感应滤波装置前,绕组的振动在网侧引入直流偏置的方式下要更为剧烈,投入感应滤波装置后,两种直流偏置引入方式下的绕组振动显著降低且十分接近,表明感应滤波技术能有效的抑制直流偏磁下的绕组振动。
     本文通过系统地研究感应滤波换流变压器绕组在振动方面的特性,构建了一套比较完善的绕组振动研究体系。通过对绕组振动模态、谐波条件下的绕组振动以及直流偏磁下的绕组振动进行深入研究,揭示了感应滤波技术对绕组电磁振动的抑制作用,表明了感应滤波换流变压器具有良好的工程应用前景。
In the period with booming Power Industries, to coordinated development ofresources and environment is a tough challenge we faced with. For China's powerindustry, it not only needs to provide reliable electrical energy for economicdevelopment, but also to ensure that the power transmission project environment-friendly, which is a realistic subject power industry concerned about. DC transmissionis of great significance for achieving the optimal allocation of resources and energyoptimizing supply nationwide, and it has been widely used in China's electricitysystem. However, due to the non-linear behavior of the power electronic devices of DCtransmission as well as the DC magnetic bias phenomenon occurred, resulting in alarge number of harmonic currents and reactive power, which not only pollutes thepower quality of the power grid,but also do harm to the respective devices of theconverter stations, especially converter transformer. The traditional filtering scheme ofDC power transmission only take power grid into consideration, the characteristicharmonic currents generated by commutating valve still free flow in the transformerwindings, then the electromagnetic forces of windings will be increased, which causeelectromagnetic vibration of the windings intensified. On the one hand, convertertransformer windings vibration makes the audible noise beyond the standards seriously;the other hand, it may damage the transformer insulation structure, shortening theservice life of the converter transformer.
     Inductive filtering converter transformer of this thesis is a new convertertransformer integrated inductive filtering technology. It can perform the harmonicsuppression nearby harmonic source, making the most of the characteristics harmonicshield in valve winding, and almost no harmonic currents flow through the primarywinding. By this way, the winding electromagnetic vibration can be suppressed. Basedon the inductive filtering converter transformer and its winding electromagneticvibration, the fundamental research and the related innovative achievement in thisthesis can be summarized as follows:
     (1) Inductive Filtering wiring scheme of converter transformer and its filteringmechanism are researched, derived voltage and current transfer equations of inductivefiltering converter transformer and its winding turns-ratio. In ideal conditions, current calculation method of inductive filtering converter transformer winding are derived, bycomparing with the measured waveform, the correctness of the calculation method isverified. Calculated current and measured current shows the inductive filters greatlysuppressed the windings harmonic currents of converter transformer, which also laidthe foundation for the winding electromagnetic forces calculation consideringharmonics currents;
     (2) By detailed comparing of Biot-Savart's law and Lagrange's theorem,Lagrange's theorem is determined to calculate windings electromagnetic forces ofinductive filtering converter transformer. Based on Lagrange's theorem and themulti-winding transformer theory, winding electromagnetic forces on the harmonicconditions in both radial and axial directions are computed. The calculation resultsshow that the inductive filters effectively reduced the amplitude of the radial forces ofthe primary winding and the common winding;
     (3) Based on the single-phase inductive filtering converter Transformers of DCtransmission system research platform, a finite element model of the transformerwindings and core are established. Modal analysis method and the basic ideas ofinductive filtering converter transformer vibration modal analysis are determined. Bychecking modes, determined the winding boundary condition is free boundary, and thecore boundary condition is bottom with constraints. Modal calculation results showthat the natural frequencies of the windings avoid the occurrence of resonance withtwice harmonic frequency, and the primary winding is the most easily vibrationportion of all windings. In order to avoid the resonance of the core, a measure that loadprestressing force on core is put forward. By recalculating the core vibration modal,the feasibility of the measure is verified;
     (4) The winding vibration finite element model under harmonic conditions isestablished. Sweep mesh is adopted to ensure the radial and axial symmetry ofwinding node distribution, which is consistent with force and vibration directions ofwindings. The effect of core vibration is reasonably simplified and the boundarycondition of the transient dynamics calculation is determined. As for irregularwaveform, the electromagnetic forces are divided into a large number of equal loadsteps. The finite element calculation results show the vibration characteristics in fourdifferent conditions, it reveals inductive filtering technology significantly suppressedthe vibration of windings, and5,7order inductive filters are more effectively inwinding vibration suppression than11,13order inductive filters;
     (5) The harmonic suppression mechanism of inductive filtering converter transformer under DC magnetic bias is researched, and the inductive filteringconverter transformer DC magnetic bias experimental matlab simulation model isestablished. Transformer exciting current and winding current are obtained in two DCbias introduced way that verified the inductive filtering converter transformer canprevent harmonic current spread to the primary winding. By the finite elementcalculating, the vibration characteristics of all windings are obtained in the two DCbias introduced way. Analysis of the winding vibration characteristics showed that,without inductive filters, the vibration of the windings are more severe when DC biasintroduced from primary winding; with inductive filters, the vibration of the windingsare significantly reduced in two DC bias introduced way, indicating that the inductivefiltering technique can effectively suppress windings vibration under DC magneticbias.
     This thesis makes a systematic study of the inductive filtering convertertransformer’s winding vibration characteristics, and a relatively complete theorysystem of winding vibration is founded. By in-depth studying of winding vibrationmodes, the windings vibration in harmonic conditions revealed the winding vibrationsuppression effect of the inductive filtering technique, which indicates that theinductive filtering converter transformer has a good engineering application prospect.
引文
[1] B. R. Anderson. HVDC transmission-opportunities and challenges. The8thIEEInternational Conference on AC and DC Power Transmission,2006:24-29
    [2]刘振亚.全面实现电力工业科学发展.中国电力企业管理,2010,5:12-15
    [3]袁清云.特高压直流输电技术现状及在我国的应用前景.电网技术,2005,29(14):1-3
    [4]舒印彪.中国直流输电的现状和展望.高电压技术,2004,30(11):1-2
    [5]刘振亚,舒印彪.特高压直流输电技术研究成果专辑.北京:中国电力出版社,2005
    [6]杨一鸣,章旭雯.特高压直流换流站设备的降噪措施.高电压技术,2006,32(9):149-150
    [7]张劲松.高压直流换流站噪声综合治理研究.电力建设,2007,28(8):14-16
    [8]董志刚.变压器的噪声.变压器,1995,32(10):31-35;32(11):27-37;32(12):37-41;1996,33(1):37-40;33(2):30-33;33(3):30-34
    [9]周建国,李莉华,杜茵,等.变电站、换流站和输电线路噪声及其治理技术.中国电力,2009,42(3):75-78
    [10] L. Bolduc, P. Langlois, D. Boteler and R. Pirjola. A study of geomagneticdisturbances in Quebec,1.general results. IEEE Transactions on Power Delivery,1998,13(4):1251-1256
    [11]李文毅,孙竹森,肖安全,等.三沪直流工程换流站噪声治理.中国电力,2008,41(1):32-35
    [12]朱英浩.展望21世纪—开发变压器类产品前沿技术适应能源工业的发展.变压器,2000,37(1):1-4
    [13]贺以燕.高压直流换流变压器结构、标准及试验.电力设备,2006,7(11):53-57
    [14]戴熙杰.直流输电基础.北京:水利电力出版社,1990
    [15]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004
    [16]刘振亚,特高压直流输电理论.北京:中国电力出版社,2009
    [17]吕鹏飞,李庚银,李广凯.轻型高压直流输电技术简介.华中电力,2002,15(5):69-73
    [18]文俊,张一工,韩民晓,等.轻型直流输电—一种新一代的HVDC技术.电网技术,2003,27(1):45-51
    [19]李永坚,周有庆,宋强.轻型直流输电(HVDC Light)技术的发展与应用.高电压技术,2003,29(10):26-28
    [20]候慧,游大海,尹项根.轻型高压直流输电技术的发展与应用.电力建设,2005,26(11):28-30
    [21]乔卫东,毛颖科.上海柔性直流输电示范工程综述.华东电力,2011,39(7):1137-1140
    [22]涂明,王瑞珍,文成.换流变压器的结构型式技术参数及绝缘试验.湖北电力,1998,22(4):12-16
    [23]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析,中国电机工程学报,2008,28(21):7-14
    [24] Forrest J A C. Harmonic load losses in HVDC converter transformers[J]. PowerDelivery, IEEE Transactions,1991,6(1):153-157
    [25]杨小兵,李兴源,金小明,等.云广特高压直流输电系统中换流变压器铁心饱和不稳定分析.电网技术,2008,32(19):5-9
    [26] Xu W, Krakos J E, Mansour Y. A three-phase converter model for harmonicanalysis of HVDC system. IEEE Trans on Power Delivery,1994,9(3):1724-1731
    [27] Dawalibi F P, Li Y, Li C, Liu J. Mitigation of Transformer Saturation Due ToNeutral HVDC Currents. Transmission and Distribution Conference andExhibition: Asia and Pacific, IEEE,2005:1–6
    [28]吕晓德,陈世坤,方治强,等.换流变压器阀侧绕组端部电场的特性分析.变压器,1998,35(6):15-20
    [29]万达.三峡直流输电对江苏电网设备影响的试验研究.华东六省一市电机工程(电力)学会输配电技术研讨论文集(江苏分册),2004,69(4):1-23
    [30] Padiyar K R. HVDC transmission-technology and system interaction. Proc of IntConf on power system. New York,1990,45-49
    [31] Farhad N, Hasmukh S P. HVDC power transmission system. Proceeding of TheIEEE,1988,76(4):495-506
    [32] Gerhard S, Bernd F, Stefan K. HVDC transmission and the environment. PowerEngineering,1996,10(1):204-210
    [33] Hammons T J, Woodford J, Loughtan M. Role of HVDC transmission in futureenergy development. IEEE Power Engineering Review,2000,2(3):10-25
    [34]杨勇.高压直流输电技术发展与应用前景.电力自动化设备,2001,21(9):58-60
    [35]陈红军,孟庆东.高压直流输电技术的特点及其在电网中的作用.中国电力,2001,34(12):68-71
    [36] Vijay K Sood著,徐政译.高压直流输电与柔性交流输电控制装置-静止换流器在电力系统中的应用.北京:机械工业出版社,2008
    [37]陈亮.超高压输电在输变电工程中的应用探讨.南昌水专学报,2001,20(4):26-30
    [38]李立浧.直流输电技术的发展及其在我国电网中的作用.电力设备,2004,5(11):1-3
    [39]国家电网公司.三峡-常州±500kV直流输电工程换流站.北京:中国电力出版社,2004
    [40]喻新强.国家电网公司直流输电系统可靠性统计与分析.电网技术,2009,33(12):1-7
    [41]韩民晓,尹忠东,徐永海,等.柔性电力技术-电力电子在电力系统中的应用.北京:中国水利水电出版社,2007
    [42] C. Rehtanz. Why moving R&D to China. http://www.eaylf.com/,2007-09-07
    [43]袁清云,高理迎,余军,等.特高压直流输电技术研究成果综述.见:2006年特高压输电技术国际会议论文集.北京:国家电网,2006,588-591
    [44]刘福生,聂光前,肖乐军.阻抗匹配平衡变压器的模型试验及其性能分析.铁道学报,1992,3:23-31
    [45]张志文,王耀南,刘福生,等.多功能平衡牵引变压器运行方式研究.中国电机工程学报,2004,24(4):125-132
    [46]刘福生.两发明专利先后完成的产品开发和进入产业化.科学中国人,2002,(2):21-22
    [47]刘福生.拓宽变压装置变换功能,推进产品创新.科学中国人,2004,(8):40-41
    [48]邵鹏飞,罗隆福,宁志毫,等.感应滤波技术应用于工业定制电力系统的运行经验分析.电力自动化设备,2011,31(4):59-63
    [49]马宏彬,何金良,陈青恒.500kV单相电力变压器的振动与噪声波形分析.高电压技术,2008,34(8):1599-1604
    [50]余尤好,陈宝志.大型电力变压器的噪声分析与控制.变压器,2007,44(6):23-26,44
    [51]谭闻,张小五.电力变压器噪声研究与控制.高压电器,2009,45(2):70-72,76
    [52] IEEE COMMITTEE REPORT. Bibliography on transformer noise. IEEETrans.Power Apparatus and Systems,1968,87(2):372-387
    [53]王志敏,顾文业,顾晓安,等.大型电力变压器铁心电磁振动数学模型.变压器,2004,41(6):1-5
    [54]韩晓东,翟亚东.高压直流输电用换流变压器.高压电器,2002,38(3):5-6
    [55] Bengtsson. Status and trends in transformer monitoring, IEEE transactions onPower Delivery,1996,11(2):1379-1348
    [56] D. L. Ayers, D. White, T. Wright. Development of a low noise FOA transformercooler(part I), Trans.Power Apparatus and Systems,1981,100(5):2424-2428
    [57] D. L. Ayers, D. White, T. Wright. Development of a low noise FOA transformercooler(part II), Trans.Power Apparatus and Systems,1981,100(5):2429-2432
    [58] G.Reyne, J.L.Coulomb. A survey of the main aspects of magnetic forces andmechanical behaviour of ferromagnetic materials under magnetisation. IEEE Trans.Mag.,1987,23(5):3765~3767
    [59] Praveen Vijayraghavan and R. Krishnan. Noise inelectric machines: a review,IEEE Proceedings,1998,251-258
    [60] Cameron. D. E and Lang. J. H, etc. The origin and reduction of acoustic noise indoubly salient variable-reluctance motors IEEE Trans. on Industry Applications,1992,28(6):1250-1255
    [61] Colin G.Gordon. A method for prediction the audible noise emissions from largeoutdoors power transformers. IEEE Trans. Power Apparatus and Systems,1979,98(3):1109-1112
    [62] M. Besbes, Z. Ren and A. Razek. Finite Element Analysis of Magneto-MechanicalCoupled Phenomena in Magnetostrictive Materials. IEEE Transactions onMagnetics,1996,32(3):1058-1061
    [63] Vandevelde, L.; Melkebeek, J.A.A. Magnetic forces and magnetostriction inelectrical machines and transformer cores. IEEE Transactions on Magnetics,2003,39(3):1618-1621
    [64] Lieven Vandevelde and Jan A. A. Melkebeek. Modeling of MagnetoelasticMaterial. IEEE Transactions on Magnetics,2002,38(2):993-996
    [65] T.G.D. Hilgert, L. Vandevelde and J.A.A. Melkebeek. Numerical analysis of thecontribution of magnetic forces and magnetostriction to the vibrations in inductionmachines. Science, Measurement&Technology, IET,2007,1(1):21-24
    [66] Hilgert. T, Vandevelde. L, Melkebeek. J. Comparison of magnetostriction modelsfor use in calculations of vibrations in magnetic cores. IEEE Transactions onMagnetics,2008,44(6):874-877
    [67] G. Reyne, H. Magnin. A supervisor for the successive3D computations ofmagnetic, mechanical and acoustic quantities in power oil inductors andtransformers. IEEE Trans.Mag,1994,29(5):3292-3295
    [68] V. Sokolov. Effective methods of assessment of insulation system condition inpower transformer: a view based on practical experience, Proceeding of the1999CIGRE Regional meeting,1999,659-667
    [69] Phi1ip, R.Price. Geomagnetically induced current effects oil transformers. IEEETransactions on Power Delivery,2002,17(4):1002-1004
    [70] Belen Garcia, Juan Carlos Burgos, Angel Matias Alonso. Transformer tankvibration modeling as a method of detecting winding deformations. IEEETansactions on Power Delivery,2006,21(1):157-163
    [71] Long. S. A, Zhu. Z. Q, Howe. D. Vibration behaviour of stators of switchedreluctance motors. Electric Power Applications, IEE Proceedings-,2001,148(3):257-264
    [72] B. Weiser, H. Pfutzner, and J. Anger. Relevance of Magnetostriction and forcesfor the generation of audible noise of transformer cores. IEEE Transactions onMagnetics,2000,36(5):3759-3777
    [73] L. Vandevelde and J.A.A. Melkebeek. Computation of deformation offerromagnetic material. Science, Measurement and Technology, IEE Proceedings,2002,149(5):222-226
    [74] Foreman. J.E.K. and T.G. Onderwater. Analysis of attitudinal response to audiblenoise from high voltage transmission lines and transformer station. CanadianAcoustics-Acoustique Canadienne,2003,31(1):3-14
    [75] Fukunaga, R.and T. Yamakawa. Finite element method analysis of piezoelectrictransformer. Key Engineering Materials,2003,248:35-38
    [76] Kurdak. C and K.M. Lewis. Noise analysis and optimization of a chargetransformer, a noise-matching device for single electron transistors. Journal ofApplied Physics,2003,93(6):3364-3369
    [77] Uchiyama. N, Saito. S, Kashiwakura. M, Takizawa. A, Morooka. H, Itoh. Y, Hori.Y. Axial vibration analysis of transformer windings with hysteresis ofstress-and-strain characteristic of insulating materials. Power Engineering SocietySummer Meeting,2000, IEEE,2000,4:2428-2433
    [78]顾晓安,沈密群,朱振江,等.变压器铁心振动和噪声特性的实验研究.变压器,2003,40(4):1-4
    [79]谢坡岸,饶柱石,朱子述.大型变压器绕组有限元建模与分析.振动与冲击,2006,25(2):134-137
    [80] Subbarao T, Reeve J. Harmonics caused by imbalanced transformer impedancesand imperfect twelve-pulse operation in HVDC conversion. Power Apparatus andSystems, IEEE Transactions,1976,95(5):1732-1737
    [81]李名贤.电网谐波的产生与治理.轻金属,1998,1:1-7
    [82]肖燕彩,文继锋,袁源,等.超高压直流系统中的换流变压器保护.电力系统自动化,2006,30(9):91-94
    [83]韩光.换流变压器直流偏磁现象及其影响的研究.西安交通大学博士学位论文,2002
    [84]王寿民.电力变压器直流偏磁现象的实验研究.沈阳工业大学硕士学位论文,2000
    [85] Chen S, Wood A R. Arrillaga J. HVDC converter transfotmer core saturationinstability: a frequency domain analysis. Generation,Transmission andDistribution, IEE Proceedings,1996,143(1):75-81
    [86] Dawalibi F P, Li Y, Li C, Liu J. Mitigation of Transformer Saturation Due ToNeutral HVDC Currents. Transmission and Distribution Conference andExhibition: Asia and Pacific, IEEE,2005:1-6
    [87]马为民.换流变压器中直流偏磁电流的计算.高电压技术,2004,30(11):48-49
    [88]姚缨英.大型电力变压器直流偏磁现象的研究.沈阳工业大学博士学位论文,2000
    [89] Wemer Ritz.高压直流输电用变压器.国际电力,1999,4:29-31
    [90]孙优良,王清璞,李文平,等.士800kV直流输电工程用换流变压器的研发.电力设备,2006,7(111):17-20
    [91] Elliott F E, Lavier B E, Kuehn W P, Kuechler A. FEM-study on convertertransformer failures in the Celilo HVDC converter station. Power EngineeringSociety1999Winter Meeting, IEEE,1999,2:1047-1052
    [92] Frank Engelskirchen, Peter Heinzig. HVDC换流变压器技术及现场维修情况.电力设备,2005,6(12):93-95
    [93] Grant D H, McDermid W. Assessment of thermal aging of HVDC convertertransformer insulation. Electrical Insulation, Conference Record of the2004IEEEInternational Symposium,2004:230-232
    [94]李文平,陈志伟,宋秀生,等.士800kV直流输电工程用换流变压器主绝缘结构的研究.电力设备,2007,8(3):5-6
    [95]王烜,曹晓珑.特高压换流站输电设备概述.电气技术,2006,5:9-14
    [96] Forrest J A C. Harmonic load losses in HVDC converter transformers. PowerDelivery, IEEE Transactions,1991,6(1):153-157
    [97]浙江大学发电教研组.直流输电.北京:水利电力出版社,1985
    [98]许加柱.新型换流变压器及其滤波系统的理论与应用研究.湖南大学博士学位论文,2007
    [99]马丁J.希斯科特,著,王晓莺,等译.变压器实用技术大全.北京:机械工业出版社,2004
    [100] V.Brandwajn, H.W.Dommel, I.I.Dommel. Matrix representation of three-phaseN-winding transformers for steady-state and transient studies. IEEE Trans. onPower Apparatus and Systems,1982, PAS-101(6):1369-1378
    [101]罗隆福,尚荣艳,许加柱,等.基于新型换流变压器的直流输电系统改善换相的机理研究.中国电机工程学报,2009,29(9):50-56
    [102]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000
    [103]傅志方.振动模态分析与参数辨识.北京:机械工业出版社,1990
    [104]许本文,焦群英.机械振动与模态分析基础.北京:机械工业出版社,1998
    [105]陈安宁,董卫平.振动模态分析技术.北京:国防工业出版社,1993
    [106]李旭光.干式变压器振动和噪声试验研究与理论分析.上海交通大学博士后出站报告,2005
    [107] Lihua Hu, R. E. Morrison. The use of modulation theory to calculate the harmonicdistortion in HVDC systems operating on an unbalanced supply. IEEETransactions on Power Systems,1997,12(2):973-980
    [108]李战鹰,李建华,夏道止.±800kV特高压直流输电系统特征谐波分析.电网技术,2006,30(24):6-8
    [109]郝巍,李兴源,金小明,等.多馈入直流系统中逆变站滤波器投切对谐波电流的影响.电网技术,2006,30(19):48-52
    [110] Sebastiao E. M. de Oliveira, Jose Octavio R. P. Guimaraes. Effects of voltagesupply unbalance on AC harmonic current components produced by AC/DCconverters. IEEE Transactions on Power Delivery,2007,22(4):2498-2507
    [111] Graeme N. Bathurst, Neville R. Waston, Jos Arrillaga. Modeling of bipolar HVdclinks in the harmonic domain. IEEE Transactions on Power Delivery,2000,15(3):1034-1038
    [112] Lihua Hu, R. Yacamini. Harmonic transfer through converters and HVDC links.IEEE Transactions on Power Electronics,1992,7(3):514-525
    [113] Peter Riedel. Harmonic voltage and current transfer, and AC-and DC-sideimpedances of HVDC converters. IEEE Transactions on Power Delivery,2005,20(3):2095-2099
    [114]周群,张谊,黄家裕.非特征谐波引起的次同步振荡研究.电网技术,1999,23(12):4-5
    [115]曾艳,任震,余涛.基于调制迭代谐波分析法的交直流混联输电系统多谐波源研究.电网技术,2006,30(11):26-29
    [116] A. R. Wood and J. Arrillaga. The frequency dependent impedance of an HVDCconverter. IEEE Transactions on Power Delivery,1995,10(3):1635-1641
    [117] Kadry Sadek, Mareos Pereira. Harmonic transfer in HVDC systems underunbalanced conditions. IEEE Transactions on Power Systems,1999,14(4):1394-1399
    [118]瓦修京斯基C B.变压器的理论与计算.北京:机械工业出版社,1983:229-274
    [119]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998
    [120]安世亚太. ANSYS动力学分析指南. http://pera.e-works.net.cn/,2007-07-25
    [121]王天煜,王凤翔.大型异步电动机定子振动与模态分析.中国电机工程学报,2007,27(12):41-45
    [122]吴建华.基于物理模型开关磁阻电机定子模态和固有频率的研究.中国电机工程学报,2004,24(8):l10-l14
    [123]马为民.换流变压器中直流偏磁电流的计算.高电压技术,2004,30(11):48-49
    [124]李靖宇.换流变压器直流偏磁的试验研究.变压器,2005,42(9):25-28
    [125]朱艺颖,蒋卫平,曾昭华,等.抑制变压器中性点直流电流的措施研究.中国电机工程学报,2005,25(13):1-7
    [126] Burton, R. S., Fuchshuber, C. F., Woodford, D. A., et al. Prediction of coresaturation instability at an HVDC converter. IEEE Transactions on PowerDelivery,1996,11(4):1961-1969
    [127] Longfu Luo, Yong Li, Jiazhu Xu, et al. A new converter transformer and acorresponding inductive filtering method for HVDC transmission system. IEEETransactions on Power Delivery,2008,23(3):1426-1431
    [128]李勇,罗隆福,贺达江,等.新型直流输电系统典型谐波分布特性分析.电力系统自动化,2009,33(10):59-63
    [129]罗隆福,李勇,许加柱,等.新型换流变压器配套滤波装置的优化设计.电网技术,2007,31(9):22-26
    [130] Pengfei Shao, Longfu Luo, Yong Li, et al. Electromagnetic vibration analysis ofthe winding of a new HVDC converter transformer. IEEE Transactions on PowerDelivery,2012,27(1):123-130
    [131]皇甫成,阮江军,张宇,等.变压器直流偏磁的仿真及限制措施.高电压技术,2006,32(9):117-120
    [132]李晓萍,文习山,蓝磊,等.单相变压器直流偏磁试验与仿真.中国电机工程学报,2007,27(3):33-40
    [133]郝巍,李兴源,金小明,等.直流输电引起的谐波不稳定及其相关问题.电力系统自动化,2006,30(19):94-99
    [134]潘卓洪,梅桂华,张露,等.抑制变压器直流输电的电流注入法.电力系统自动化,2009,33(20):88-91,108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700