用户名: 密码: 验证码:
平原河网受污染原水生物膜预处理工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖流域平原河网素有“鱼米之乡、丝绸之府”美誉,近年来随着城镇化快速发展和现代农业规模化集约化水平提升,环境水体污染问题日益突出,水源水质达标率低,饮用水安全形势严峻。20世纪90年代以来,太湖流域平原河网地区自来水厂逐渐在传统混凝-沉淀-消毒工艺前增设生物膜预处理单元,可明显改善水质降低后续处理负荷,但目前仍存在功能微生物增殖慢持留难、脱氮性能差、微量有机物去除能力有限及低温处理效果差等突出问题。为此,论文在解析杭嘉湖平原河网典型水源污染特征基础上,开展了原水生物膜预处理工艺启动、原水脱氮除碳以及农药类环境激素去除以及强化同步脱氮与农药类环境激素去除的新工艺研究,主要内容如下:
     1、为明晰杭嘉湖平原河网水源污染特征,系统调查了杭嘉湖平原河网典型水源有机物、氮磷等常规指标污染特征,应用SPE-GC/MS技术开发了多种农药类环境激素同步分析方法,开展了农业发达地区农药类环境激素污染现状、时空分布特征及风险评价研究。结果表明杭嘉湖平原河网水源以有机物、氮素污染为主,其质量浓度范围分别为7.4~17.5mgL-1(CODMn)和1.6~8.4mg L-1(TN),均不能达到《地表水环境质量标准》(GB3838-2002)Ⅲ类水质标准。其中,运河水系主要超标因子为CODMn、 NH4+-N和TN;苕溪水系河道型水源TN超标严重(以NO3--N为主),水库型水源TN(以NO3--N为主)和TP超标。各水源地有机物和氮素污染随季节变化明显,整体表现为冬春季节TN水平较高,而有机物污染夏秋季节较重。
     应用SPE-GC/MS技术重点开发了7大类21种典型农药类环境激素同步检测方法(4种有机氯类、4种有机磷类、6种拟虫菊酯类、2种酰胺类、2种苯胺类、2种氨基酸甲脂类、1种含氮杂环类),分析发现各水源地均存在农药类环境激素污染,目标污染物总和浓度为37.9~2948.9ng L-1,主要污染物为三氯杀螨醇、氯氰菊酯、毒死蜱、氰戊菊酯和2,4-滴。聚类分析表明不同时期不同地区水源农药类环境激素污染差异大小为:不同水系>季节变化>相同水系不同支流,其中苕溪水系污染水平总体低于运河水系;夏秋季节农药类环境激素水平高于冬春季节(与有机物污染季节变化规律一致)。风险评价结果表明,各水源地农药类环境激素健康风险水平在可接受范围,但其弓引起的高生态风险不容忽视。因此,杭嘉湖平原河网水源有机物、氮素与农药类环境激素等多种污染物强化去除工艺亟待研发。
     2、针对微污染环境功能微生物增长慢、挂膜周期长、处理效果不佳等问题,开展了生物膜预处理快速启动方式研究。从生物膜载体、接种方式、进水负荷等角度优化,构建了冬春季节不同载体和不同运行条件的生物膜预处理反应器,两月后各反应器均获得良好的NH4+-N和CODMn去除性能,平均去除率范围分别为84.4%-94.2%和69.7%-76.6%。其中弹性填料反应器NH4+-N和CODMn去除性能明显高于AquaMats(?)生态基反应器;分析挂膜前后生物膜内总细菌群落结构发现,弹性填料均于挂膜两周左右即富集到较稳定的细菌群落结构,快于AquaMats(?)载体。其中弹性填料富集生物膜优势菌以Pseudomonas、Sphaerotilus和Janthinobacterium为主,尤以有机物好氧降解菌Janthinobacterium较多,从而可获得较高的有机物去除性能;AquaMats(?)富集生物膜优势菌除以上三种菌外,还含有Corynebacterium aurimucosum等优势菌,好氧菌Janthinobacterium相对较少,推测与AquaMats(?)内含大量微孔结构有关。
     应用弹性填料结合闷曝排泥、流量递增启动方式可有效缩短系统氨氧化缓滞期,NH4+-N去除率提前一周达到50%以上,稳定时期NH4+-N(94.2%)和CODMn(76.6%)获得高效去除。生物膜微生物群落结构分析表明闷曝排泥挂膜结合流量递增的挂膜方式可减少异养细菌多样性,弹性填料反应器用此启动方式可于挂膜两周左右即获得稳定的氨氧化菌群结构,表明异养细菌多样性减少有利于快速富集到稳定的氨氧化菌群落结构,从而提前获得较高NH4+-N去除性能。测序结果显示生物膜成熟时氨氧化菌优势菌为Nitrosomonas和Nitrosospira.因此,以弹性填料为生物膜载体,结合闷曝排泥接种方式和流量递增进水模式,可快速富集到稳定的微生物群落结构,有效缩短氨氧化缓滞期,加快生物膜预处理单元快速稳定启动,并能获得高效氨氮和有机物去除性能。
     3、针对杭嘉湖平原河网水源有机物、氮素污染重且地区差异大等问题,开展了适于不同水质特征的原水强化脱氮除碳生物膜预处理工艺技术研发。针对较高C/N比原水水质,以提高生物系统内碳源有效利用率为目的,研究分段配水对生物膜预处理系统脱氮除碳性能与微生物群落结构的影响。结果发现以1:1流量分段配水后系统TN平均去除率可从29.5%±2.2%增至35.0%±2.7%,平均碳源有效利用率从0.199(mg mg-1)增至0.21(mg mg-1);微生物群落结构分析表明分段配水后反应器中后段填料生物膜菌群多样性明显提高,Hyphomicrobium、Pseudomonas、Pantoea等与氮素、有机物去除有关的功能菌得到富集,揭示了采用多点配水策略可一定程度上强化生物膜预处理过程碳源有效利用率和脱氮微生物富集。
     针对以氮素污染为主、低C/N比原水水质,开展了进水C/N比、HRT联合优化的原水强化脱氮除碳工艺研究。结果表明,系统脱氮氮性能与进水C/N比呈正相关,当C/N比大于3.7时出水NO3--N浓度低于1.0mg·L-1,微生物群落分析表明细菌多样性随着C/N比增加而有所提升。基于TOC和UV254的消毒副产物模型预测发现三卤甲烷产生量随进水C/N比增加亦呈现增长趋势。为同步控制出水有机物和氮素浓度,优选2.2为进水C/N比。以此为基础,调控HRT至18h,可获得最高碳源有效利用率和脱氮效率,出水NO3--N (0.88±0.03mg L-11)和TOC浓度(2.86±0.67mg L-1)均在较低水平,满足《生活饮用水卫生标准》(GB5749-2006).
     4、针对杭嘉湖平原河网水源地农药类环境激素污染生态风险高、生物去除研究缺乏等问题,开展了生物膜预处理工艺基质种类(氨氮、硝氮及有机物)、溶解氧水平等对微量农药类环境激素去除影响,探讨生物预处理脱氮与微量农药类环境激素去除相关性。以氯氰菊酯、毒死蜱为代表性农药类环境激素,进水浓度为微量水平(≈1μg L-1)。
     研究不同基质种类对农药类环境激素去除性能影响发现,好氧硝化阶段提高氨氮浓度,其增加的氨氮氧化量对微量氯氰菊酯、毒死蜱去除影响不显著,但外加碳源后氯氰菊酯和毒死蜱去除率分别从80.0±2.7%和68.4±0.8%上升到85.0±0.3%和75.1±3.9%,推测好氧条件微量农药类环境激素去除主要靠异养菌去除而非氨氧化自养菌;缺氧反硝化阶段提高硝氮浓度亦不能显著提升氯氰菊酯和毒死蜱去除率,但投加外碳源后反硝化完全,且氯氰菊酯和毒死蜱去除率分别从65.0±1.3%和32.9±5.7%增至77.9±1.6%和46.9±8.0%,可实现同步强化脱氮与农药类环境激素去除,原因在于外碳源投加可同步增强脱氮与农药类环境激素去除功能菌富集,如Methylovorus、 Hyphomicrobium、Thauera、Paracoccus等。因此,好氧条件农药类环境激素去除性能显著高于缺氧条件(P<0.05),为同时获得脱氮与农药类环境激素高效去除,建议生物膜预处理在提高有机物基质水平基础上采用好氧、缺氧组合工艺。
     5、基于前期研究结果,利用植物生物质作为固体碳源,开展了植物生物质投加强化脱氮与农药类环境激素同步去除工艺技术研究。以芦苇为代表性植物生物质,研究发现其分解过程营养物质前期一周释放迅速后期逐渐下降,有机物释放速度快于氮素,其中氮元素主要为氨态氮形式。应用芦苇营养物质释放特征,研究生物膜预处理系统快速启动技术。结合闷曝排泥法,分别投加芦苇0.4kg/m3和1.2kg/m3,发现两组反应器均于10d左右即可获得90%以上NH4+-N去除率;投加芦苇1.2kg/m3的反应器TN去除率亦于10d获得稳定高效去除(67.04±3.7%),而投加芦苇0.4kg/m3芦苇反应器延迟一周左右获得TN稳定去除(65.4±5.5%);运行稳定时两组反应器出水TOC浓度均维持在较低水平(≈2.0mg L-1)。结果表明芦苇投加1.2kg/m3仅需10d即可启动A/O/A生物膜工艺,同时获得较好脱氮除碳效果。连续运行反应器4个月,系统TOC、NH4+-N去除性能无显著变化,系统高效稳定运行,TN去除在系统运行后期出现一定幅度下降。将反应器芦苇和弹性填料分开运行发现单种载体系统NH4+-N和TN去除率分别为36.3±6.1%、56.5±2.0%(仅含芦苇)和82.94±1.5%、40.34±7.3%(仅含弹性填料),表明芦苇载体富集的生物膜反硝化性能优于硝化性能,弹性填料富集的生物膜硝化性能优于反硝化性能,两种载体组合可获得高效硝化和反硝化效果。
     研究芦苇二次投加强化生物膜预处理工艺性能表明,通过二次投加芦苇2.4kg/m3(每天20g逐次投加),以均匀分布方式(UD)和非均匀分布方(NUD)式布设。芦苇二次投加后总氮可稳定维持75%以上高效去除2个月左右,且采用非均匀分布方式可获得较高的氨氮、总氮去除性能;芦苇二次投加后氯氰菊酯和毒死蜱去除率明显分别明显上升至80%、46.3%(UD)和79.7%、44.7%(NUD).表明芦苇二次投加可强化系统脱氮与农药类环境激素去除性能,且以非均匀分布方式为佳。为避免芦苇投加初期营养释放迅速使得系统短时间内出水有机物、氨氮浓度偏高问题,建议二次投加过程适当降低逐次投加量(<20g/d)。
Hang-Jia-Hu plain is well known for the reputation of 'the land of fish and rice, the mansion of silk and satin'. In recent years, with the accelerating urbanization as well as the development of modern large-scale and intensive agriculture, the pollution of natural water, includng drinking source water, has become an important problem attracting more attention. Since1990s, the aerobic biofilm pre-treatment unit has been used as added to the traditional process of coagulation-sedimentation-disinfection in the waterworks in Hang-Jia-Hu plain. This modified process can obviously improve the water quality and reduce the subsequent processing load. However, there are still some problems need to be resolved, such as the slow growth rate of functional microbial community, the poor removal efficiencies of total nitrogen and trace toxic organics as well as the adverse effect of seasonal variation. Based on the investigation of typical pollution characteristics of drinking source water in Hang-Jia-Hu plain, the fast start up methods of biofilm reactor under low temperature, the enhancing removal of organics, nitrogen and endocrine-disrupting pesticides (EDPs) via biofilm pretreatment were studied. A new biofilm pretreatment process with plant biomass addition for multi-pollutants simultaneously removal was developed. The main contents are presented as follows:
     1) To ascertain the pollution characteristics of source water, the organic matter, nitrogen and phosphorus pollution characteristics of typical source water in Hang-Jia-Hu plain river network were systematical investigated. The levels, spatial and temporal distribution as well as the risk assessment of EDPs were studied based on SPE-GC/MS. Results showed that the major pollutants of source water in river network of Hang-Jia-Hu plain were organics and nitrogen compounds and the eutrophication is serious. The concentration ranges of CODMn and TN were7.44-17.52mg·L-1and1.62~8.35mg-L·1, respectively, exceeding the limit of class III in surface water quality standards (GB3838-2002). The major pollutants of source water from Canal Rivers were CODMm, NH4+-N and TN, while TN (mainly NO3--N) in Tiaoxi stream catchment was the main pollutant, but TN and TP pollution was significant in reservoirs. Temporal distribution characteristics demonstrated that the levels of organics and nitrogen obviously changed with seasonal variation, and nitrogen levels were much higher in winter-spring than that in other seasons, but an opposite situation was observed in the variation of organics.
     Simultaneous detection methods using SPE-GC/MS technology were developed for the detecting of7categories and21kinds of typical EDPs (four organochlorines, four organophosphoruss, six pyrethroidss, two amides, two anilines, two carbamates and one triazine). These results showed that EDPs were often detected in source water with a total concentration of37.9~2948.9ng L-1. The main EDPs were dicofol, cypermethrin. chlorpyrifos, fenvalerate and2,4-D. Cluster analysis obtained the differences order of EDPs pollution of different drainage> seasonal variation> different tributaries in the same drainage. The levels of EDPs pollution in Tiaoxi stream were much lower than those of Canal Rivers; EDPs levels in summer and fall were higher than those in winter and spring, which was consistent with the seasonal variation of organics. Risk assessment results showed that EDPs levels were in an acceptable range, which could not directly impair human's health but could cause high ecological risk. The enhanced biofilm pretreatment process should be developed for the removal of multi-pollutants in source water.
     2) As to the problems of start-up of biofilm reactor under low temperature and low nutrients levels, a method for fast start up of biofilm pretreatment process was developed. Optimizing carriers, inoculation methods and influent loads, modified biofilm pretreatment reactors with different carriers and under different operating conditions were studied for the operation in winter-spring season. After two months-operation, the average removal efficiencies of NH4+-N and CODMn were84.4%-94.2%and69.7%-76.6%, respectively. The removal efficiencies of NH4+-N and CODMn with elastic filler were much higher than those with AquaMats(?). The analysis of bacterial community structure showed that the bacterial community structure of biofilms adhered to the elastic filler was stable within two weeks, which was fast than that on the AquaMats(?). The dominant bacteria of biofilm adhered to elastic filler were Pseudomonas, Sphaerotilus and Janthinobacterium. Janthinobacterium was aerobic bacteria in charge of degrading organics, which was more than other species adhered to elastic filler and assuring the high removal efficiency of organics. The dominant bacteria of biofilm adhered to AquaMats(?) carrier contained the dominant bacteria of Pseudomonas, Sphaerotilus, Janthinobacterium, and Corvnebacterium aurimucosum. However, the aerobic bacteria Janthinobacterium is less than that adhered to elastic filler, which may be related to the microporous structure of AquaMats(?) carrier.
     The lag period of ammonia oxidation could be effectively shortened using the elastic filler combined the method of discharging sediment and gradually increasing influent velocity, and the removal efficiency of NH4+-N reached above50%a week early. The analysis of bacterial community structure found that this method could reduce the heterotrophic bacterial diversity but facilitate the rapid enrichment of ammonia oxidizing bacteria, which is help to obtain a higher NH4+-N removal performance in advance. The ammonia oxidation autotrophic bacteria were stable in biofilm within two weeks. Sequencing analysis results showed that the dominant ammonia oxidizing bacteria in mature biofilm were Nitrosomonas and Nitrosospira. Therefore, using elastic filler as the carrier with the biofilm culturing methods of discharging sediment and gradually increasing influent velocity could effectively shorten the lag phase of ammonia oxidation, accelerate the startup of biofilm pre-treatment unit, and obtain high removal performances of ammonia nitrogen and organics.
     3) As to the serious pollution of organics and nitrogen and distinct regional differences of river network source water in Hang-Jia-Hu plain, the biofilm pretreatment processes for nitrogen and carbon removal in various water qualities were studied based on heterotrophic denitrification technology. For the treatment of raw water with a high C/N and improve the utilization of carbon source in biological systems, the effects of step-feeding process on the performance of biofilm pretreatment system for carbon and nitrogen removal and on the microbial community structure were examined. This result showed that the average TN removal effiency increased obviously from29.5±2.2%to35±2.7%by step-feeding process. The average effective utilization rate of carbon source increased from0.211to0.199(mg mg-1). Microbial community structure analysis indicated that the bacteria diversity of biofilm in the middle or back reactor increased. The functional bacteria of Hyphomicrobium and Pseudomonas, which were responsible for nitrogen and organics removal, enriched in rector. It was revealed that step-feeding process could strengthen biofilm pretreatment process, enhancing the utilization efficiency of carbon source and enrichment of denitrifying bacteria.
     For the treatment of raw water with serious nitrogen pollution and low C/N ratio, the biofilm pretreatment process by optimizing C/N ratio and HRT and adding external carbon source was studied. Results showed that the denitrification efficiencies were positively correlated to the C/N ratio. The effluent NO3--N concentrations were below1.0mg L-1when C/N ratios were more than3.7. The disinfection by-products forecast model based on TOC and UV254forecasted that the production of THMs increased with the increase of influent C/N ratios. For better controlling of effluent organics and nitrogen, the optimized C/N ratio of2.2was chosen. At the HRT of18h, the highest effective utilization rates of carbon source and removal efficiency of nitrogen source were obtained. And the low effluent concentration of NO3--N (0.88±0.03mg L-1) and TOC (2.86±0.67mg L-1) were obtained. The analysis of microbial community showed that the bacterial diversity increased with the increase of C/N ratio.
     4) The pollution of EDPs was notable in river network of Hang-Jia-Hu plain, but the study of biofilm pretreatment process for removing EDPs was lack. To resolve these problems, the influence of substrates (ammonia nitrogen, nitrate nitrogen and organics) and dissolved oxygen on the removal of trace EDPs in the biofilm pretreatment system was conducted. The correlation between the removal of nitrogen and the removal of trace EDPs was explored. The levels of cypermethrin and chlorpyrifos, the representative of EDPs, were trace (approximately1μg L-1).
     The study of the influence of various substrates on the removal of EDPs was conducted. These results showed that aerobic conditions improve the removal of ammonia nitrogen (complete nitrification but nearly no denitrification). The increased ammonia nitrogen oxidation could not significantly enhance the removal of trace cypermethrin and chlorpyrifos. However, the removal efficiency of cypermethrin and chlorpyrifos increased from80.0±2.7%and68.4±0.8%to85.0±0.3%and75.1±3.9%, respectively. We speculated that the removal of trace EDPs was mainly conducted by heterotrophic bacteria rather than ammonia oxidation autotrophic bacteria under aerobic conditions. Under anoxic conditions the nitrate nitrogen concentration increased but the removal efficiencies of cypermethrin and chlorpyrifos were not significantly improved. The complete denitrification was observed when adding external carbon source. The removal efficiencies of cypermethrin and chlorpyrifos increased from65.0±1.3%and32.9±5.7%to77.9±1.6%and46.9±8.0%, respectively.
     Simultaneous enhancing removal of nitrogen and EDPs was realized, this may be related to the fact that adding external carbon source can obviously enhance the enrichment of functional bacteria for removal of nitrogen and EDPs, such as Methylovorus, Hyphomicrobium, Thauera, Paracoccus, etc. Comparing with the removal performance of various EDPs at different dissolved oxygen levels, the removal performance under aerobic conditions is significantly better than that under anoxic conditions (P<0.05). In order to simultaneously remove nitrogen and EDPs, the combined aerobic and anoxic processes with the method of increasing organics level were recommended in biofilm pretreatment systems.
     5) Based on the previous studies achievement, biofilm process for simultaneous nitrogen and EDPs removal by adding solid carbon resource was carried out. Reed was selected as a representative solid carbon resource, and the decomposition process showed that the nutrients release rates of reed were fast in the initial period then slow down. The main nutrients of reed were organics and nitrogen compounds (mainly ammonia), and the release rate of nitrogen was much lower than that of organics. The nutrients release rates of reed were easily affected by environmental factors, including dissolve oxygen and biomass.
     The nutrients of reed would release in biofilm pretreatment system. Using this characteristic, a fast start up method of biofilm reactors was obtained. Biofilm reactors were started up with sediment discharge method, adding20g and60g reed respectively to two aeration A/O/A (anoxic/aerobic/anoxic) processes. It was found that the removal efficiencies of NH4+-N were stable up to90%after operating for10days; the removal efficiency of TN was stable at67.0±3.7%when60g reed was added, but the reactor adding20g reed delayed one week to obtain a TN removal efficiency of65.4±5.5%. The effluent TOC concentrations in both reactors were stable at a lower level of approximately2.0mg L-1. After further operation for four months, TOC and NH4+-N removal efficiencies were not improved significantly, and the removal efficiencies of TN were decreased from65.0±3.4%to54.6±2.9%After3months operation. However, the performance of both reactors was still much better than that in biofilm reactor without adding reed. Separately operating the systems with elastic filler or reeds only, the removal efficiency of NH4+-N (82.9±1.5%) in the system with elastic filler only was higher than that in the system with reeds only (36.3±6.1%), While the removal efficiency of TN (40.3±7.3%) was lower than that (56.5±2.0%) in system adding reeds only. The combination of reed and elastic filler could be help to achieve a good performance of nitrogen and organics removal.
     For further improving the performance of reed added biofilm process, another120g reed was added to the reactors using different distribution modes (uniform distribution and nonuniform distribution). Results showed that TN removal efficiencies were stable up to75%within two months using nonuniform distribution mode to add reed; cypermethrin and chlorpyrifos removal efficiencies were significantly increased to80%and46.3%, respectively using uniform distribution mode and increased to79.7%and44,7%, respectively using nonuniform distribution mode (P<0.05). It was proved that simultaneous nitrogen and EDPs removal was enhanced via secondary addition of reed, and nonuniform distribution mode was an attractive choice. Long-term performance and operation stability analysis showed that the removal efficiencies of TOC (74%), NK4+-N (90.7%), TN (55.0%), cypermethrin (87.1%) and chlorpyrifos (51.1%) were all still stable at high levels after operation for four months when the reeds were secondary added, which satisfied the standards of drinking water quality (GB5749-2006). To avoid the adverse effect of the quickly release of nutrition in the initial phase when reed was added, appropriate reed addition amount of less than20g/d was recommended.
引文
[1]Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA,McDonald IR. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds[J]. Water Res.2011,45:5463-5475.
    [2]Gibert O, Pomierny S, Rowe I,Kalin RM. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB)[J]. Bioresource Technology.2008,99:7587-7596.
    [3]Cameron SG,Schipper LA. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecological Engineering.2010, 36:1588-1595.
    [4]Park JY,Yoo YJ. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose[J]. Applied Microbiology and Biotechnology.2009,82:415-429.
    [5]Ovez B, Ozgen S,Yuksel M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source[J]. Process Biochemistry.2006,41:1539-1544.
    [6]Chu L,Wang J. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor[J]. Chemical Engineering Journal.2011,170:220-225.
    [7]Boon N, De Windt W, Verstraete W,Top EM. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants[J]. Ferns Microbiology Ecology.2002,39: 101-112.
    [8]Braker G, Schwarz J,Conrad R. Influence of temperature on the composition and activity of denitrifying soil communities [J]. Fems Microbiology Ecology. 2010,73:134-148.
    [9]Camargo JA,Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment [J]. Environment International.2006,32:831-849.
    [10]Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J,Blackall LL. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community[J]. Applied and Environmental Microbiology.2004,70: 588-596.
    [11]Ginige MP, Keller J,Blackall LL. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography[J]. Applied and Environmental Microbiology.2005,71:8683-8691.
    [12]Green SJ, Prakash O, Gihring TM, Akob DM, Jasrotia P, Jardine PM, Watson DB, Brown SD, Palumbo AV,Kostka JE. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination[J]. Applied and Environmental Microbiology.2010,76:3244-3254.
    [13]Koops HP,Pommerening-Roser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. Fems Microbiology Ecology.2001,37:1-9.
    [14]Kowalchuk GA, Stephen JR, DeBoer W, Prosser JI, Embley TM,Woldendorp JW. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments[J]. Applied and Environmental Microbiology.1997,63:1489-1497.
    [15]Labbe N, Laurin V, Juteau P, Parent S,Villemur R. Microbiological community structure of the biofilm of a methanol-fed, marine denitrification system, and identification of the methanol-utilizing microorganisms[J]. Microbial Ecology. 2007,53:621-630.
    [16]Lipponen MTT, Martikainen PJ, Vasara RE, Servomaa K, Zacheus O,Kontro MH. Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms[J]. Water Res.2004,38:4424-4434.
    [17]Miura Y, Watanabe Y,Okabe S. Significance of Chloroflexi in performance of submerged membrane Bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology.2007,41:7787-7794.
    [18]Peng DC, Bernet N, Delgenes JP,Moletta R. Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration[J]. Journal of Chemical Technology and Biotechnology.2001, 76:553-558.
    [19]Qin YY, Li DT,Yang H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China[J]. Fems Microbiology Letters.2007,268:126-134.
    [20]Rajakumar S, Ayyasamy PM, Shanthi K, Thavamani P, Velmurugan P, Song YC,Lakshmanaperumalsamy P. Nitrate removal efficiency of bacterial consortium (Pseudomonas sp KW1 and Bacillus sp YW4) in synthetic nitrate-rich water[J]. Journal of Hazardous Materials.2008,157:553-563.
    [21]Regan JM, Harrington GW, Baribeau H, De Leon R,Noguera DR. Diversity of nitrifying bacteria in full-scale chloraminated distribution systems[J]. Water Res.2003,37:197-205.
    [22]Regan JM, Harrington GW,Noguera DR. Ammonia-and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system[J]. Applied and Environmental Microbiology.2002,68: 73-81.
    [23]Su JJ, Yeh KS,Tseng PW. A strain of Pseudomonas sp isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J]. Current Microbiology.2006,53:77-81.
    [24]Wagner M,Loy A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology.2002,13:218-227.
    [25]Xia SQ, Li JX, Wang RC, Li JY,Zhang ZQ. Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR-DGGE and combining FISH with flow cytometry[J]. Biochemical Engineering Journal.2010,49:370-378.
    [26]Xue N, Xu X,Jin Z. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir[J]. Chemosphere. 2005,61:1594-1606.
    [27]Batayneh AT. Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater:health risk assessment[J]. International Journal of Environmental Science and Technology.2011,9:153-162.
    [28]Chang HS, Choo KH, Lee B,Choi SJ. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water[J]. Journal of Hazardous Materials.2009,172:1-12.
    [29]Karaouzas I, Lambropoulou DA, Skoulikidis NT,Albanis TA. Levels, sources and spatiotemporal variation of nutrients and micropollutants in small streams of a Mediterranean River basin[J]. J Environ Monit.2011,13:3064-3074.
    [30]Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD,Surampalli RY. Endocrine disrupting compounds removal from wastewater, a new challenge[J]. Process Biochemistry.2006,41:525-539.
    [31]Castillo LE, Ruepert C,Solis E. Pesticide residues in the aquatic environment of banana plantation areas in the north Atlantic zone of Costa Rica[J]. Environmental Toxicology and Chemistry.2000,19:1942-1950.
    [32]Nakata H, Hirakawa Y, Kawazoe M, Nakabo T, Arizono K, Abe SI, Kitano T, Shimada H, Watanabe L, Li WH,Ding XC. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China[J]. Environmental Pollution.2005,133:415-429.
    [33]Zhang ZL, Huang J, Yu G,Hong HS. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China[J]. Environmental Pollution.2004,130:249-261.
    [34]Zhou RB, Zhu LZ,Chen YY. Levels and source of organochlorine pesticides in surface waters of Qiantang River, China[J]. Environmental Monitoring and Assessment.2008,136:277-287.
    [35]Frye CA, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F, Fernandez M, Fusani L, Kah O, Kajta M, Le Page Y, Patisaul HB, Venerosi A, Wojtowicz AK,Panzica GC. Endocrine disrupters:a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems [J]. J Neuroendocrinol.2012,24:144-159.
    [36]Xia S, Li J,Wang R. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor[J]. Ecological Engineering.2008,32:256-262.
    [37]Wu B, Yi S,Fane AG. Effect of Substrate Composition (C/N/P ratio) on Microbial Community and Membrane Fouling Tendency of Biomass in Membrane Bioreactors[J]. Separation Science and Technology.2012,47: 440-445.
    [38]Ates N, Kitis M,Yetis U. Formation of chlorination by-products in waters with low SUVA--correlations with SUVA and differential UV spectroscopy[J]. Water Res.2007,41:,4139:4148.
    [39]Asian S. Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system[J]. Process Biochemistry.2005,40: 417-424.
    [40]Zhao YJ, Liu B, Zhang WG; Hu CW,Ah SQ. Effects of plant and influent C:N:P ratio on microbial diversity in pilot-scale constructed wetlands[J]. Ecological Engineering.2010,36:441-449.
    [41]Srinandan CS, D'Souza G, Srivastava N, Nayak BB,Nerurkar AS. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture[J]. Bioresource Technology.2012,117:292-299.
    [42]Boley A, Muller WR,Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems [J]. Aquacultural Engineering.2000,22:75-85.
    [43]Zhang J,Smith R. Design and optimisation of batch and semi-batch reactors[J]. Chemical Engineering Science.2004,59:459-478.
    [44]Chandy JP,Angles ML. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay[J]. Water Res.2001,35: 2677-2682.
    [45]Vanderkooij D. ASSIMILABLE ORGANIC-CARBON AS AN INDICATOR OF BACTERIAL REGROWTH[J]. Journal American Water Works Association.1992,84:57-65.
    [46]Johnson AC, Aerni HR, Gerritsen A, Gibert M, Giger W, Hylland K, Jurgens M, Nakari T, Pickering A, Suter MJF, Svenson A,Wettstein FE. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices[J]. Water Res.2005, 39:47-58.
    [47]Li FS, Yuasa A, Obara A,Mathews AP. Aerobic batch degradation of 17-beta estradiol (E2) by activated sludge:Effects of spiking E2 concentrations, MLVSS, and temperatures[J]. Water Res.2005,39:2065-2075.
    [48]Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N,Inamori Y. Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J]. Microbial Ecology.2006,52:253-266.
    [49]Anwar S, Liaquat F, Khan QM, Khalid ZM,Iqbal S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1 [J]. Journal of Hazardous Materials.2009,168:400-405.
    [50]Jilani S, in Water Pollution Ix, eds. D. P. Rico, C. A. Brebbia and Y. V. Esteve, Editon edn.,2008, vol.111, pp.501-510.
    [51]Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T,Khan QM. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1[J]. Journal of Hazardous Materials.2012,237-238:110-115.
    [52]Chen S, Luo J, Hu M, Lai K, Geng P,Huang H. Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01[J]. Bioresource Technology.2012,110:97-104.
    [53]Torrento C, Urmeneta J, Otero N, Soler A, Vinas M,Cama J. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology.2011,287:90-101.
    [54]Auclair J, Parent S,Villemur R. Functional Diversity in the Denitrifying Biofilm of the Methanol-Fed Marine Denitrification System at the Montreal Biodome[J]. Microbial Ecology.2012,63:726-735.
    [55]Verbaendert I, Boon N, De Vos P,Heylen K. Denitrification is a common feature among members of the genus Bacillus[J]. Systematic and Applied Microbiology.2011,34:385-391.
    [56]Thomsen TR, Kong Y,Nielsen PH. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. Ferns Microbiology Ecology.2007,60: 370-382.
    [57]Song BK, Palleroni NJ, Kerkhof LJ,Haggblom MM. Characterization of halobenzoate-degrading. denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp nov[J]. International Journal of Systematic and Evolutionary Microbiology.2001,51:589-602.
    [58]Philipp B,Schink B. Different strategies in anaerobic biodegradation of aromatic compounds:nitrate reducers versus strict anaerobes[J]. Environmental Microbiology Reports.2012,4:469-478.
    [59]Weelink SAB, van Eekert MHA,Stams AJM. Degradation of BTEX by anaerobic bacteria:physiology and application [J]. Reviews in Environmental Science and Bio-Technology.2010,9:359-385.
    [60]Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA, Barragan MJL, Garcia JL,Diaz E. Anaerobic Catabolism of Aromatic Compounds:a Genetic and Genomic View[J]. Microbiology and Molecular Biology Reviews.2009,73:71-79.
    [61]Foght J. Anaerobic biodegradation of aromatic hydrocarbons:Pathways and prospects[J]. Journal of Molecular Microbiology and Biotechnology.2008,15: 93-120.
    [62]Beller HR. Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation[J]. Biodegradation.2000,11:125-139.
    [63]Feng LJ, Xu J, Xu XY, Zhu L, Ding W,Luan J. Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation [J]. International Biodeterioration & Biodegradation.2012,71:72-79.
    [64]Matilainen A, Vepsalainen M,Sillanpaa M. Natural organic matter removal by coagulation during drinking water treatment:A review[J]. Advances in Colloid and Interface Science.2010,159:189-197.
    [65]Sharp EL, Parsons SA,Jefferson B. Seasonal variations in natural organic matter and its impact on coagulation in water treatment[J]. Science of the Total Environment.2006,363:183-194.
    [66]Swietlik J, Dabrowska A, Raczyk-Stanislawiak U,Nawrocki J. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Res. 2004,38:547-558.
    [67]Sharp EL, Jarvis P, Parsons SA,Jefferson B. Impact of fractional character on the. coagulation of NOM[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2006,286:104-111.
    [68]Constable M, Charlton M, Jensen F, McDonald K, Craig G,Taylor KW. An ecological risk assessment of ammonia in the aquatic environment[J]. Human and Ecological Risk Assessment.2003,9:527-548.
    [69]Dodds WK, Jones JR,Welch EB. Suggested classification of stream trophic state:Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus[J]. Water Res.1998,32:1455-1462.
    [70]Greer FR, Shannon M, Comm N,Comm Environm H. Infant methemoglobinemia:The role of dietary nitrate in food and water[J]. Pediatrics.2005,116:784-786.
    [71]Knobeloch L, Salna B, Hogan A, Postle J,Anderson H. Blue babies and nitrate-contaminated well water[J]. Environmental Health Perspectives.2000, 108:675-678.
    [72]Landsberg JH. The effects of harmful algal blooms on aquatic organisms[J]. Reviews in Fisheries Science.2002,10:113-390.
    [73]Pawlowski S, van Aerle R, Tyler CR,Braunbeck T. Effects of 17alpha-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay[J]. Ecotoxicol Environ Saf.2004,57:330-345.
    [74]Hirai N, Nanba A, Koshio M, Kondo T, Morita M,Tatarazako N. Feminization of Japanese medaka (Oryzias latipes) exposed to 17beta-estradiol:effect of exposure period on spawning performance in sex-transformed females[J]. Aquat Toxicol.2006,79:288-295.
    [75]Habouzit F, Gevaudan G, Hamelin J, Steyer JP,Bernet N. Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium[J]. Bioresource Technology.2011, 102:4054-4060.
    [76]Guo J, Ma F, Chang CC, Cui D, Wang L,Yang J. Start-up of a two-stage bioaugmented anoxic-oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations[J]. Bioresource Technology. 2009,100:3483-3488.
    [77]Escudie R, Cresson R, Delgenes JP,Bernet N. Control of start-up and operation of anaerobic biofilm reactors:an overview of 15 years of research[J]. Water Res.2011,45:1-10.
    [78]Zhang S, Wang Y, He W, Wu M, Xing M, Yang J, Gao N,Yin D. Responses of biofiIm characteristics to variations in temperature and NH4(+)-N loading in a moving-bed biofilm reactor treating micro-polluted raw water[J]. Bioresource Technology.2013,131:365-373.
    [79]Wittebolle L, Verstraete W,Boon N. The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors[J]. Water Res.2009,43:4149-4158.
    [80]Mellefont LA, McMeekin TA,Ross T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture[J]. Int J Food Microbiol.2008,121:157-168.
    [81]Rochex A,Lebeault JM. Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine[J]. Water Res.2007,41:2885-2892.
    [82]Wu W, Liu Y, Zhu Q, Wei C,Wang J. Remediation of polluted river water by biological contact oxidation process using two types of carriers[J]. International Journal of Environment and Pollution.2009,38:223-234.
    [83]Yang YN, Tada C, Miah MS, Tsukahara K, Yagishita T,Sawayama S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems.2004,24:413-419.
    [84]Zhu L, Xu X, Luo W, Cao D,Yang Y. Formation and microbial community analysis of chloroanilines-degrading aerobic granules in the sequencing airlift bioreactor[J]. Journal of Applied Microbiology.2008,104:152-160.
    [85]Aslan S,Turkman A. Combined biological removal of nitrate and pesticides using wheat straw as substrates[J]. Process Biochemistry.2005,40:935-943.
    [86]Shao L, Xu ZX, Jin W,Yin HL. Rice Husk as Carbon Source and Biofilm Carrier for Water Denitrification[J]. Polish Journal of Environmental Studies. 2009,18:693-699.
    [87]Durlu-Ozkaya F, Aslim B,Ozkaya MT. Effect of exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii subsp bulgaricus strains to bacteriophage and nisin sensitivity of the bacteria[J]. Lwt-Food Science and Technology.2007,40:564-568.
    [88]Freese HM, Eggert A, Garland JL,Schumann R. Substrate Utilization Profiles of Bacterial Strains in Plankton from the River Warnow, a Humic and Eutrophic River in North Germany[J]. Microbial Ecology.2010,59:59-75.
    [89]Hu TL,Kung KT. Study of heterotrophic nitrifying bacteria from wastewater treatment systems treating acrylonitrile, butadiene and styrene resin wastewater[J]. Water Res.2000,42:315-321.
    [90]Freitag TE, Chang L,Prosser JI. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient[J]. Environ Microbiol.2006,8:684-696.
    [91]de Vet WW, Dinkla IJ, Muyzer G, Rietveld LC,van Loosdrecht MC. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production[J]. Water Res.2009,43:182-194.
    [92]Suzuki MT,Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR[J]. Applied and Environmental Microbiology.1996,62:625-630.
    [93]Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P,Dumoulin A. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J]. Chemical Engineering Journal.2010,162:1-20.
    [94]Gong J, Ran Y, Chen DY,Yang Y. Occurrence of endocrine-disrupting chemicals in riverine sediments from the Pearl River Delta, China[J]. Mar Pollut Bull.2011,63:556-563.
    [95]Chu HQ, Cao DW, Dong BZ,Qiang ZM. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment[J]. Water Res.2010,44: 1573-1579.
    [96]Qian JZ, Wang ZP, Jin S, Liu Y, Chen TH,Fallgren PH. Nitrate removal from groundwater in columns packed with reed and rice stalks[J]. Environmental Technology.2011,32:1589-1595.
    [97]Combalbert S,Hernandez-Raquet G. Occurrence, fate, and biodegradation of estrogens in sewage and manure[J]. Appl Microbiol Biotechnol.2010,86: 1671-1692.
    [98]Johnson AC, Aerni HR, Gerritsen A, Gibert M, Giger W, Hylland K, Jurgens M, Nakari T, Pickering A, Suter MJ, Svenson A,Wettstein FE. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices[J]. Water Res.2005, 39:47-58.
    [99]Layton AC, Gregory BW, Seward JR, Schultz TW,Sayler GS. Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA[J]. Environmental Science & Technology.2000,34: 3925-3931.
    [100]Yi T,Harper WF. The effect of biomass characteristics on the partitioning and sorption hysteresis of 17 alpha-ethinylestradiol[J]. Water Res.2007,41: 1543-1553.
    [101]Balest L, Lopez A, Mascolo G,Di Iaconi C. Removal of endocrine disrupter compounds from municipal wastewater using an aerobic granular biomass reactor[J]. Biochemical Engineering Journal.2008,41:288-294.
    [102]Yu ZQ, Xiao BH, Huang WL,Peng P. Sorption of steroid estrogens to soils and sediments[J]. Environmental Toxicology and Chemistry.2004,23:531-539.
    [103]Joss A, Andersen H, Ternes T, Richle PR,Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization[J]. Environmental Science & Technology. 2004,38:3047-3055.
    [104]Xu B, Gao N-Y, Sun X-F, Xia S-J, Simonnot M-O, Causserand C, Rui M,Wu H-H. Characteristics of organic material in Huangpu River and treatability with the O3-BAC process[J]. Separation and Purification Technology.2007, 57:348-355.
    [105]Qin YY, Zhang XW, Ren HQ, Li DT,Yang H. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment[J]. Appl Microbiol Biotechnol.2008,79: 135-145.
    [106]Sang J, Zhang X, Li L,Wang Z. Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus[J]. Water Res. 2003,37:4711-4718.
    [107]Hong HC, Wong MH, Mazumder A,Liang Y. Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China[J]. Water Res.2008,359: 164-173.
    [108]Ye X, Guo XS, Cui X, Zhang X, Zhang H, Wang MK, Qiu L,Chen SH. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China[J]. Journal of Environmental Monitoring.2012,14:2204-2211.
    [109]Queiroz FB, Brandt EMF, Aquino SF, Chernicharo CAL,Afonso R. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times[J]. Water Science and Technology.2012,66:2562-2569.
    [110]Lee S, Lee JW, Kim S, Park PK, Kim JH,Lee CH. Removal of 17 beta-estradiol by powdered activated carbon-Microfiltraion hybrid process: The effect of PAC deposition on membrane surface[J]. Journal of Membrane Science.2009,326:84-91.
    [111]Cao Q, Yu Q,Connell DW. Degradation rate constants of steroids in sewage treatment works and receving water[J]. Environmental Technology.2008,29: 1321-1330.
    [112]Zhang ZH, Feng YJ, Gao P, Wang C,Ren NQ. Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP[J]. Water Res.2011,13: 1366-1373.
    [113]Svenson A, Allard AS,Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants[J]. Water Res.2003,37:4433-4443.
    [114]Kennedy TJ, Anderson TA, Hernandez EA,Morse AN. Assessing an intermittently operated household scale slow sand filter paired with household bleach for the removal of endocrine disrupting compounds[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering.2013,48:753-759.
    [115]Masuda M, Yamasaki Y, Ueno S,Inoue A. Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502[J]. Extremophiles. 2007,11:355-362.
    [116]Matsumura Y, Hosokawa C, Sasaki-Mori M, Akahira A, Fukunaga K, Ikeuchi T, Oshiman KI,Tsuchido T. Isolation and Characterization of Novel Bisphenol-A-Degrading Bacteria from Soils[J]. Biocontrol Science.2009,14:161-169.
    [117]Sasaki M, Maki J, Oshiman K, Matsumura Y,Tsuchido T. Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp strain AO1[J]. Biodegradation.2005,16:449-459.
    [118]Muller M, Rabenoelina F, Balaguer P, Patureau D, Lemenach K, Budzinski H, Barcelo D, De Alda ML, Kuster M, Delgenes JP,Hernandez-Raquet G. Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant[J]. Environmental Toxicology and Chemistry.2008,27:1649-1658.
    [119]Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H,Joss A. A rapid method to measure the solid-water distribution coefficient (K-d) for pharmaceuticals and musk fragrances in sewage sludge[J]. Water,Res.2004, 38:4075-4084.
    [120]Ternes TA, Kreckel P,Mueller J. Behaviour and occurrence of estrogens in municipal sewage treatment plants-II. Aerobic batch experiments with activated sludge[J]. Science of the Total Environment.1999,225:91-99.
    [121]Yu CP, Roh H,Chu KH.17 beta-estradiol-degrading bacteria isolated from activated sludge[J]. Environmental Science & Technology.2007,41:486-492.
    [122]Zeng QL, Li YM, Gu GW, Zhao JM, Zhang CJ,Luan JF. Sorption and Biodegradation of 17 beta-Estradiol by Acclimated Aerobic Activated Sludge and Isolation of the Bacterial Strain[J]. Environmental Engineering Science. 2009,26:783-790.
    [123]Muller M, Patureau D, Godon JJ, Delgenes JP,Hernandez-Raquet G. Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens [J]. Applied Microbiology and Biotechnology.2010,85: 691-701.
    [124]Weber S, Leuschner P, Kampfer P, Dott W,Hollender J. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture[J]. Applied Microbiology and Biotechnology.2005,67:106-112.
    [125]Fujii K, Kikuchi S, Satomi M, Ushio-Sata N,Morita N. Degradation of 17 beta-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan[J]. Applied and Environmental Microbiology.2002,68:2057-2060.
    [126]Kang JH,Kondo F. Bisphenol a degradation by bacteria isolated from river water[J]. Arch Environ Contain Toxicol.2002,43:265-269.
    [127]Kang JH, Ri N,Kondo F. Streptomyces sp strain isolated from river water has high bisphenol A degradability[J]. Letters in Applied Microbiology.2004,39: 178-180.
    [128]Li GY, Zu L, Wong PK, Hui XP, Lu Y, Xiong JK,An TC. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp GZB: Kinetics, mechanism and estrogenic transition[J]. Bioresource Technology. 2012,114:224-230.
    [129]Kolvenbach BA,Corvini PFX. The degradation of alkylphenols by Sphingomonas sp strain TTNP3-a review on seven years of research[J]. New Biotechnology.2012,30:88-95.
    [130]Watanabe W, Hori Y, Nishimura S, Takagi A, Kikuchi M,Sawai J. Bacterial Degradation and Reduction in the Estrogen activity of 4-nonylphenol[J]. Biocontrol Science.2012,17:143-147.
    [131]Cycon M, Wojcik M,Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp and Pseudomonas sp and their use in bioremediation of contaminated soil[J]. Chemosphere.2009, 76:494-501.
    [132]Awad NS, Sabit HH, Abo-Aba SEM,Bayoumi RA. Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils[J]. African Journal of Microbiology Research.2011,5:2855-2862.
    [133]Zhu JW, Zhao Y,Qiu JP. Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1[J]. African Journal of Microbiology Research. .2010,4:2410-2413.
    [134]Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G,Venkateswarlu K. Isolation and characterization of a chlorpyrifos-degrading bacterium from agricultural soil and its growth response[J]. African Journal of Microbiology Research.2008,2:26-31.
    [135]Chen SH, Hu QB, Hu MY, Luo JJ, Weng QF,Lai KP. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde[J]. Bioresource Technology.2011,102:8110-8116.
    [136]Grant RJ, Daniell TJ,Betts WB. Isolation and identification of synthetic pyrethroid-degrading bacteria[J]. Journal of Applied Microbiology.2002,92: 534-540.
    [137]Murugesan AG, Jeyasanthi T,Maheswari S. Isolation and characterization of cypermethrin utilizing bacteria from Brinjal cultivated soil[J]. African Journal of Microbiology Research.2010,4:10-13.
    [138]Tallur PN, Megadi VB,Ninnekar HZ. Biodegradation of Cypermethrin by Micrococcus sp strain CPN 1[J]. Biodegradation.2008,19:77-82.
    [139]Yu FB, Shan SD, Luo LP, Guan LB,Qin H. Isolation and characterization of a Sphingomonas sp strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes.2013, 48:198-207.
    [140]Desbrow C, Routledge EJ, Brighty GC, Sumpter JP,Waldock M. Identification of estrogenic chemicals in STW effluent.1. Chemical fractionation and in vitro biological screening[J]. Environmental Science & Technology.1998,32: 1549-1558.
    [141]Spengler P, Korner W,Metzger JW. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany.1. Chemical analysis[J]. Environmental Toxicology and Chemistry.2001,20:2133-2141.
    [142]Belfroid AC, Van der Horst A, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J,Cofino WP. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands[J]. Science of the Total Environment.1999,225:101-108.
    [143]Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A,Samperi R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water[J]. Environmental Science & Technology.2000,34:5059-5066.
    [144]Nakada N, Tanishima T, Shinohara H, Kiri K,Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment[J]. Water Res.2006,40: 3297-3303.
    [145]Hashimoto T, Onda K,-Nakamura Y, Tada K, Miya A,Murakami T. Comparison of natural estrogen removal efficiency in the conventional-activated sludge process and the oxidation ditch process[J]. Water Res 2007, 41:2117-2126.
    [146]Braga O, Smythe GA,Schafer AI,Feitz AJ. Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants[J]. Environmental Science & Technology. 2005,39:3351-3358.
    [147]Sun QF, Deng SB, Huang J, Shen G,Yu G. Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China[J]. Environmental Toxicology and Pharmacology.2008,25:20-26.
    [148]Pothitou P,Voutsa D. Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece[J]. Chemosphere. 2008,73:1716-1723.
    [149]Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H,Omura H. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants[J]. Applied and Environmental Microbiology. 2004,70:5283-5289.
    [150]Yang C, Hu BB, Wheatley A,Glasgow G. Removal characteristics of steroid estrogens in trickling filters[J]. Journal of Central South University of Technology.2009,16:357-362.
    [151]Jurgens MD, Holthaus KIE, Johnson AC, Smith JJL, Hetheridge M,Williams RJ. The potential for estradiol and ethinylestradiol degradation in English rivers[J]. Environmental Toxicology and Chemistry.2002,21:480-488.
    [152]Suzuki YMaruyama T. Fate of natural estrogens in batch mixing experiments using municipal sewage and activated sludge[J]. Water Res.2006,40: 1061-1069.
    [153]Urase T, Kagawa C,Kikuta T. Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors[J]. Desalination. 2005,178:107-113.
    [154]Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N,Kroiss H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Res.2005,39:4797-4807.
    [155]Rotaru AE, Probian C, Wilkes H,Harder J. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate[J]. Ferns Microbiology Ecology.2010,71:460-468.
    [156]Fahrbach M, Kuever J, Meinke R, Kampfer P,Hollender J. Denitratisoma oestradiolicum gen. nov., sp nov., a 17 beta-oestradiol-degrading,'denitrifying betaproteobacterium[J]. International Journal of Systematic and Evolutionary Microbiology.2006,56:1547-1552.
    [157]Matter JM, Crain DA, Sills-McMurry C, Pickford DB, Rainwater TR, Reynolds KD, Rooney AA, Dickerson RL,Guillette LJ. Effects of endocrine-disrupting contaminants in reptiles:alligators[M]. Setac Press, Pensacola,.1998,
    [158]Li YM, Zeng QL,Yang SJ. Removal and fate of estrogens in an anaerobic-anoxic-oxic activated sludge system[J]. Water Science and Technology.2011,63:51-56.
    [159]Ren YX, Nakano K, Nomura M, Chiba N,Nishimura O. Effects of bacterial activity on estrogen removal in nitrifying activated sludge[J]. Water Res.2007, 41:3089-3096.
    [160]Gaulke LS, Strand SE, Kalhorn TF,Stensel HD.17a-ethinylestradiol Transformation via Abiotic Nitration in the Presence of Ammonia Oxidizing Bacteria[J]. Environmental Science & Technology.2008,42:7622-7627.
    [161]Lee W, Kang S,Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science.2003,216:217-227.
    [162]Liao BQ, Allen DG, Droppo IG, Leppard GG,Liss SN. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Res.2001, 35:339-350.
    [163]Snidaro D, Zartarian F, Jorand F, Bottero JY, Block JC,Manem J. Characterization of activated sludge floes structure[J]. Water Science and Technology.1997,36:313-320.
    [164]Pieper C,Rotard W. Investigation on the removal of natural and synthetic estrogens using biofilms in continuous flow biofilm reactors and batch experiments analysed by gas chromatography/mass spectrometry[J]. Water Res.2011,45:1105-1114.
    [165]He X,Wareham DG. The use of naturally generated volatile fatty acids for herbicide removal via denitrification[J]. J Environ Sci Health B.2009,44: 302-310.
    [166]Xu ZX, Shao L, Yin HL, Chu HQ,Yao YJ. Biological Denitrification Using Corncobs as a Carbon Source and Biofilm Carrier[J]. Water Environment Research.2009,81:242-247.
    [167]Schipper LA, Robertson WD, Gold AJ, Jaynes DB,Cameron SC. Denitrifying bioreactors-An approach for reducing nitrate loads to receiving waters[J]. Ecological Engineering.2010,36:1532-1543.
    [168]Li L, Xie SG, Zhang H,Wen DH. Field experiment on biological contact oxidation process to treat polluted river water in the Dianchi Lake watershed[J]. Frontiers of Environmental Science & Engineering in China. 2009,3:38-47.
    [169]Hashemi SE, Heidarpour M,Mostafazadeh-Fard B. Nitrate removal using different carbon substrates in a laboratory model [J]. Water Science and Technology.2011,63:2700-2706.
    [170]Wang XM,Wang JL. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source[J]. Science in China Series B-Chemistry.2009,52:236-240.
    [171]Xing X, Gao BY, Zhong QQ, Yue QY,Li QA. Sorption of nitrate onto amine-crosslinked wheat straw:Characteristics, column sorption and desorption properties[J]. Journal of Hazardous Materials.2011,186:206-211.
    [172]Kulshrestha G,Kumari A. Fungal degradation of chlorpyrifos by Acremonium sp, strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil[J]. Biology and Fertility of Soils.2011,47:219-225.
    [173]Ohshiro K, Kakuta T, Sakai T, Hirota H, Hoshino T,Uchiyama T. Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil[J]. Journal of Fermentation and Bioengineering.1996,82: 299-305.
    [174]Lu P, Li QF, Liu HM, Feng ZZ, Yan X, Hong Q,Li SP. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp DT-1[J]. Bioresource Technology.2013,127:337-342.
    [175]中华人民共和国环境保护部.2011年中国环境状况公报[R].北京,2012:4-13.
    [176]王彻华,彭彪.长江干流主要城市江段微量有机物污染分析[J].人民长江.2001:2022-2026.
    [177]刘征涛,姜福欣,王婉华,李霁,李政.长江河口区域有机污染物的特征分析[J].环境科学研究.2006:1-5.
    [178]姜福欣,刘征涛,冯流,王婉华.黄河河口区域有机污染物的特征分析[J].环境科学研究.2006:610-619.
    [179]汪珊,孙继朝,张宏达,荆继红,陈玺.我国水环境有机污染现状与防治对策[J].海洋地质动态.2005:5-10.
    [180]李竺.多环芳烃在黄浦江水体的分布特征及吸附机理研究[博士学位论文].上海.同济大学,2007.
    [181]聂明华.黄浦江上游水源地水体中雌激素的分布特征及其分配机制[硕士学位论文].上海.华东师范大学,2012.
    [182]刘巍.松花江有毒有机物污染特征与行为研究[J].水电站设计.2002:46-49.
    [183]孙剑辉,王国良,张干,孙胜鹏.自然水体中主要有毒有机物的研究进展[J].环境污染与防治.2006:776-779.
    [184]田怀军,舒为群,张学奎,王幼民,曹佳.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资源与环境.2003:118-123.
    [185]焦飞,多克辛,王玲玲,申剑,彭华,朱叙超,戎征.河南省主要城市水源水中微量有毒有害有机污染现状调查与研究[J].中国环境监测.2004:5-9.
    [186]杨燕红,傅家谟,盛国英,闵育顺.珠江三角洲一些城市水体中微量有机污染物的初步研究[J].环境科学学报.1998:49-55.
    [187]、孙英.北京地区地表水环境激素污染现状与环境风险性评价[博士学位论文].北京.中国农业大学,2004.
    [188]宗栋良,常爱敏,张光明,管运涛,梁栋,邓吴斌.深圳主要河流中农药类环境激素污染调查[J].环境监测管理与技术.2009:39-43.
    [189]黄群腾.水环境中36种农药残留的同时分析方法及其应用[硕士学位论 文].厦门.厦门大学,2008.
    [190]肖羽堂.弹性填料富氧曝气生物预处理技术[M].中国建筑工业出版社,天津南开大学,2007.
    [191]叶旭全,谢汉强,张辉,黄兴南.东深原水生物硝化工程试运行小结[J].给水排水.2000:12-15.
    [192]陈洪斌,梅翔,高廷耀,周增炎,李怀正,喻文熙,付威,许晓天.受污染源水生物预处理挂膜过程研究[J].水处理技术.2001:196-199.
    [193]冯骞,薛朝霞,汪翙,钱健,车美芹.EM生物接触氧化反应器挂膜过程影响因素研究[J].水处理技术.2006:37-40.
    [194]傅金祥,许海良,陈正清.不同原水条件下曝气生物滤池的挂膜启动[J].中国给水排水.2006:90-92.
    [195]杨文婷,沈耀良.不同填料快速排泥法好氧挂膜影响因素分析[J].苏州科技学院学报(工程技术版).2008:25-28.
    [196]张杰,曹相生,孟雪征,刘俊良.好气滤池3种挂膜方法的实验研究[J].哈尔滨工业大学学报.2003:1216-1219.
    [197]朱兆亮,曹相生,孟雪征,张杰.上向流好气滤池冬季挂膜启动及运行参数探讨[J].环境工程学报.2009:215-218.
    [198]程晓玲,郑俊,程晓虎.交替曝气两级生物滤池除磷工艺挂膜启动研究[J].新技术新工艺.2009:77-80.
    [199]唐文锋,孙丰英,何晓文.曝气生物滤池不同挂膜方法预处理微污染水源水研究[J].水处理技术.2011:80-83.
    [200]陆少鸣,陈德业,陈艺韵.叠式曝气生物滤池在给水预处理中的挂膜启动[J].环境工程学报.2012:191-194.
    [201]彭位华,桂和荣.纤维陶粒作为填料在生物滤池中的快速挂膜[J].水处理技术.2012:76-79.
    [202]刘辉,怀善兴.水力负荷对生物接触氧化(BCO)工艺挂膜的影响[J].净水技术.2005:10-13.
    [203]金吴云,刘灿灿,沈耀良.不同填料的曝气生物滤池的启动与挂膜对比研究[J].苏州科技学院学报(工程技术版).2007:3033-3043.
    [204]常丽春.官厅水库微污染水生物膜法预处理工艺研究[硕士学位论文].北京.北京市环境保护科学研究院,2002.
    [205]徐京,朱亮,丁炜,冯丽娟,徐向阳.间歇曝气对微污染源水生物接触氧化修复系统脱氮性能的影响[J].应用生态学报.2011:1027-1032.
    [206]王曼,李冬,张杰.生物接触氧化工艺分段进水去除河道有机污染物和总氮的研究[J].水处理技术.2012:51-54.
    [207]张永明,胡一珍,严荣,刘芳.用生物膜缺氧修复受污染的城市河道水[J].环境科学.2009:1920-1924.
    [208]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].中国环境科学出版社,北京,2002.
    [209]马英,焦念志.聚球藻(Synechococcus)分子生态学研究进展[J].自然科学进展.2004:8-13.
    [210]王淑娟.典型水处理过程中有毒有机物质的污染与去除[硕士学位论文].北京林业大学,2006.
    [211]吴敏.人工介质富集微生物及其对微量有机物降解的研究[硕士学位论文].南京.东南大学,2005.
    [212]刘江霞,罗泽娇,靳孟贵,李永勇,廉晶晶.地下水有氧反硝化的固态有机碳源选择研究[J].生态环境.2008:41-46.
    [213]邵留,徐祖信,王晟,金伟,尹海龙.新型反硝化固体碳源释碳性能研究[J].环境科学.2011:2323-2327.
    [214]李明揆.鱼体内邻苯二甲酸酯类环境激素代谢动力学及残留研究[硕士学位论文].杭州.中国计量学院,2012.
    [215]刘德英,张剑波,丁剑.我国农药类环境内分泌干扰物使用现状和对策[J].环境保护.2005:45-50.
    [216]曾庆玲,李咏梅,顾国维.厌氧与缺氧污泥对17β-雌二醇吸附性能的研究[J].环境科学.2007:1981-1986.
    [217]秦伯强,胡维平,刘正文,谢平,尹澄清,高光,谷孝鸿,徐在宽.太湖水源地水质净化的生态工程试验研究[J].环境科学学报.2007:5-12.
    [218]范晓娜,李陈,续衍雪,张敏.基于因子定权分析法的松花江流域地表水水质综合评价[J].吉林农业大学学报.2012,11:25-31.
    [219]刘婷婷.嘉陵江水体中碳、氮、磷季节变化及其输出[硕士学位论文].重庆.西南大学,2009.
    [220]黄发明.钱塘江微污染寡碳引水脱氮示范工程试验研究[硕士学位论文].武汉.武汉理工大学,2012.
    [221]范平,吴纯德,陆少鸣,张帆.GAC-石英砂生物滤池处理微污染原水[J].水处理技术.2008:59-62.
    [222]林素英,吴新建,郑芳.福州市东南水厂水源水污染特征分析[J].给水排水.2008:27-30.
    [223]于刚.南湾水库水质及富营养化特征分析[J].河南水利与南水北调.2013:3-4.
    [224]汤先伟,金一和,张颖花,池田,齐藤宪光.沈阳市自来水中的烷基酚类污染物[J].环境与健康杂志.2005:190-191.
    [225]陈丽,周颖,吴毅凌,张皓,王霞,郑唯韡,刘莉,蒋颂辉,屈卫东,赵建伟.以黄浦江为水源的管网末梢水中微量有机物污染现状[J].卫生研究.2008:137-143.
    [226]黄瑾辉,刘萍,曾光明,许柯.饮用水中微量有机污染物质的GC/MS分析[J].湖南大学学报(自然科学版).2004:36-40.
    [227]蔡德雷,陈江,傅剑云,郑云燕,宋燕华,严峻,丁钢强.钱塘江水环境内分泌干扰物污染的研究[J].卫生研究.2011,04:481-484.
    [228]李正炎,傅明珠,王馨平,高会旺.冬季胶州湾及其周边河流中酚类环境激素的分布特征[J].中国海洋大学学报(自然科学版).2006:451-455.
    [229],张建永,朱党生,.曾肇京,刘卓颖.我国城市饮用水水源地分区安全评价与措施[J].水资源保护.2011,01:1-5.
    [230]高乃云,‘严敏,赵建夫,徐斌.水中内分泌干扰物处理技术与原理[M].中国建筑工业出版社,上海,2010.
    [231]薛南冬,王洪波,徐晓白.水环境中农药类内分泌干扰物的研究进展[J].科学通报.2005:2441-2449.
    [232]邵晓玲,文刚,马军.松花江及哈尔滨市饮用水雌激素活性的调查与分析[J].环境科学.2009:1362-1367.
    [233]宋文婷,陆光华,李湘鸣,张海珍,秦健.长江(南京段)环境雌激素的污染特征[J].生态环境学报.2009:1615-1619.
    [234]牛静萍,刘亚平,阮烨,丁国武.黄河兰州段环境激素的污染水平[J].环境与健康杂志.2006,06:527-529.
    [235]周开胜,徐蒂.淮河流域重金属类环境激素Cd、Pb污染及潜在生态风险评价[J].宜春学院学报.2011,08:117-122.
    [236]贾凌志,李君文.双酚A降解菌的分离鉴定及降解基因的定位[J].环境科学与技术.2006:40-47.
    [237]郭玥.壬基酚降解菌的筛选及其降解特性的研究[硕士].上海交通大学,2011.
    [238]张付海.巢湖水中五种邻苯二甲酸酯的检测和微生物降解研究[硕士学位论文].安徽.安徽农业大学,2005.
    [239]李晓慧,贾开志,何健,李顺鹏.一株毒死蜱降解菌株Sphingomonas sp.Dsp-2的分离鉴定及降解特性[J].土壤学报.2007:734-739.
    [240]金鑫,冉雪琴,王嘉福.农田土壤中毒死蜱降解菌的分离与鉴定[J].贵州农业科学.2010:103-106+109.
    [241]杨丽,赵宇华,张炳欣,张昕.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报.2005:89-93.
    [242]王圣惠.毒死蜱降解菌Klebsiella sp. CPK魔斑合成酶基因的鉴定及功能分析[博士学位论文].北京.中国农业科学院,2010.
    [243]李康.降解毒死蜱的副球菌TRP菌株基因组测序、cpd基因的克隆及功能验证[博士学位论文].北京.中国农业科学院,2012.
    [244]许育新,戴青华,李晓慧,李顺鹏.氯氰菊酯降解菌株CDT3的分离鉴定及生理特性研究[J].农业环境科学学报.2004:958-963.
    [24]曹相生,吴春光,孟雪征.曝气生物滤池去除污水中邻苯二甲酸二(2-乙基已基)酯的效能[J].环境工程学报.2011,02:271-274.
    [246]李玲,田晓梅,张霞,董桂清,孙学鹏.宁夏地区饮用水中4种邻苯二甲酸酯类污染现状研究[J].环境与健康杂志.2010,11:984-986.
    [247]吴平谷,韩关根,王惠华,赵莹.饮用水中邻苯二甲酸酯类的调查[J].1999, 16:338-340.
    [248]王亚娥,李富生,汤浅晶,李杰,高乃云.好氧/厌氧污泥对17β-雌二醇的降解特性[J].中国给水排水.2007,09:72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700