用户名: 密码: 验证码:
建筑供暖与制冷能量系统(火用)分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是发展生产力和提高人类生活水平的基础,能源的短缺促使人们意识到节能的重要性,但是要回答何谓节能其实并不简单,只考虑能量平衡的热力学第一定律回答不了这一问题,从能量利用价值角度看,节能实质上是对常规能源中的可用能“火用”的节约与利用。本文基于热力学第二定律的火用分析方法,提出了从建筑能源的转换、输送到用户终端能量使用全过程,即从一次能源到围护结构建筑能量系统的火用分析理论模型,详细探讨了火用分析对环境状态选择的敏感性,主要研究内容和成果包括以下几方面:
     首先,以全国27个典型城市的气象数据为依据,研究静态和逐时变化的环境基准状态对空气处理过程火用分析结果的影响。结果表明,夏季气候高温湿热的地区,对空气冷却处理过程进行火用分析时,湿空气的化学火用不能忽略,静态和逐时变化的两种环境基准状态下火用分析结果误差不大,因此可用室外平均温度和湿度代替逐时变化的温度和湿度。对于有空调期的大部分城市来说,静态和逐时变化的两种环境基准状态下的化学火用误差较小,在计算湿空气火用值时,可用空调期室外平均湿度替代逐时变化的室外湿度。采暖期,对空气加热处理过程进行火用分析时,静态和逐时变化的两种环境基准状态下的火用分析结果误差较小,因此采暖期空气加热处理时可用室外平均温度代替逐时变化的温度作为环境基准温度。
     其次,以分体式热泵空调系统为例,以典型气象年逐时变化的室外温度和湿度作为环境基准状态,基于制冷状态下空调房间室内空气的化学火用,建立了从一次能源到围护结构分体式热泵系统能量流动的火用分析理论模型,并将其应用到工程实例中,结果表明,对于夏热冬冷地区,围护结构适度保温是必须的,但不应一味的增加保温层的厚度;在适度保温的前提下,应重点考虑提高热泵系统效率,这样建筑能量系统的能源利用效率才能达到最佳。一次能源阶段和热泵阶段的火用损耗约占系统总火用损耗的80%以上,因此改善这两个阶段是提高系统火用效率的关键。
     在此基础上,根据建筑供暖与制冷系统能量流动过程,包括围护结构、室内空气、末端设备、管网系统、冷热源和一次能源转换环节。建立系统各环节的火用分析理论模型及评价指标。应用火用分析理论模型,对某办公大楼不同方案的能量系统从围护结构到一次能源转换进行火用分析,计算各环节的火用流、火用损、火用损率和系统火用效率,根据火用分析计算结果,评价不同建筑能量系统的优劣。结果表明,系统中火用损最大的环节是一次能源转换,冷源方案一次能源阶段火用损率为64.8%~92.2%,热源方案一次能源阶段火用损率为64.6%~84.3%。
     另外,分析建筑能量系统时应考虑能量梯级利用的原则,在能量利用过程中,能级差越大,火用损失越大。本文提出了采用一次能源火用效率和能级平衡系数评价建筑冷热源和末端设备。以1KJ冷量和热量为例分析末端系统不同供回水温度火用效率和能级平衡系数,结果表明,采暖期末端设备尽量采用低温热水,且尽量减少供回水温差;空调期末端设备尽量提高供回水温度,且尽量增大供回水温差,这样系统火用效率和能级平衡系数才能达到最优。因此,在末端设备系统中,应尽量采用接近室温的冷热介质。
     最后,提出了火用分析结合建筑生命周期方法评价既有建筑改造后的节能效果,运用该方法对某建筑节能改造实例进行了分析,结果表明,对于建造年代久远的建筑,在进行围护结构节能改造时,应当把改造后的节火用效果、节能效果和环境影响作为一个整体进行综合分析。
Productivity development and human life level improving are based on energy sources, theshortage of energy sources prompt people to be aware of the importance of energy efficiency.But answering what is energy efficiency is not so simple. The first law of thermodynamicscan not answer this question. The energy efficiency is essentially "exergy" efficiency from thevalue of energy usage perspective. The method based on exergy analysis is proposed from thebuilding envelope to the energy conversion system of the building energy system. Thesensitivity of the exergy analysis results with environment reference state is discussed indetail. The main content is outlined as follows.
     First, based on the meteorological data of27cities in China, the exergy analysis resultswith the dynamic and static environment reference state is researched. The results show thatthe chemical exergy of moist air can not be ignored in hot and humid climate of the airconditioning period through exergy analysis of air cooling process. The exergy result errorsbetween the static and dynamic state is small. So the average outdoor temperature andhumidity can be used to calculate. For most of the cities in cooling season, the chemicalexergy errors between dynamic and static state is small. So the chemical exergy of moist aircan be calculated with average outdoor humidity. In heating period, the exergy analysis resulterror between the two environment states is small. So the outdoor average temperature can beused to calculate instead of dynamic hourly temperature as environment reference state.
     Second, the exergy flow rate is calculated from the power plant to the building envelopewith hourly outdoor temperature and humidity as reference state. The chemical exergy ofroom air is considered in cooling mode. Exergy method is applied to analyze the heating andcooling system of an example building. Results show that building envelop insulation isnecessary in the hot summer and cold winter area of China in reducing the building exergyconsumption. On the premise of envelop necessary insulation, the more effective energyefficiency solution of the building is to increase the air conditioner efficiency rather thanincrease the envelop insulation layer. The total year larger exergy loss rates take place in theprimary energy transformation and heating/cooling production, which is about80%of thesystem total exergy loss.
     Next, according to the energy flowing process of building heating and cooling system,including the building envelope, indoor air, terminal equipment, pipe network system, coldand heat sources and primary energy conversion, the exergy analysis theoretical model and various evaluation index in every stage are established. A case of an office building isanalyzed with the exergy theoretical model from the building envelope to energy conversion.The exergy flow rate, exergy loss, exergy loss rate and exergy efficiency in evergy stage arecalculated to evaluate the pros and cons of the different cases. The results show that the mostexergy loss stage is the primary energy conversion. The exergy loss rate of the cold sourcecases are from64.8%to92.2%, and the heat source cases are from64.6%to84.3%.
     In addition, the principle of cascade utilization energy sources should be considered. Thegreater the energy level difference, the greater the exergy loss. An example of1KJ cold andheat energy are analyzed. The results show that it should use the lower temperature hot waterin heating season, and minimize the temperature difference between supply and return water.It should be use the higher cold water in cooling season, and maximize the supply and returnwater temperature. So the efficiency and energy level equilibrium coefficient are optimal.Therefore, it should be use the cooling and heating medium close to the room temperature inthe terminal equipment system.
     Finally, a kind of exergy analysis combined with life cycle assessment method is presentedto evaluate the effect of the building envelope energy efficiency retrofit. A typical case of theexisting building envelope energy efficiency retrofit is analyzed. The results show that thecumulative saved energy consumption in the use stage is roughly1.75times larger than thetotal embodied energy of the newly added insulation materials in the product stage. Thecumulative saved exergy consumption in the use stage is only about1/7of the embodiedexergy of the newly added insulation materials in the product stage. For the existing buildingwith age, it should be prudent to take any retrofit measures; and it should take the energy andexergy efficiency and environment impact of the retrofit measures as a whole to analyze.
引文
[1] International EnergyAgency. Energy Conservation in Buildings and CommunityService.http://www.ecbcs.org,2012-11
    [2]戎卫国,孟繁晋.空调节能技术的热力学分析与思考.暖通空调,2008,38(12):58-60
    [3]杨秀奇,訾琨.火用分析理论发展综述.昆明理工大学学报(理工版),2004,29(2):158-161
    [4] Y.L.Yang,B.Z.Li,R.M.Yao.A method of identifying and weighting indicators of energyefficiency assessment in Chinese residential buildings.Energy Policy,2010,38(4):7687-7697
    [5] A.Korjenic, T.Bednar.Validation and evaluation of total energy use in office buildings: Acase study.Automation in Construction,2012,23(3):64-70
    [6] L.Tronchin, K.Fabbri.Energy performance building evaluation in Mediterraneancountries: Comparison between software simulations and operating ratingsimulation.Energy and Buildings,2008,40(6):1176-1187
    [7]周少祥,宋之平.论能源利用的评价基准.工程热物理学报,2008,29(8):1267-1271
    [8]叶国栋.建筑物能量系统集成优化运行研究:[华南理工大学博士学位论文].广州:华南理工大学,2005,20-45
    [9]江亿,张晓亮,魏庆芃.建立中国住宅能耗标识体系.中国住宅设施,2005(2):42-44
    [10]杨红霞.建筑节能评价体系的探讨与研究.暖通空调,2006,36(9):42-44
    [11]吴成东,丛娜,孙常春.基于混沌神经网络的建筑节能综合评价.沈阳建筑大学学报(自然科学版),2010,26(1):188-189
    [12]来延肖,王卫卫,尹文浩.运用模糊综合评判法对建筑节能进行综合评价.四川建筑,2007,27(4):25-27
    [13]陈伟珂,罗方.浅析我国宏观建筑能耗评价指标体系.建筑经济,2008(2):76-79
    [14]傅秀章.夏热冬冷地区住宅节能设计与能耗评价研究:[东南大学博士学位论文].南京:东南大学,2004,20-30
    [15]陈岩松.住宅建筑节能评价方法:[同济大学博士学位论文].上海:同济大学.2003,55-90
    [16]卢玫君.夏热冬冷地区居住建筑节能评价研究:[浙江大学硕士学位论文].杭州:浙江大学,2006,38-60
    [17]杨玉兰.居住建筑节能评价与建筑能效标识研究:[重庆大学博士学位论文].重庆:重庆大学,2009,65-83
    [18] CIBSE.Energy assessment and reporting method CIBSE M22.London:CIBSEpublications,2006,10-20
    [19]美国绿色建筑委员会.绿色建筑评估体系.第2版.北京:中国建筑工业出版社,2002,10-58
    [20]日本可持续建筑协会.建筑物综合环境性能评价体系--绿色设计工具(CASBEE).北京:建筑工业出版社,2005,21-50
    [21] B. Meester,J. Dewulf,S. Verbeke et al. Exergetic life-cycle assessment (ELCA) forresource consumption evaluation in the built environment. Building and Environment,2009,44(3):11–17
    [22] I. Z. Bribian,A.Uson,S.Scarpellini. Life cycle assessment in buildings: State-of-the-artand simplified LCA methodology as a complement for building certification. Buildingand Environment,2009,44(8):2510-2520
    [23] F. Ardent, Marco Beccali, Maurizio Cellura et al.Building energy performance: A LCAcase study of kenaf-fibres insulation board. Energy and Buildings,2008,40(5):1-10
    [24] Yan Zhou,Guangcai Gong. Exergy analysis combined with LCAfor building envelopeenergy efficiency retrofit. International Journal of Exergy,2011,8(4):379–391
    [25] ECBCS, Energy Conservationin Buildings and Community Service, InternationalEnergyAgency,2007, http://www.ecbcs.org
    [26] IEA. International Energy Agency. ECBCS2002, Energy conservation in buildings andcommunity service programme, http://www.ecbcs.org
    [27] IEAECBCS Annex37. International energy agency low exergy heating and cooling ofbuildings Annex37,2003,http://www.lowex.net
    [28] LowEx.Net. Network of international society for low exergy systems in buildings,http://lowex.org,2003
    [29] Lowex Guide Book. Low exergy systems for heating and cooling of buildings guidebook.Examples of LowEx buildings, http://www.lowex.net/guidebook/index.htm
    [30]狄彦强.建筑高效供能系统集成技术及工程实践.第1版.北京:中国建筑工业出版社,2011,34-60
    [31]华贲.中国城市建筑能源系统的集成创新.华南理工大学学报(自然科学版),2007,35(10):111-115
    [32] A. Hepbasli. Low exergy (LowEx) heating and cooling systems for sustainablebuildings and societies. Renewable and Sustainable Energy Reviews,2012,16(3):73-104
    [33] F. Meggers, V. Ritter. Low exergy building systems implementation. Energy,2012,41(8):48-55
    [34] D.Schmidt. Low exergy systems for high-performance buildings and communities.Energy and Buildings,2009,41(3):331–336
    [35]曾巍.复合冷凝技术在建筑冷热源中的基础及应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2006,55-80
    [36]远义忠.基于火用分析的集中空调系统能耗研究:[南京理工大学硕士学位论文].南京:南京理工大学,2007,23-45
    [37]李显英.空调系统热力学分析和优化:[山东建筑大学硕士学位论文].济南:山东建筑大学,2010,33-40
    [38]王欣红,毕月虹,张华.土壤源热泵系统的火用分析.太阳能学报,2009,30(6):732-737
    [39]陈雁,戴传山,赵军.地埋管地源热泵系统源侧火用分析.天津大学学报,2009,42(7):32-35
    [40]荆有印,郑国忠.地下水源热泵系统的火用分析.煤气与热力,2006,26(5):53-57
    [41]严军,林霆.火用分析法在空调主机选择中的应用.制冷空调,2004,97(25):12-15
    [42]徐友文,刘金祥.水源热泵空调系统供暖工况的火用效率分析.制冷空调,2006,111(27):20-23
    [43] E.Akpinar,A.Hepbasli.A comparative study on exergetic assessment of two ground-source (geothermal) heat pump systems for residential applications.Building andEnvironment,2007,42(7):2004–2013
    [44] A.Dikici,A.Akbulut. Performance characteristics and energy–exergy analysis ofsolar-assisted heat pump system. Building and Environment,2008,43(6):1961–1972
    [45] A.Hepbasli, M.Tolga Balta. Astudy on modeling and performance assessment of a heatpump system for utilizing low temperature geothermal resources in buildings. Buildingand Environment,2007,42(5):3747–3756
    [46] H.Esena,M.Inalli, et al.. Energy and exergy analysis of a ground-coupled heat pumpsystem with two horizontal ground heat exchangers, Building and Environment,2007,42(9):3606–3615
    [47] L.Ozgener, A.Hepbasli, I.Dincer. Exergy analysis of two geothermal district heatingsystems for building applications. Energy Conversion and Management,2007,48(3):1185–1192
    [48] H.Li, S.Svendsen. Energy and exergy analysis of low temperature district heatingnetwork. Energy,2012,doi:10.1016/j.energy.2012.03.056
    [49]戎卫国.风机盘管机组的火用分析与评价.暖通空调,1997,27(2):23-26
    [50]隋学敏,张旭.辐射空调末端的火用分析与评价.流体机械,2010,38(4):52-56
    [51]解强,祝立萍.风机盘管系统火用分析.安徽冶金科技职业学院学报,2008,18(3):18-21
    [52] B.Kilkis.Exergy metrication of radiant panel heating and cooling with heat pumps.Energy Conversion and Management,2012,63(3):218-224
    [53] S.Wang,M.Morimpto,H.Soeda et al.Evaluating the low exergy of chilled water in aradiant cooling system. Energy and Buildings,2008,40(10):1856-1865
    [54] H. Torio, D. Schmidt. Framework for analysis of solar energy systems in the builtenvironment from an exergy perspective. Renewable Energy,2010,35(3):2689-2697
    [55] C.Koroneos,E.Nanaki,G.Xydis.Solar air conditioning systems and theirapplicability-An exergy approach. Resources, Conservation and Recycling,2010,55(3):74-82
    [56] H.Gunerhan,A.Hepbasli. Exergetic modeling and performance evaluation ofsolarwater heating systems for building applications. Energy and Buildings,2007,39(9):509-516
    [57] A. Ucar,M. Inalli.Exergoeconomic analysis and optimization of a solar-assistedheating system for residential buildings. Building and Environment,2006,41(7):1551-1556
    [58] A. Dikici, A. Akbulut. Performance characteristics and energy–exergy analysis of solar-assisted heat pump system. Building and Environment,2008,43(8):1961-1972
    [59] A. Hepbasli. A comparative investigation of various greenhouse heating options usingexergy analysis method. Applied Energy,2011,88(3):4411-4423
    [60] C. Onan,D.B. Ozkan,S. Erdem. Exergy analysis of a solar assisted absorption coolingsystem on an hourly basis in villa applications. Energy,2010,35(3):5277-5285
    [61] H.Torio,A.Angelotti. Exergy analysis of renewable energy-based climatization systemsfor buildings: A critical view. Energy and Buildings,2009,41(5):248–271
    [62]江亿,刘晓华等.能源转换系统评价指标研究.中国能源,2006,26(3):56-58
    [63]孙志高,郭开华.空调冷热源选择能耗分析.流体机械,2006,34(7):55-59
    [64]姜媛媛.建筑能耗的分析与评价方法的研究[华北电力大学硕士学位论文].北京:华北电力大学,2006,24-40
    [65]夏春海,朱颖新,林波荣.建筑可再生能源利用评价方法.太阳能学报,2007,28(6):58-62
    [66]薛志峰,刘晓华.一种评价能源利用方式的新方法.太阳能学报,2006,27(4):72-76
    [67] A.Yildiz, A. Gungor. Energy and exergy analyses of space heating in buildings.Applied Energy,2009,86(3)1939-1948
    [68] A.Schlueter, F.Thesseling. Building information model based energy/exergyperformance assessment in early design stages. Automation in Construction,2009,18(8):153-163
    [69] M. Tolga Balta,Yildiz Kalinci,Arif Hepbasli. Evaluating a low exergy heating systemfrom the power plant through the heat pump to the building envelope. Energy andBuildings,2008,40(5):1799-1804
    [70] C. Yucera, A. Hepbasli. Thermodynamic analysis of a building using exergy analysismethod. Energy and Buildings,2011,43(3):536-542.
    [71] M. Dovjak, M. Shukuya. Analysis on exergy consumption patterns for space heating inSlovenian buildings. Energy Policy,2010,38(4):2998-3007
    [72] A.Hepbasli. A comparative investigation of various greenhouse heating options usingexergy analysis method.Applied Energy,2011,88(5):4411-4423
    [73] P.Sakulpipatsin,L.C. Itard. An exergy application for analysis of buildings and HVACsystems.Energy and Buildings,2010,42(7):90-99
    [74] M.Schweiker, M.Shukuya.Comparative effects of building envelope improvements andoccupant behavioral changes on the exergy consumption for heating and cooling.Energy Policy,2010,38(8):2976-2986
    [75] T. Mahlia, B.Taufq. Exergy analysis for day lighting, electric lighting and spacecooling systems for a room space in a tropical climate. Energy and Buildings,2011,43(3):1676–1684
    [76] B.N. Taufiq, H.H. Masjuki,et al.,Exergy analysis of evaporative cooling for reducingenergy use in a Malaysian building. Desalination209(2007)238-243.
    [77] H.Caliskana, I. Dincerb, A. Hepbasli. Exegetic and sustainability performancecomparison of novel and conventional air cooling systems for building applications.Energy and Buildings,2011,43(4):1461-1472
    [78] M. G. Alpuche, C. Heard. Exergy analysis of air cooling systems in buildings in hothumid climates, Applied Thermal Engineering,2005,25(5):507-517
    [79]任承钦.蒸发冷却火用分析及板式换热器的设计与模拟研究:[湖南大学博士学位论文].长沙:湖南大学,2001,20-50
    [80] P.Sakulpipatsin. Exergy Effcient Building Design [PhD Thesis].Department BuildingTechnology, University of Delft (the Nether lands),2008,20-48
    [81] Lohani SP. Energy and exergy analysis of fossil plant and heat pump building heatingsystem at two different dead-state temperatures. Energy,2010,35(8):3323-3331
    [82]朱明善.能量系统的火用分析.第1版.北京:清华大学出版社,1988,32-60
    [83]傅秦生.能量系统的热力学分析方法.第1版.西安:西安交通大学出版社,2005,12-60
    [84]中华人民共和国国家标准,能量系统火用分析技术导则,GB/T14909-2005
    [85]项新耀.工程火用分析方法.第2版.北京:石油工业出版社,1990,34-79
    [86]徐业鹏.能量转换与新能源.第1版.北京:清华大学冶金工业出版社,1990,23-56
    [87]薛梅.天然气热电冷联供系统的效益分析.煤气与热力,2003(4):309-311
    [88]张计鹏,傅秦生.建筑系统节能的变温环境基准火用分析.华北电力大学学报,2004,31(6):23-26
    [89] ASHRAE. ASHRAE Handbook Fundamentals, SI ed., ASHRAE, Atlanta,2001,34-56
    [90]张慧玲,付祥钊.长江流域住宅建筑节能季节划分及能耗影响.暖通空调,2009,39(8):34-38
    [91]徐涛.居住建筑分体式房间空调器运行能效研究:[重庆大学硕士学位论文].重庆:重庆大学,2010,34-46
    [92]潘存华.房间空调器非设计工况下性能的实验研究:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2008,21-54
    [93]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告.北京:中国建筑工业出版社,2008,10~20
    [94]浙江省地方标准.火力发电厂供电标煤耗限额及计算方法.DB33/644,2007
    [95]汤学忠.热能转换与利用.第1版.北京:冶金工业出版社,2002,36-58
    [96]中华人民共和国国家标准.天然气发热量、密度、相对密度和沃泊指数的计算方法.GB/T11062,1998,1-20
    [97]国家统计局能源统计司.2011中国能源统计年鉴.北京:中国统计出版社,2012,56-98
    [98][俄] B.M.布罗章斯基.火用方法及其应用.北京:中国电力出版社,1996,22-34
    [99]邱信立,廉乐明.工程热力学.北京:建筑工业出版社,1992,67-89
    [100] I. ZabalzaBribian. Life cycle assessment in buildings: State-of-the-art and simplifiedLCAmethodology as a complement for building certification. Building andEnvironment,2009,44(8):2510-2520
    [101]黄志甲.建筑物能量系统生命周期评价模型与案例研究:[同济大学博士学位论文].上海:同济大学,2003,23-56
    [102]顾道金,朱颖心,谷立静.中国建筑环境影响的生命周期评价.清华大学学报,2006,46(12):1953-1956

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700