用户名: 密码: 验证码:
尾矿坝稳定性分析中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内矿山开采的规模不断扩大,大量尾矿库的建设致使尾矿坝的安全评价及预测成为越来越重要的内容。目前尾矿库的主要型式包括上游坝、中间坝和下游坝三种。国内约80%以上的尾矿坝是采用上游坝的形式筑坝。尾矿坝的安全评价主要是对尾矿坝在建设使用过程中和闭库过程后保证尾矿坝不发生溃坝和垮塌。
     本文以尾矿坝为研究对象,首先从尾矿坝成长演化的角度出发,分析演化过程中的沉积作用、固结作用和化学作用及其对尾矿坝稳定性的影响。然后结合尾矿坝的工程特点及传统尾矿坝稳定性的分析方法,对尾矿坝稳定性分析中的若干问题进行分析,得到如下成果:
     (1)通过对尾矿坝内尾矿浆堆积过程的分析,归纳出尾矿砂在坝内的流动沉积过程主要经历了三个沉积阶段:在排放管口位置处的坝前窝状堆体的点状沉积阶段;基于现有沉积尾矿库坡面特征的射线流动沉积阶段;在尾水池区域进行的静态沉积阶段。对三个阶段的沉积类型与方式、沉积过程中的能耗方程、沉积路径及区域进行了分析和定量描述,探讨了纵向的“点”—“线”—“面”三个阶段的相互作用和前后影响机制,以及横向上多排管的交替沉积作用影响。
     (2)针对尾矿坝的固结作用,在原有太沙基固结理论的基础上,结合大变形固结理论为固结模型基础,探讨建立基于成长模型理论的尾矿坝不同阶段的固结应力分析,固结作用应是基于动态成长状态的不同固结状态下的叠加效果。分析了垂向渗流淤堵对尾矿坝固结作用的影响,认为垂向渗流淤堵是导致尾矿库水平向和垂向渗透系数差异。在垂向颗粒级配差异很大条件下,垂向入渗淤堵使得垂向孔隙度基本保持稳定,从而浸润线上的非饱和入渗系数保持稳定。
     (3)分析了尾矿库内水化学作用的主要影响因素,指出Eh-pH条件是控制尾矿坝水化学作用的主要控制因素,并根据静力平衡原理分析了它们的相互作用。根据氧化还原条件将尾矿坝分为氧化区域,交替区域或还原区域,结合尾矿坝的动态成长演化模型,分析了不同演化阶段尾矿坝的水化学分区特征。以铁矿为例,分析了矿山尾矿库的水化学主要影响因素及反应机理。
     (4)以实际工程为背景,研究了尾矿库库水位及浸润线位置变化对坝体稳定性的影响。
     (5)基于尾矿坝坝基和坝体内带有松散的饱和粉细砂或粉土中在地震作用下会产生过大孔隙水压力的特点,研究尾矿坝在不同地震烈度下液化程度及安全系数的变化。研究表明:地震结束后,尾矿坝的局部会出现液化现象,随着地震烈度的增加,液化区域的宽度与深度都会不断地扩大。动力计算结果表明:随着地震烈度的增加,尾矿坝的安全系数不断减小,减小幅度在0.3~0.4之间。
     (6)利用尾矿坝稳定性分析的有限元数学模型和软件模拟的方法,重点研究不同软件在计算尾矿坝稳定性安全系数方面的差别,供选择数值模拟软件时参考。
     (7)结合尾矿坝的特点,通过建立典型的尾矿坝稳定性分析模型,开发可用于现场进行快速稳定性分析的计算机软件。
With the increasing of domestic mining, the large number of constructions for tailing zone result tailing dam safety evaluation and prediction become a more serious problem. Upstream, midstream and downstream dams are three main types of tailing dams. About80%of the tailing dams are upstream dams in China. The main issue of tailing dam safety evaluation is to prevent failure and collapse during the construction process and after closing.
     The current paper firstly concerns about the effects of sedimentation, consolidation and chemical actions to the stability of tailing dams. Then according to the engineering characteristics of tailing dams and traditional method for stability analysis, the author obtains the following results regarding the stability analysis of tailing dams:
     1. Based on the analysis of the tailing slurry accumulation process in the tailing dams, it can be found that the deposition process of tailing sand has three main stages as presented:1) punctuated deposition at the nest-like pilestage which is located at the discharge nozzle position in front of the dam;2) tailing dam ray flow deposition zone according to the existing slope characteristics of the tailing dams;3) static deposition zone at the tailwater pool. The types of the deposition, energy consumption of the deposition process, and deposition paths have been detailed discussed, including discussion on the interation among the three deposition stages and the alternating deposition due to multi-tubes in the lateral direction.
     2. According to the Terzaghi consolidation theory and the large strain consolidation theory, the proposal of consolidation stress analysis at different stages based on the growth model has been established, analyzing the effects of vertical seepage and clogging to the consolidation tailing dams. It has been discovered that the vertical seepage and clogging is the reason of the differences between the horizontal and vertical permeability coefficients. When the particle size is at very different conditions in the vertical direction, infiltration clogging makes the porosity remains stable, inducing the unsaturated infiltration coefficient at the infiltration line keep stable.
     3. The chemical actions are also investigated, finding Eh-pH conditions are the key issues of controlling the hydrochemistry for the tailing dams. According to the redox theory, a tailing dam can be divided into three parts, including oxidation zone, alternating regions, and restore the area. Combined with the dynamic growth model of the tailing dams, the characteristic of hydrochemistry at different stages is also discussed and an iron ore mine is analyzed as an example.
     4. On the basis of practical engineering, the effects of the water level and infiltration line to the stability of the tailings dam are discussed.
     5. As the saturated silver sand or the silt in the dam foundation and dam body could have over pore water pressure when earthquake happens, it is particularly important to analyze the liquefaction properties under different seismic intensity. The research shows that:after the earthquake, the tailing dam locally liquefies, and with the increasing of the seismic intensity, the level of the liquefaction increases. The dynamic results indicate that the tailing dam safety factor decreases as the seismic intensity increases, and the range is between0.3and0.4.
     6. Different finite element models are used to do the analysis and compared.
     7. The proposed model for analyzing the stability of tailings dams can be used to develop the package for on-site stability analysis.
引文
[1]中国安全生产网,http://www.aqsc.cn/101805/102503/121725.html
    [2]国家安全生产监督管理总局,http://www.chinasafety.gov.cn/newpage/Contents/Channel 4389/2007/1022/44260/content 44 260.htm
    [3]张锦瑞,王伟之,李富平,等.金属矿山尾矿综合利用与资源化[M].北京:冶金工业出版社,2002.
    [4]Rico M., Benito G., SalgueiroAnon A. R.. A review of the European incidents in the worldwide context [J]. Journal of Hazardous Materials,2008,152:846-852.
    [5]Rico M., Benito G., Diez-Herrero A.. Floods from tailings dam failures [J]. Journal of Hazardous Materials,2008,154:79-87.
    [6]Babaeyan-Koopaeik, Valentine E. M., Ervine D. A.. Case study on hydraulic performance of brent reservoir siphon spill way[J]. Journal of Hydraulic Engineering,2002,128(6):562-567.
    [7]Anon. A Review of tailings dam failures[J]. International Water Power and Dam Construction, 2001,53(5):40-42
    [8]胡天喜,文书明,陈名洁,李振飞.我国尾矿综合利用的一些进展[J].中国矿业,2006,15(1):22-29.
    [9]张世文,王红艳.影响尾矿坝安全稳定性因素分析及对策[J].矿业工程,2004,(02):61-63.
    [10]祝玉学.关于尾矿库工程中几个问题的讨论[J].金属矿山,1998,10:1-6.
    [11]徐宏达.我国尾矿库病害事故统计分析[J].工业建筑,2001,31(1):69-71.
    [12]尹光志.细粒尾矿及其堆坝稳定性分析[M].重庆大学出版社,2004.
    [13]王文星.尾矿坝稳定性分析及安全对策的研究[D].长沙:中南大学,2008:18-43.
    [14]李根.尾矿坝稳定性研究[D].辽宁:辽宁工程技术大学,2007.
    [15]张世文,王红艳.影响尾矿坝安全稳定性因素分析及对策[J].矿业工程,2004,2(2):61-63.
    [16]梁力,李明,王伟等.尾矿库坝体稳定性数值分析方法[J].中国安全生产技术,2008,3(5):11-15.
    [17]Ghose M. K., Sen P. K.. Investigation of soil engineering properties for safe design and construction of the iron ore tailing dam[J]. Indian Journal of Engineering and Materials Sciences,2001,8(6):318-326.
    [18]Sammarco O. A tragic disaster caused by the failure of tailings dams leads to the formation of the stava foundation [J]. Mine Water and the Environment,2004,23(2):91-95.
    [19]陈守义.浅议上游法细粒尾矿堆积坝问题[J].岩土力学,1995,16(3):70-76.
    [20]周志斌.白雉山尾矿库的稳定性评价[J].冶金矿山设计与建设,2002,34(4):5-8.
    [21]赵高举,魏作安.龙都尾矿库存在的问题与对策[J].有色金属,2003,55(2):42-43.
    [22]魏作安,尹光志,万玲,等.细粒尾矿堆积坝加固设计与研究[J].金属矿山,2003,(8):54-55.
    [23]魏作安,沈楼燕,李东伟.探讨尾矿库设计领域中存在的问题[J].中国矿业,2003,(3):60-61,65
    [24]曹净.攀钢马家田尾矿堆积环境及其特性研究[J].中国矿业,2003,6(12):4-7.
    [25]陈章友,王又武,刘石桥,等.尾矿坝固结渗流的分析模型和计算方法研究[J].工程设计与建设,2004,36(2):27-36.
    [26]刘文连,张晓玲,阎鼎熠,等.某大型尾矿库坝体勘察新技术及尾矿砂土工程特性初步研究[J].工程地质学报,2004,12:523-528.
    [27]柴军瑞,李守义,李康宏,等.米箭沟尾矿坝加高方案渗流场数值分析[J].岩土力学,2005,5(26):973-977.
    [28]李培良.上游式尾矿库沉积规律及扩容研究[D].北京:北京科技大学.2003.
    [29]陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验结果与分析[J].水利学报,2006,37(5):603-607.
    [30]敬小非,邓涛.基于ABAQUS有限元软件对尾矿坝的稳定性预测[J].现代矿业,2009,2:74-77.
    [31]潘建平,孔宪京,邹德高.尾矿坝地震液化分析[J].河海大学学报,2007,35(增1):49-52.
    [32]Inmaculada R, Angel D. Trefor B, etc. Sediment quality in Rio Guadiamar(SW, Spain)after a tailing dam collapse:Contamination, toxicity and bioavailability [J]. Environment International,2006,32(7):891-900.
    [33]Mark G., Paul A., Dan B.. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County upper Tisa Basin, Romania [J]. Applied Geochemistry,2003,28(2):241-257.
    [34]Fourie A. B., Tshabalala L.. Initiation of static liquefaction and the role of consolidation [J]. Canadian Geotechnical Journal,2005,42 (3):892-906.
    [35]Cazaux D., Alameda J. G., Garcia T. J., et al. Geotechnical assessment of the Mejita tailing dam (Dom. Rep.) in karstic and seismic context.5th ICEG Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics-Proceedings of the ISSMGE 5th Int. Congress,2006,852-861.
    [36]Rico M., Salgueiro A., Pereira H.. Reported tailings dam failures:A rebew of the European incidents in the worldwide context [J]. Journal of Hazardous Materials,2008,152(2): 846-852.
    [37]Lottermoser B., Ashley P.. Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia [J]. Journal of Geochemical Exploration,2005,85(3):119-137.
    [38]Zheng Xin, Xu Xiaohu, Xu Kaili. Study on the risk assessment of the tailings dam break [J]. Procedia Engineering,2011,26:2261-2269.
    [39]Lindsay, Meijer R., Joseph A., etc. Measurement of radon Exhalation from a gold-mine tailings dam by y-ray mapping [J]. Radiation Physics and Chemistry,2004,71(3):797-798.
    [40]Kramer S. L. Geotechnical Earthquake Engineering [M]. USA, New Jersey:Prentice Hall, 1995.
    [41]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83-88.
    [42]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院地质与地球物理研究所,2002.
    [43]Hancock G R., Willgoose G R.. An experimental and computer simulation study of erosion on a mine tailings dam wall [J]. Earth Surface Processes and Landforms,2004,29(4): 457-475.
    [44]Sjdahl P., Dahlin T., Johansson S.. Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden [J]. Environmental Geology,2005,49(2): 267-273.
    [45]王国华,段希祥,等.高烈度地震对龙都尾矿坝稳定性影响的研究[J].昆明理工大学学报(理工版),2008,33(4):1-6.
    [46]Me Dermott, R K.Sibley J. M. Aznalcollar tailings dam accident-a case study[J]. Mineral Resources Engineering,2000,9(1):101-118
    [47]王文星,曹平,刘业科,等.地震条件下尾矿坝稳定性分析[J].中国安全生产科学技术,2006,2(6):58-61.
    [48]周洋洋,费维水,刘文连,等.地震作用下者拉母箐尾矿坝稳定性分析[J].科学技术与工程,2010,10(11):1671-1815.
    [49]Mittal H, Morgenstern N. Parameters or the Design of Tailings Dams[J]. Canadian GeotechnicalJournal,1975, (12):235-261
    [50]R.J.Chandler, GTosatti. The Stava tailings dams failure july 1985[J]. Geotechnical Engineering,1995,113(2):67-69
    [51]Strachan C. Tailings dam performance from USCOLD incident-survey data[J]. MiningEngineering,2001,53(3):161-166
    [52]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,(3):57-62
    [53]Ghose M K, Sen P K. Investigation of soil engineering properties for safe design andconstruction of the iron ore tailing dam[J]. Indian Journal of Engineering and Materials Sciences,2001,8(6):318-326
    [54]Garga V K, de la Torre M. Emergency remediation of instability at Caudalosa tailings dam, Peru:a case history[J]. Canadian Geotechnical Journal,2002,39(5):1193-1200
    [55]张超,杨春和,徐卫亚.尾矿坝稳定性的可靠度分析[J].岩土力学,2004,25(11):1706-1711.
    [56]黄腾威.地震作用下土坡长期稳定可靠度分析[J].福建建设科技,2003,18(2):8-19.
    [57]贾超,刘宁,等.地震作用下土坡可靠度风险分析[J].岩石力学与工程学报,2005,24(4):703-707.
    [58]Axel S, Dagmar K, Michael S, et al. Geomicrobiological and geochemicalinvestigation of a pyrrhotite-containing mine waste tailings dam near Selebi-PHikwe inBotswana[J]. Journal of Geochemical Exploration,2007,92(2-3):151-158
    [59]B.G.Lottermoser, P.M.Ashley. Tailings dam seepage at the rehabilitated Mary Kathleen Uranium mine, Australia[J]. Journal of Geochemical Exploration,2005,85(3):119-137.
    [60]Gavin M, Mudd S, Chakrabarti,J K. Evaluation of engineering properties for the use of leached brown coal ash in soil covers[J]. Journal of Hazardous Materials,2007,139(3): 409-412.
    [61]邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [62]Clough R. W., Chopra A. K.. Earthquake stress analysis in earth dam [J]. J. Engrg. Mech., 1966,92(EM2):197-211.
    [63]彭华,陈胜宏.饱和-非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究进展,2002,17(2):253-259.
    [64]何翔.岩体渗流-应力耦合的随机有限元方法[D].北京:中国科学院研究生院,2006.
    [65]赵杰.边坡稳定有限元分析方法中若干应用问题研究[D].大连:大连理工大学,2006.
    [66]Rafael P., Reinaldo S., Antonio M., etc. Combination of sequential chemical extraction and modeling of dam-break wave propagation to aid assessment of risk related to the possible collapse of a roasted supplied tailings dam [J]. Science of The Total Environment,2009, 407(21):5761-5771.
    [67]Robert D.. V.5 Regional prediction of the transport of contaminants from the flotation tailings dam:a case study [J]. Waste Management Series,2004,4:693-715.
    [68]C Domenech, C Ayora, J de Pablo. Sludge weathering and mobility of contaminants in soil affected by the Aznalcollar tailing dam spill(SW Spain) [J]. Chemical Geology,2002,190(1): 355-370.
    [69]Enji Sun, Xingkai Zhang, Zhongxue Li. The internet of things(IOT) and cloud computing(CC) based tailings dam monitoring and pre-alarm system in mines [J]. Safety Science,2012,50(4): 811-815.
    [70]Quanming Li, Yunhai Wang, Gang Li. Tailings dam breach disaster on-line monitoring method and system realization [J]. Procedia Engineering,2011,26:1674-1681.
    [71]尹光志.细粒尾矿及其堆坝稳定性分析[M].重庆:重庆大学出版社,2004.
    [72]孟俊仓,费维水,等.库水位对尾矿坝体稳定性影响的研究[J].科学技术与工程,2010,10(12):2848-2852.
    [73]胡明鉴,郭爱国,等.某上游法尾矿坝抗滑稳定性分析的几点思考[J].岩土力学,2004,25(5):769-773.
    [74]Baligh M. M., Levadoux J. N. Consolidation theory for cyclic loading [J]. Geotechnical Engineering.1978,104:415-431.
    [75]Rykaart M, Fredlund M, Stianson J. Modelling tailings dam flux boundary conditions with 3D seepage software[J]. Ground Engineering,2002,35(7):28-30
    [76]Antonio M., Reinaldo S., Rafael P., etc. Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam(Iberian Pyrite Belt, SW Spain)based on a sequential extraction procedure [J]. Journal of Geochemical Exploration,2009,102(2):87-94.
    [77]Mei Guodong. Quantitative Assessment Method Study Based on Weakness Theory of dam failure risks in tailings dam [J]. Procedia Engineering,2011,26:1827-1834.
    [78]Henrik K., Adrian R., Lisbeth M.. Electrodialytic remediation of copper mine tailings [J]. Journal of Hazardous Materials,2005,117(2):179-183.
    [79]Terzaghi K.. Erdbaumechanik and Bodenphysikalischer Grundlage [M] Lpz. Deuticke,1925.
    [80]Fredlund D.G., Hasan J. U.. One dimensional consolidation theory:unsaturated soils [J]. Canadian Geotechnical Journal,1979,16(3):521-531
    [81]Vigneswaran S, Suazo R. A detailed investigation of physical and biological clogging during artificial recharge[J]. Water, Air, and Soil Pollution,1987,35(1-2):119-140
    [82]Biot M.A. Consolidation settlement under a rectangular load distribution [J]. J. Appl. Phys. 1941,12:426-430.
    [83]Gilbert S, Cooke D, Hollings P. The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material[J]. Environmental Geology,2003,44:687-697
    [84]陈章友,王又武,刘石桥,等.尾矿坝固结渗流的分析模型和计算方法研究[J].工程设计与建设,2004,36(4):8-11.
    [85]Rico M., Benito G., Diez-Herrero. Floods from tailings dam failures [J]. Journal of Hazardous Materials,2008,154(1):79-87.
    [86]Maria T., Luciano A., Roberto R., etc. The role of capillary water in the stability of tailing dams [J]. Engineering Geology,2009,105(1):108-118.
    [87]Sharma R., Busaidi A.. Groundwater pollution due to a tailings dam [J]. Engineering Geology, 2001,60(4):235-244.
    [88]Karen A., Mark G., Heather E., etc. The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems:the Rios Agrio-Guadiamar, Aznalcollar, Spain [J]. Applied Geochemistry,2003,18(2):221-239.
    [89]路美丽,崔莉.影响尾矿坝渗流场的因素分析[J].中国安全科学学报,2004,14(6):17-20.
    [90]蔚平,李广杰,项宏海,等.尾矿坝非饱和带滞水曲线模型的建立及应用段.吉林大学学报(地球科学版),2004,34:95-98.
    [91]尹光志,魏作安,万玲,等.龙都尾矿库地下渗流场的数值模拟分析[J].岩土力学,2003,24(增2):25-28.
    [92]柳厚祥,李宁,廖雪,等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析[J].岩石力学与工程学报,2004,23(17):2870-2875.
    [93]柴军瑞,李守义,李康宏,等.米箭沟尾矿坝加高方案渗流场数值分析[J].岩土力学,2005,26(6):973-977.
    [94]金永健.尾矿坝二维固结渗流模型研究及坝体稳定性分析[D].长沙:中南大学,2009.
    [95]马池香,秦华礼,许树芳等.基于水土交互作用分析的尾矿坝渗流场研究[J].金属矿山,2009,395(5):168-171.
    [96]Graham B., Paul A., Mark G., etc. River system recovery following the Novat-Rosu tailings dam failure, Maramures County, Romania [J]. Applied Geochemistry,2008,23(12): 3498-3518.
    [97]Cukrowska E., Koovia G., Morris V.. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation [J]. Chemosphere,2004,56(1):39-50.
    [98]李书涛,余宏明.尾矿坝排渗方法对比分析与研究[J].水文地质工程地质,2004,31(6):85-92.
    [99]Graham. Charges in dimension of Na Montmorillonite with Interlayer Swelling [J]. Nature (Physical Science),1971, (2):59-61.
    [100]冯金良.无定形态游离有力氧化铁脱水老化对粘性土物理性质的影响[J].地质学报,1993,(2):85-92.
    [101]周福俊.大庆市西部地区地下水硬度形成机制的研究[J].环境地质研究,1991(2):135-141.
    [102]周芳琴,罗鸿禧,王银善.微生物对某些岩土工程性质的影响[J].岩土力学,1997,18(2):17-22.
    [103]吴恒,张信贵,韩立华.水化学变异对土体性质的影响[J].广西大学学报,1999,24(2):85-88.
    [104]周平根.地下水与岩土介质相互作用的工程地质力学研究[J].地学前缘:1996,(1-2):176-176.
    [105]汤连生,王思敬,张鹏程,等.水-岩土化学作用与地质灾害防治[J].中国地质灾与防治学报,1999,10(3):61-69.
    [106]王思敬.坝基岩体工程地质力学分析[M].北京:科学出版社,1990.
    [107]赵慧丽,张弥,李兆平.含水饱和度对岩石力学参数影响的实验研究[J].岩石力与工程学报,1998,17(4):407-411.
    [108]Soderberg R., Buseh R.. Design guide for metaland nonmetal disposal.U.5.BureauofMines, 1977.
    [109]秦华礼,马池香.水对尾矿坝稳定性的作用机理研究[J].金属矿山,2008,10:116-119.
    [110]沈珠江.一个计算砂土液化变形的等价粘弹性模型[A].第四届全国土力学及基础工程学术会议论文集[C].北京:建筑工业出版社,1 986.199-207.
    [111]袁兵,王飞跃,金永健等.尾矿坝的液化判别研究[J].中国安全科学学报,2007,17(6):166-171.
    [112]张力霆,齐清兰,谷芳.尾矿库渗流场计算的改进有限元法[J].金属矿山,2009,10:63-65
    [113]严涛.基于Ansys/Civilfem尾矿坝稳定性动态分析[D].沈阳:东北大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700