用户名: 密码: 验证码:
钢管混凝土桁式拱桥节点疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土是将混凝土填入薄壁钢管内而形成的一种组合结构,其工作原理就是钢管对其核心混凝土有套箍作用,使核心混凝土处于三向受压状态,从而使核心混凝土的抗压强度和塑性变形能力得到提高。也就是因为这个原因,钢管混凝土比较适合受压结构和构件,如柱子、拱肋等。钢管混凝土拱桥由于承载力高、跨越能力强、施工工方便而发展迅速。
     钢管混凝土拱桥的截面形式有很多种,其中钢管混凝土桁式拱桥的拱肋是由钢管直接焊接形成,如此一来,其节点的疲劳问题就比较突出,钢管混凝土拱桥中管节点的疲劳寿命就必须引起重视。对于空心管道连接接头,在海洋平台中已进行了大量有效的试验研究,而对于钢管混凝土连接的研究国内外均甚少。鉴于钢管混凝土拱桥属于新桥型,迄今尚无经历过疲劳损伤或破坏的案例,其疲劳理论研究刚刚起步,疲劳设计体系还未建成,目前还没有专门的设计规范。故其疲劳性能的研究、疲劳分析方法的建立,疲劳设计原则的确定,对桥梁工程界是一项十分迫切的工作。
     本文首先介绍了疲劳研究中具有普遍意义的知识点,由此引出圆管节点疲劳研究的两种方法:S-N曲线法和断裂力学法。S-N曲线法中的热点应力法是分析钢管焊接节点的疲劳强度的重要方法之一。在断裂力学法中,应力强度因子K具有重要意义,本文通过建立钢管混凝土桥梁的常用节点对其内外相贯线应力集中系数大小及沿相贯线的分布进行计算;对K型钢管混凝土节点应力强度因子K进行计算且对计算方法进行了总结,同时对钢管混凝土焊接节点研究现状进行了评价,从而为本文针对钢管混凝土大桥寿命预测的研究打下了坚实的基础。
     热点应力即最大结构应力,多数位于支管与主管的焊缝焊趾处,该位置极易产生疲劳裂纹。模拟这种复杂的实际问题,建立模型时还需考虑钢管混凝土构件中钢管与混凝土的接触,接触问题涉及到应力集中、边界非线性以及材料或几何非线性等问题。在加载过程中,随着时间的变化,接触面的相互位置、区域大小以及接触状态均是变化的,这些都需要在求解过程中确定,这使得钢管与混凝土的接触问题成为一种高度的非线性行为。对于这种复杂的行为,0.1mm的穿透误差都会导致计算不收敛或错误,本文的计算经验表明,建模时注意保持钢管内壁的节点应与混凝土表面的节点一一对应,这样既能缩短迭代时间,又能保证结果的收敛性,以免出现计算结果的错误。
     本文建立了K型及三维的空管—空管节点和空管—钢管混凝土节点的三维实体模型,模拟钢管混凝土桥的受力特点,分析K型节点在不同轴向荷载作用下的热点应力集中系数大小及其沿相贯线的分布。由于钢管混凝土拱桥中弦管承受较大的轴向压力,文中还分析了弦管轴压对K型空管—钢管混凝土节点的应力集中系数大小和分布的影响。
     在计算节点应力强度因子时,本文比较了位移外推法,J积分法,全域虚拟裂纹扩展法的优缺点,选用了适合钢管混凝土节点的位移外推法,且综合了奇异单元位移外推法和非奇异单元位移外推法的优点,裂纹尖端采用奇异单元,裂纹尖端周围加密了网格,并设计了合理的过渡网格。楔形奇异单元由20节点等参单元SOLID95通过APDL编制宏命令实现。计算就初始裂纹位置、形状、大小提出了假定,实现了不同裂纹尺寸a/t、a/c的钢管混凝土应力强度因子的计算,且对裂纹尖端周围网格划分提出了相关建议,裂纹尖端网格划分方面建议裂纹尖端网格划分为5层,裂纹尖端单元角度为22.5°,需在裂纹尖端单元外继续进行加密,沿表面裂纹方向保证每10°一个单元,在靠近裂纹末端时,由于斜率的变化较快,可在适当加密。
     其次,随着交通基础设施的投资不断增加,由疲劳所引起的公路桥梁破坏数量呈上升趋势,进行公路桥梁车辆疲劳荷载谱的研究十分必要。研究成果用于公路桥梁的疲劳设计及疲劳验算,将会大大减少桥梁疲劳破坏的几率,减少国家人民生命财产的损失。本文针对公路桥梁疲劳荷载谱的原理及指定方法进行相关的介绍;总结了国内外公路桥梁疲劳荷载谱及其目前的研究现状;依据云南省内交通情况调查表制定出适合云南省公路桥梁疲劳分析的实用疲劳荷载频值谱。
     目前国内许多地区都制定了适合本地区的荷载谱,但云南省的疲劳荷载谱的研究还是一项空白,本文依据参与云南省公路交通情况调查所形成的《云南省公路交通情况调查(2010年分析资料汇编)》,来制定适合云南省的疲劳荷载谱。据资料汇编统计调查2010年云南省共有各类交通量观测站2003个,其中,连续式观测站16个,长年分小时连续不断地对交通量进行统计,16个连续式观测站均设置在国道上,比较有代表性并且能定性地反映云南省交通量变化规律。本文根据观察结果和参考《中国汽车车型手册》中的数据,将公路上的车辆分为7类V1~V7,据统计数量最多为小型客货车(V1),占车辆总数的61.22%;其次为中型货车(V2)和大型客车(V4),两类车均大约占车辆总数的12%,另外还有少量大型货车(V3),特大货车(V5)、集装箱(V6)和拖挂车(V7)。由于车辆种类繁多,直接用于疲劳荷载分析会相当繁琐,利用相关方法进行简化制定实用疲劳荷载谱,最后得出包括3种模型车辆的实用疲劳荷载频值谱,可以用于云南省公路桥梁的疲劳分析和疲劳设计。
     最后,在钢管混凝土拱桥三维有限元模型及其在疲劳车辆荷载作用下的动力响应的基础上进一步进行关键疲劳节点的局部热点应力分析。文中选取不同部位的三个节点建立三维有限元模型,施加符合桥梁实际工况的载荷和位移边界条件,对节点进行热点应力分析。利用热点应力法和断裂力学方法分别计算节点的疲劳裂纹形成寿命和裂纹扩展寿命,两者之和即为节点的疲劳寿命。
     本文主要工作成果及创新为:
     1)结合云南省公路交通情况调查,形成《云南省公路交通情况调查(2010年分析资料汇编)》,以此为依据,首次研制了云南省桥梁的疲劳荷载谱,为云南山区桥梁的建设提供了科学的依据。
     2)根据钢管混凝土桁式拱桥的受力特点,通过构建奇异单元和多个不同形状的表面裂纹模型,对钢管混凝土的表面裂纹进行了数值计算,得到以下成果:
     A.钢管混凝土节点与空心钢管混凝土节点的应力热点位置有很大区别。
     B.主管边界条件和受力情况的不同,对钢管混凝土节点热点应力的位置和分布有很大的影响。
     C.揭示了钢管混凝土节点相贯线的应力强度因子变化规律,为将来类似的研究和桥梁的疲劳分析提供了参考。
     3)借鉴目前先进的抗疲劳分析理论及思想,分析了钢管混凝土拱桥接头的疲劳性能,提出了钢管混凝土拱桥节点疲劳设计原则和方法。初步建立了钢管混凝土拱桥节点疲劳设计理论体系。
     4)利用了S-N曲线和断裂力学结合的方法来分析预测了钢管混凝土节点的疲劳寿命。
Concrete-filled steel tube (CFST) is a composite structure Constructed by filling concrete in thin-walled steel tube; the working principle is the confinement effect of the steel tube on the core concrete in trip-direction compression stressed condition, which helps to significantly improve the compressive strength and plastic deformation ability. Due to this reason, concrete-filled steel tube is suitable for structural elements under pressure, such as columns, arch ribs, etc. The development of concrete-filled steel tube arch bridge is rapid due to its high bearing capacity, strong spanning ability and convenient construction. At present, the quantity of the concrete-filled steel tube arch bridge in china is more than200seats, and they has made great economic benefits.
     The section patterns of the concrete-filled steel tube arch bridge vary a lot. Most of them are made of directly welding steel tubes. In this way, the fatigue problem of the joints becomes prominent. Therefore, the fatigue life of the joints must be paid attention to. As for the hollow pipe connector, that has had a lot of effective test research in the offshore platform. But researches on the connector of T concrete-filled steel tube are very slim at home and abroad. In view of the facts that concrete-filled steel tube arch bridge belongs to a new structure type, the case of fatigue damage or destruction has not yet turned up. The research on its fatigue theory has just started. Its system of fatigue design has not been built. And there is no special specification. So studying its fatigue property, establishing fatigue analysis method and identifying fatigue design principles seem to be a very urgent work to the bridge engineering.
     First, this dissertation introduces the theories which have universal significance in the fatigue problem. Two methodologies of fatigue problem are applied to the steel tube joints:S-N curve method and fracture mechanics method. Hot stress method of S-N curve method is one of the important methods analyzing steel tube welded joint fatigue strength. As to fracture mechanics method, the stress intensity factor K has an important significance. In this work, common joint models of concrete-filled steel tube bridges are built to calculate the value of foreign and minister transversal stress concentration factor which lead to the phase of its transversal distribution. Based on the same joint models, the stress intensity factor K of K concrete-filled steel tube joint can be calculated. After that, the corresponding algorithms are summarized briefly. In the meanwhile, the current situation about concrete-filled steel tube welded joints studying is evaluated. Thus all these works has laid a solid foundation for life prediction studying on concrete-filled steel tube arch bridges.
     Hot spot stress is the maximum structure stress mostly located in the weld toe of major and branch pipe. Fatigue cracks are common at position like that. In order to simulate numerically this kind of complex practical problems, the contact of steel tube and concrete in the concrete-filled steel tubes still should be considered when building the analysis model. The contact problem involves the stress concentration, boundary nonlinear and material or geometric nonlinear problems.In the loading process, as the change of time, the mutual position t of contact surface, the size of area and the contact state are changing. All these factors are to be determined in solving process. This makes the contact problem of the contact of steel tube become a kind of highly nonlinear behavior. For this kind of complicated behavior,0.1millimeter's penetration error will lead to divergent computation or error. or error, this dissertation's computations experience shows that when modeling, as well as keep the node in the steel pipe's interior walls and on the concrete surface should be one-to-one correspondence. This can not only shorten the iteration time, but also guarantee the convergence of the results and less the calculation results is error.
     In this dissertation, models for K shape joints and three-dimensional joints are established, these models including joints between hollow pipes and joints of hollow pipes to CFST, mechanical characteristics of CFST are simulated in these models. At last, the value of the hot spot stress concentration factor of the type K node in the axial loads, and its distribution of the phase transverse line. Because of the string tube bear the larger axial pressure in concrete-filled steel tube arch bridge, the influences of the string tube axial pressure exerts on the stress concentration factor and distribution of the K shape joints of hollow pipe to CFST are analyzed in this dissertation.
     In the process of computing the node stress intensity factor, the dissertation compared the advantages and disadvantages of the displacement extrapolation method, J integral method, the whole domain virtual crack propagation dissertation suitable for steel pipe concrete node, In more detail, the methodology integrated the advantages of the singular and nonsingular unit displacement extrapolation method, adopted the singular unit on the crack tip, encrypted grid around the crack tip, and designed the reasonable transition grid. Wedge singular elements are realized by20node isoperimetric element SOLID95programmed by APDL macros. By suggest the hypothesizes about factors such as:the initial crack position, shape, size, the stress intensity factors of concrete-filled steel tube in different crack size (a/t, a/c) are computed successfully. After that some relevant suggestions can be offered about the crack tip meshing. The crack tip grid is better to be divided into five layers, and the element Angle is22.5°, continue encrypt out the crack tip element, guarantee set up a unit along the crack surface every10°, encrypt appropriately near the crack end, because the slope changes rapidly.
     Second, as the traffic infrastructure investment increases steadily, number of bridges damaged shows ascendant trend mainly due to fatigue problems. So it is very necessary to research the fatigue load spectrum of the road bridge. The research results is used in designing and evaluating the highway bridge's fatigue. This will greatly reduce the risk of structural failure, and reduce the loss of public properties and casualties. In this dissertation, principle and design methods of the fatigue load spectrum of road bridge are introduced. Also the fatigue load spectrum of the road bridge and its current research situation at home and abroad are summarized. In the end, based on Yunnan provincial highway traffic survey, the practical fatigue load carrier frequency value spectrum suited for Highway Bridge's fatigue problem is proposed. Drawn up the practical fatigue load spectrum that suited for analyzing the highway bridge's fatigue according to Yunnan provincial highway traffic survey.
     At present, many domestic regions in China has set down their local fatigue load spectra. But research on this field in Yunnan province is still in blank. The fatigue load spectrum suited for Yunnan province on the basis of Yunnan provincial highway traffic survey. According to the survey, there are2003variously traffic stations in Yunnan province,2010. Among them, there are16continuous stations installed on the national highway——Keeping counting the traffic volume per hour continuously. These stations are representative and can qualitatively reflect the change rule of traffic volume in Yunnan province. According to the observations and the data in China automobile type manual, divided the vehicle into seven categories——V1~V7, according to statistics. The largest number is small van (VI), accounting for61.22%of the total number of vehicles At the same time. The second is medium-sized truck (V2) and large buses (V4). These two kinds of car are counted for about12%of the total number of vehicles. Besides, a small amount of large truck (V3), jumbo truck (V5), container (V6) and articulated vehicle (V7). As the types of vehicles is numerous, it is quite tedious to be used in fatigue analysis, drawn up the practical fatigue load spectrum using the suitable methods, ultimately practical fatigue load spectrum includes three kinds of model vehicle that can be used in fatigue analysis of the highway bridge's in Yunnan province is concluded.
     Finally, further analysis on local hot spot stress of the key fatigue node, the basis of three-dimensional finite element mode of the concrete-filled steel tube arch bridge and its dynamic response exerted by vehicle's fatigue load. In this dissertation, a three dimensional finite element model of three nodes from different parts are constructed. The load and displacement boundary conditions according to the actual working condition of bridge are applied on these models. And the hot spot stresses of the node are analyzed. The fatigue life the joints is the sum of the life of crack's initiation and life of crack propagation. The life of crack's initiation is calculated using hot stress method, and the life of crack propagation is calculated using fracture mechanics method.
引文
[1]周海龙,周水兴,刘文方.钢管混凝土拱桥的应用与发展[J].公路交通技术.2006(3),75-79
    [2]王曦.钢管混凝土拱桥施工工艺[J].工程与技术.2009(10):105-106.
    [3]陈宝春.钢管混凝土拱桥发展综述[J].桥梁建设,1997(2):8-12.
    [4]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [5]陈宝春.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [6]竺惠仙.钢管混凝土[J].中国建材,1987(11):54-56.
    [7]陈宝春,杨亚林.钢管混凝土拱桥调查与分析[J].世界桥梁,2006(2):73-77.
    [8]侯文崎,叶梅新.铁路大跨度钢管混凝土拱桥拱肋管节点的疲劳性能研究[J].钢结构,2007(5):22-26.
    [9]J A, Packer.空心管结构连接设计指南[M].成都:科学出版社.1997.
    [10]孙传祺.钢管混凝土K型间隙焊接节点热点应力与承载力试验研究[D].上海:同济大学硕士论文,2008.
    [11]崔军.大跨度钢管混凝土拱桥受力性能分析[D].杭州:浙江大学博士论文,2003.
    [12]王焕林.钢管混凝土的受力特性及其应用中的优缺点[J].江西化工,2008(4):330-332.
    [13]王静思.钢管混凝土拱桥发展概述[J].交通世界:2012(7):252-253.
    [14]陈宝春,刘福忠,韦建刚.327座钢管混凝土拱桥的统计分析[J].中外公路:2011(3):96-103.
    [15]贾安东,张见,陈棣华.海洋结构钢焊接接头低周疲劳强度的研究[J].机械工程学报,1995(8):92-97.
    [16]贾星兰,方华灿.海洋平台焊接接头低温疲劳裂纹扩展速率研究[J].石油机械,1997(4):18-20
    [17]徐井桥,任为东,李艳明,丫餐沙大桥主桥设计[J].桥粱建设:2000,16(2):54-57.
    [18]张国栋,周昌玉.焊接接头残余应力及蠕变损伤的有限元模拟[J].金属学报,2008,21(7):848—852.
    [19]Karlsso L.Thermal stress in welding[J].Journal of Thermal Stress,1979(1):121-153.
    [20]Karlsson C T.Finite Elemnet Analysis of Temperature and Stress in a Single-Pass Butt-Welded Pipe-Influence of Mesh Density and Material Modeling.Eng.Comput,1989(6):133-141.
    [21]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1997.
    [22]时群.超焊接接头疲劳强度改善技术在海洋工程中的应用[J].电焊机,2011(8):29-33
    [23]李晓飞,胡毓仁.宽带波浪载荷下海洋结构物内应力范围及疲劳损伤分析[J].海洋工程,2008年11月35-38
    [24]K Gurley, A Kareem. Application of wavelet transforms in earthquake, wind and ocean engineering[J]. Engineering Structures,1999(21):149-167.
    [25]王斐,赵君黎,雷俊卿.公路钢结构桥梁的疲劳设计研究[J]公路,2007(10):17-20.
    [26]钱冬生.钢桥疲劳设计[M].北京:中国铁道出版社,1987.
    [27]郑冶沙,王中光.疲劳研究的历史回顾[J].材料科学与工程,1993,23(4):27-31.
    [28]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [29]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2004.
    [30]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [31]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993
    [32]Griffith A. A. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society,1920,221A:163-198.
    [33]格尔内.焊接结构的疲劳[M].北京:机械工业出版社,1988.
    [34]R.A. Smith疲劳裂纹扩展-30年来的进展[英]剑桥大学,顾海澄译,吴寿锽校[M].西安:西安交通大学出版社,1989.
    [35]姜维成,余波,邢世玲.在役钢管混凝土拱桥吊杆疲劳可靠性分析[J]中外公路,2007,27(4):21-25.
    [36]侯灾崎,叶梅新.铁路大跨度钢管混凝土拱桥拱肋管节点的疲劳性能研究[J].科研开发,2007 5(22):22-26.
    [37]王春光,李少甫,石永久.焊接钢管节点热点应力集中系的适用性研究[J].工程力学,1999(12):44-52.
    [38]L. A. Beak & A. A. ToFrac. Analysisofin-PlaneT,Y and K Welded Tubular Comnections[C]. Welding Research Council Bullet,No.125,1967.
    [39]Tokeya Yamasaki. Noboru Yamamoto & Junichi Kudoh[C]. studies of Stress concentrations and Tolerances for W eld Defectin Full-Scale Tubular Joints, OTC3692,1980.
    [40]W. Visser. On the Structure Design of Tubular joints[C]. OTC2117,1974.
    [41]李世宇.近海导管架平台焊接钢管节点疲劳寿命研究[D].北京:清华大学硕士论文.1997.
    [42]C.E.Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Trans.Rey.Inse.Naval.Arch,1913, Vol.66:219-230.
    [43]S.M.Cheng. An experimental investigation of tubular T joints under cyclic loads [J].Journal of offshore mechanics and arctic engineering. August 1999,Vol.121:137-143.
    [44]M.R.Morgan, M.M.K.Lee. New parametric equations for stress concentration factors in tubular K-joints under balanced axianl loading[J].International Journal of Fatigue.1997; Vol.19(4):309-317.
    [45]Irwin G R. Fracture dynamics,in fracture of metals[J].Cleveland, Am.Soc.Metals,1948:147-166.
    [46]Orowan E. Fracture and strength of solids[J].Reports on Progress in Physics,1948,XD:185
    [47]Spyros A.Karamanos, Arie Romeijn, Jaap Wardenier. Stress concentrations in multi-planar welded CHS XX-connections [J]. Journal of Constructional Steel Research,1999, Vol.50: 259-282.
    [48]洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009(7),769-780.
    [49]赵永翔.低周疲劳短裂纹行为和可靠性分析[D].成都:西南交通大学博士论文,1998.
    [50]李朝阳,宋玉普.混凝土海洋平台疲劳损伤累积Miner准则适用性研究[J]中国海洋平台,2000,16(3):1-4.
    [51]欧进萍,林燕清.混凝土高周疲劳损伤的性能劣化试验研究[J].土木工程学报,1999(10),15-22.
    [52]孙道恒,孙训方,刘先斌.低周疲劳表面裂纹演化进程分析[J].材料科学与工程,2000(12),61-65.
    [53]李德勇,姚卫星.缺口件振动疲劳寿命分析的名义应力法[J].航空学报,2011,32(11):25-29.
    [54]王文先,李娟,李晋永等.基于热点应力法的AZ31B镁合金焊接接头疲劳评定[J].机械工程学报,2011,47(10):57-62.
    [55]白鹤,王伯健.含缺口构件疲劳寿命预测方法[J].新技术新工艺,2008(8),31-34.
    [56]聂宏,常龙.基于局部应力应变法估算高周疲劳寿命[J].南京航空航天大学学 报,2000,32(1):75-79.
    [57]李永生,周毅锦,许志兴.基于局部应力一应变法预测大型波纹管疲劳寿命的研究[C].第六届全国膨胀节学术交流会议论文集,青岛:中国机械工程学会,1999.
    [58]靳慧,王立彬,王金诺.弹塑性随机有限元在低周疲劳分析中的应用[J],工程力学,2004(6),196-200.
    [59]吕毅,吕国志,孙龙生.车载无人机在路面激励下的疲劳寿命预测软件的设计[J].机械科学与技术,2008,27(4):541-544.
    [60]李兆霞,郭力.徐玉兵桥梁焊接构件疲劳损伤测试与分析[J].东南大学学报(自然科学版),2005(5),415-420.
    [61]王春生,陈艾荣,陈惟珍.基于断裂力学的老龄钢桥剩余寿命与使用安全评估[J].中国公路学报,2006,19(2):42-48.
    [62]王春生,聂建国,陈艾荣等.基于概率断裂力学的老龄钢桥使用安全评估[J].工程力学,2006(6):102-106.
    [63]王春生,陈惟珍,陈艾荣.铆接钢桥的系统疲劳可靠度评估[J].中国公路学报,2008(9),45-49.
    [64]崔维成,蔡新刚,冷建兴.船舶结构疲劳强度校核研究现状及我国的进展[J].船舶力学.2007.2(4),98-102.
    [65]谢里阳,王正.随机恒幅循环载荷疲劳可靠度异量纲干涉模型[J].机械工程学报,2008(1),1-6.
    [66]O.C.Zienkiewicz.The Finite Element Method in Structural and Continuum Mechanics [M].Publ McGraw-Hill,London,1967.
    [67]R.H.Gallagher. Finite-element Analysis Fundamentals[M].Public Prentics-Hall, Englewood Clifs,NJ,1975.
    [68]刘建伟.疲劳累积损伤理论发展概述[J].山西建筑,2008(8),76-78.
    [69]Miner MA.Cumulative damage in fatigue [J].Joumal of the Applied Mechanics,1945,67(12):159-164
    [70]黄益民,刘永寿,刘伟等.基于疲劳累积损伤准则的随机结构动力可靠性灵敏度分析[J].飞机设计,2010,30(4):5-9.
    [71]黄洪钟,朱顺鹏,范志强等.基于剩余强度衰减退化的非线性累积损伤准则及其可靠性定 寿应用[J].基础与工程科学学报,2011(4),323-334.
    [72]H.R,Schwarz.The Finite Element Method[M].Publ Teubner Verlag,Stutgart,1980.
    [73]Marco S M, Starkey W J.A concept of fatigue damage. Trans ASME,1954,76:627-632.
    [74]林杰威,张俊红,张桂昌等.基于连续非线性损伤的航空发动机叶片疲劳研究[J].机械工程学报,2010(9),66-70.
    [75]王德俊,平安,徐灏.随机疲劳载荷的处理及载荷谱编制原则[J].东北大学学报,1994,15(4):327-331.
    [76]Fuchs H O.Stephens R I. Metal fatigue in engineering [J].New York:Wiley,1980.
    [77]Klesnil M. Fatigue of metallic materials[J]. Elsevier Scientific Pub,1980.
    [78]Collins J A. Fatigue of materials in mechanics design[J]. New York:Wiley,1981.
    [79]黄克中.随机方法与模糊数学应用[M].上海:同济大学出版社,1985.
    [80]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996
    [81]武春廷,胡寿康,马卫华.含裂纹构件无限寿命设计可靠度计算方法[J].世界地震工程,2006(3),151-156.
    [82]王荣祥,张大勇,岳前进等.基于现场监测的抗冰平台疲劳寿命估计[J].2008,26(3):15-20.
    [83]张爱林,刘学春,王冬梅等.2008奥运会羽毛球馆新型预应力弦支穹顶结构全寿命健康监控研究[J].建筑结构学报,2007,28(6):92-99.
    [84]赵少汴.损伤容限设计方法和设计数据[J].机械设计,2000(5):4-7.
    [85]王远达,梁永胜,王宏伟.飞机结构的耐久性与损伤容限设计[J].飞机设计,2009(2):37-43.
    [86]Mukhelishvili N I.Some basic problems of the mathematical theory of elasticity[J]. Leyden,Noordhoff,1975(11):52-57.
    [87]Irwin G R.Plastic zone near a crack tip and fracture toughness [J].Proceedings of the Seventh Sagamore Ordnance Material Conference,1960(4):63-78.
    [88]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
    [89]Griffith A A.The throry of rupture[J]. Applied Mechanics,1924:55-63
    [90]Griffith A A.The phenomena of repture and flow and solids[J]. Phil.Trans.ser.A, 1920(221):163-198.
    [91]Irwin GR. Analysis of stress and strains near the end of a crack traversing a plate[J]. Appl.Mech,1957(24):361-364.
    [92]Rice J R. A path independent integral and the approximate analysis of strain concentration by notch and cracks[J].Appl.Mechanics,1968(35):379.
    [93]Cherepanov G P.On crack propagation in solids.Int.J.solids[J]. Structs.,1969(5):863.
    [94]Eshelby J D.Energy relation and the energy momentum tensor in continuum mechananics.in Inelastics behavior of solids[J].New York:MicGraw-Hill,1970(9):77-83.
    [95]Irwin G R.Fracture,in encyclopedia of physics[J].New York:Springer-Verlag, 1958(6):551-590.
    [96]Duan S J Nakagawa K Sakaida T. Mathematical model to approach the fracture process of overconsolidated clay[J]. Engineering Fracture Mechanics,1991,38(6):361-369.
    [97]Vallejo L E. Application of fracture mechanics to soils an overview[A]. In Vallejo L E Liang P Y ed. Geotechnical Special Publication ASCE NO.43 Fracture Mechanics-Applied to Geotechnical Engineering[C]. Atlanta Georgia [s. n.] 1994.1-20.
    [98]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    [99]Willimas M L.On the stress distribution at the base of a stationary crack.J.Appl.Mech.,1957(24):109-114.
    [100]周太全,陈鸿天.初始裂纹钢桥梁焊接构件疲劳裂纹扩展和疲劳寿命计算[J].船舶力学,2009,13(1):91-97.
    [101]尹双增.断裂损伤理论及应用[M]北京:清华大学出版社,1992:118
    [102]Paris P C, Erdogan F A. A critical analysis of crack propagation laws. Trans. ASME, J. Basic. Eng.,1963, D85:528-534.
    [103]Foreman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic load structure. J. Basic Engineering,1967,89:454-464.
    [104]高鑫,康兴无,王汉功.正交各向异性单向复合材料裂纹尖端塑性区求解[J].固体火箭技术,2009,32(5):554-559.
    [105]Doo Y C, Nelaon D A. Analysis of small bipropellant engine internal flows by the DSMC MPT hod [R]. AIAA 87-1548.
    [106]Irwin GR, Analysis of stress and strains near the end of a crack traversing a plate [J]. Appl.Mech.,1957(24):361-364.
    [107]韩青,张毅刚,赵凯红.结构工程中接触问题的数值计算方法[J].北京工业大学学报,2006,32(4):321-326.
    [108]Underhill w,R. L. Dokainis M. A,Kofavsq E. A method for contact problems usingvirtual elemems. Comput Meth Appi Meth Engng,1997,143(2):229-247.
    [109]王水林,邓建辉,葛修润.改进的拉氏乘子法在接触摩擦问题中的应用[J].岩土工程学报,1998,20(5):64-67.
    [110]孙林松,王德信,谢能刚.接触问题有限元分析方法综述[J].水利水电科技进展,2001,21(3):18-20.
    [111]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上).建筑科学,1996,3:22-28.
    [112]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下).建筑科学,1996,4:19-23.
    [113]白梅花,乌力吉.互补约束问题的部分增广Lagrange罚函数方法及其收敛性分析[J].内蒙古工业大学学报,2011,30(2):86-93.
    [114]卢殿臣,付莲莲,田立新,程悦玲椭圆系统下最优控制的罚函数方法[J].江苏大学学报(自然科学版),2005(9):421-424.
    [115]程雪涛,徐向华,任建勋等.刚用Lagrange乘子法优化并联液体冷却网络系统[J].清华大学学报(自然科学版),2008,48(8):1359-1367.
    [116]GINGOI.D R A, MONAGHAN J J. Smoothed particle hydro-dynamics:theory and applications to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977(181):375-389.
    [117]BELYSCHKO T, LUYY. GUL. Element free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994(37):229-256.
    [118]LIU W K, JUN S, ZHANG Y F. Reproducing kernel particlemethods[J]. International Journal for Numerical Methods in Fluids,1995(20):1081-1106.
    [119]美国ANSYS公司北京办事处.ANSYS非线性分析指南——基本过程.ANSYS Inc. Theory Reference.
    [120]BarSoum R.S.On the use of isoparametric finite elements in linear fracture mechanics.Int.J.Num. Meth. Eng,1976,10:25-37.
    [121]苏成,郑淳.应力强度因子计算的样条虚边界元法[J].工程力学,2007,24(8):49-53.
    [122]Barsoum R.S.Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements.Int.J.Num[J]. Meth.Eng.1977(11):85-98.
    [123]Kristiansen N.O.and B.Fu 1993.The flee-surface stress intensity factor of surface cracks in tubular joint models[J].Proceedings of the international conference on offshore mechanics and arctic engineering,1980(27):795-801.
    [124]HSE,1995b.Background to new fatigue guidance for steel joints and connections in offshore Stlmctures. Health and safety executive, O/S technical report OTH 92390.
    [125]陈景杰.基于奇异单元计算分析裂纹尖端应力强度因子[J].中国造船2010
    [126]INGRAFFEAAR,MANU C. Stress intensity factor computation in three dimensions with quarter-point elements[J]. International journal for Numerical Methods in Engineering,1980, 15:1427-1445
    [127]顾敏.基于断裂力学的圆钢管混凝土T型焊接节点疲劳性能数值模拟[D].上海:同济大学土木工程学院,2009.
    [128]Thurlbeck S. D. Afracture mechanics based methodology for the assessment of weld toe cracks in tubular offshorejoints[C]. Ph. D. Thesis, Department of Civil and Structural Engineering, University of Manchester Institute of science and Technology,UK.1991
    [129]Rhee H. C.,Salama M. H.. Mixed-mode stress intensity factor solutions of a wrapped surface flaw by three-dimensional finite element analysis[J]. Engineering fracture mechanics, 1991,28(2):203-209
    [130]王建.疲劳裂纹的危害及原因分析[J].金属加工(热加工).2009(4),67-69
    [131]Lalani M., Morgan D. J., Foeken R. J.&Wardenier J. Fatigue behavior and ultimate capacity of grouted tubular joints[C]. Tubular structure VII,1996, Rotterdam
    [132]Mashiri F. R.&Zhao X. L. Fatigue behavior of welded composite tubular T-joints under in-plane bending[C].4th International Conference on Thin-Weled Structures, UK,2004
    [133]Sakai Y etal. Experiments on concrete filled and reinforced tubular K-joints oftruss girder[J]. Journal of constructional steel research,2004(60):683-699
    [134]艾智能.钢管混凝土拱桥节点疲劳寿命研究:[D].四川:西南交通大学硕士论文,2005.
    [135]王柯.圆管-圆管混凝土T型焊接节点热点应力和疲劳性能研究:[D].上海:同济大学土木工程学院,2008.
    [136]朱骏.圆钢管混凝土T型焊接节点疲劳性能研究[D].上海:同济大学博士论文,2007.
    [137]British Standards Institution. BS7910-1999:(incorporating Amendment No.1) Guide on methods for assessing theacceptability of flaws in metallic strucres.Londons,2000
    [138]霍立兴.焊接结构工程强度.北京:机械工业出版社,1995
    [139]HSE,1995b. Background to new fatigue guidance for steel joints and connections in offshore Stlmctures. Health and safety executive, O/S technical report OTH 92 390
    [140]赵章焰,吕运冰,孙国正.J积分法测量低碳钢Q235的断裂韧性KIc[J].武汉理工大学学报,2002,24(4):111-112.
    [14]刘媛,吕运,冰黄婧.疲劳裂纹扩展公式中材料常数的统计相关性及疲劳扩展寿命预[J].武汉理工大学学报.2004(28),870-872
    [142]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱[J].土木工程学报.1997(5),20-27
    [143]李莹.公路钢桥疲劳性能及可靠性研究[D].哈尔滨:哈尔滨工业大学,2008.7
    [144]《公路桥涵钢结构及木结构设计规范(JTJ025-86)》[S].
    [145]王荣辉,池春,陈庆中,甄晓霞.广州市高架桥疲劳荷载车辆模型研究[J].华南理工大学学报.2004,32(12),94-96
    [146]英国标准:BS5400
    [147]美国标准:AASHTO
    [148]欧洲标准:Eurocode
    [149]云南省公路交通情况调查(2010年分析资料汇编)[M].云南省公路局.2011
    [150]中国汽车工业公司长春汽车研究所.中国汽车车型手册上、中、下册[M].济南,山东科学技术出版社,1993.
    [151]马瑞,袁文伟.基于蒙特卡罗随机选线最优潮流的电压崩溃临点算法力系统保护与控制[J].电力系统保护与控制.2011(1):65-69.
    [152]魏超,李小凡.张美根基于量子蒙特卡罗的地球物理反演方法[J].地球物理学报,2008(9):1494-1501.
    [153]perley D M, Alder B J. Quantum Monte Carlo[J]. Science,1986(231):555-560
    [154]Ton-Lo Wang, Chunhua Liu, Dongzhou Huang, Mohsen Shahawy. Truck Loading and Fatigue Damage Analysis for Girder Bridges Based on Weigh-in-Motion Data[J]. Bridge Engrg.2005,10(1):12-22.
    [155]徐俊,陈惟珍,谭金华.赣江大桥基于应力谱的疲劳寿命可靠度分析[J].钢结构.2004,19(4):35-37.
    [156]Y. Edward Zhou. Assessment of Bridge Remaining Fatigue Life through Field Strain Measurement [J]. Bridge Engrg.2006,11(6):737-744.
    [157]Streenivas Alampalli, Ryan Lund. Estimating Fatigue Life of Bridge Components Using Measured Strains.2006,11(6):725-736.
    [158]孙燕.公路钢桥疲劳状况评测与分析[D].上海,同济大学硕士论文,2007.
    [159]陈惟珍,王春生,徐磊.上海市外白渡桥剩余寿命与使用安全[J].桥梁建设.2002(2):6-10.
    [160]S.P. Chiew, C.K.Soh, N.W. Wu. General SCF design equations for steel multiplanar tubular XX-joints [J].International Journal of Fatigue.2000(22):283-293.
    [161]S.P.Chiew, C.K.Soh, T.C.Fung, A.K.Soh.Numerical study of multiplanar tubular DX-joints subject to axial loads [J].Computers and structures.1999(72):749-761.
    [162]C. G. Schilling, K.H. Klippsten, etc. Fatigue of Welded Steel Bridge Members under Variable-Amplitude Loading[C]. National Cooperative Highway Research Program Report 188, Transportation Research Board, National Research Council.1978
    [163]J. A. Laman, and A. S. Nowak. Fatigue-Load Models for Girder Bridges[J]. Journal of Structural Engineering, ASCE.1996,122(7):726-733
    [164]赵楠,刘治远.雨流法在寿命损耗实时计算模型中的应用[J].煤炭技术,2010(11):40-42.
    [165]刘东星,陶华,薛红前等.超高强度钢超高周循环下疲劳裂纹扩展寿命研究[J]组合机床与自动化加工技术,2011(1):34-37.
    [166]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [167]陈惟珍,D Kosteas钢桥疲劳设计方法研究[J].桥梁建设,2000(2),1-3.
    [168]J.A.Packer, J.E.Henderson,曹俊杰.空心管结构连接设计指南[M].北京:科学出版社,1997.
    [169]方华灿.海洋石油钢结构的疲劳寿命模糊概率断裂与损伤力学的应用[M].山东:石油大学出版社,1990.
    [170]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1997.
    [171]中国工程建设标准化协会.《钢管混凝土结构设计与施工规程》(CECS 28:90)[S].北京:中国计划出版社.1990.
    [172]邵永波轴力作用下K型焊接管节点的应力集中系数分析[J].船舶力学, 2010(4):399-408.
    [173]陈开利,林亚超.钢管混凝土拱桥力学特性试验研究[J].桥梁建设,2007(01):16-20.
    [174]熊峻江.飞行器结构疲劳与寿命设计[M].北京:北京航空航天大学出版社,2004.
    [175]赵建平,黄文龙,朱薇.非恒幅载荷下含表面裂纹对焊接头疲劳寿命的估算[J].南京化工大学学报,1996,18(2):64-70.
    [176]袁慧芳.桥梁管道结构节点应力集中及疲劳寿命[D]:成都:四川大学硕士论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700