用户名: 密码: 验证码:
强震作用下山岭隧道洞口段地震响应分析及减震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济建设和社会快速发展的需要,隧道建设已进入地震频发的高烈度地震区。受高山峡谷等复杂地形的限制,众多的山岭隧道在我国高烈度地震山区大量修建且有广泛的应用前景。而我国的公路、铁路隧道规范一直沿用不完全合理的静力法进行抗、减震计算,远远不能满足对隧道洞口段、浅埋、偏压等抗、减震重点地段的设计要求。本文以交通部西部交通建设科技项目(武-罐高速公路抗震优化设计及灾害防治技术研究)为依托,以武-罐高速公路在建麻崖子隧道为工程背景,从地下结构动力分析的基本原理出发,运用有限元软件,计算并分析了浅埋和偏压隧道的地震动力响应特点,确定了适用于隧道洞口段(浅埋和偏压)的减震措施。主要进行了以下方面的工作:
     1)基于地层的弹塑性特点,从动力有限元分析原理出发,用增量形式推导了以地面加速度时程反算基岩地震动加速度时程的Wilson-θ法计算公式,由地面记录的加速度时程反算基岩地震动加速度。从计算结果可以看出,地层对地震动有放大作用,所以在对隧道及地下结构的抗震计算中,应该以基岩地震加速度作为输入,可以使计算结果更加合理。
     2)考虑围岩的弹塑性特点,用Newmark-β法推导了非线性方程的计算公式。建立了山岭隧道洞口段(浅埋及偏压浅埋)的实体模型,计算并分析了该山岭隧道洞口段在强震(超越概率2%)作用下的地震响应,确定了对隧道最不利的地震波传播方向。同时分析了浅埋及偏压浅埋隧道衬砌在强震作用下的位移、内力及应力响应随埋深的变化规律,以及偏压侧衬砌的位移、内力及应力的分布规律与非偏压时的不同。确定了在该围岩条件下浅埋及偏压浅埋隧道抗震设防的重点部位。
     3)针对浅埋及偏压浅埋隧道洞口段分别对围岩进行了注浆加固和对隧道洞口段衬砌采取抗震设防的数值模拟计算,分析了不同的注浆加固范围和不同的抗震设防长度对隧道衬砌抗震减震的效果。分别确定了该围岩级别下浅埋及偏压浅埋隧道的注浆加固范围和抗震设防长度。
     4)通过建立偏压隧道洞口段横向平面模型,对处于偏压状态的隧道衬砌在不同厚度时进行了计算分析,得出厚度的增加可以有效减小衬砌的轴向应力,但是衬砌的弯曲应力则随厚度的增加而增加,组合应力则随衬砌厚度的增加而平缓减小。由此确定了偏压浅埋隧道洞口段应采取扩大注浆加固范围、高于标准要求的抗震设防长度、同时增加配筋来提高强度以及采用平滑过渡的断面形状以减小应力集中的综合抗震措施来保证偏压侧衬砌在地震动作用下的安全性。
     5)运用振动理论,针对初衬-减震层-二衬体系简化后的力学模型,建立了振动方程。并结合麻崖子隧道实例给出相应的参数并用解析法进行了计算分析,从理论上确定了减震层与二衬的刚度比γ2在0.01~0.5范围时,减震层对衬砌有较好的减震效果。用麻崖子隧道浅埋洞口段的实例通过有限元计算进行验证分析,确定了减震层与二衬的刚度比2在0.05~0.15范围时,可以对衬砌起到较好的减震效果。
Lots of tunnels have been built in high seismic intensity regions in western of Chinawhere earthquake frequently happens. Many mountain tunnels have to be built in highmountains and gorges due to the limitation of the complicated topography. However, in ourcountry, the quasi-static method has been widely but unreasonably used for anti-seismic andshock absorption calculation in the the standards of roads and railways tunnels which can notmeet the requirements of key parts of mountain tunnel, such as portal sections, shallow-seatedsections and unsymmetrical loading sections. Supported by the Western traffic ConstructionTechnology&Science Project in China, based on the case study of Ma-Yazi tunnel of theWu-Guan Highway, the dynamic response of the shallow and unsymmetrical loading tunnellining was analyzed by using FEM. The characteristics of earthquake-induced dynamicresponse of shallow and unsymmetrical loading tunnel were obtained and the anti-seismic andshock absorption measures suitable for reducing the earthquake-induced dynamic responsesof the portal section of this tunnel was proposed. The main works are as follows:
     1) Based on the characteristics of elasto-plasticity of ground, and by using the theory ofdynamic finite element, the equations for back-evaluating the seismic acceleration of thebedrock from the seismic acceleration of the ground surface were derived by using themethod of Wilson-θ. It is indicated that the ground has an obvious amplifying effect forground motion. Therefore, the seismic acceleration of the bedrock should be input foranti-seismic and shock absorption calculation of underground structures in order to obtainmore reasonable results.
     2) With the consideration of the characteristics of elasto-plasticity of surrounding rock,the formulas of nolinear equations were deduced by using the method of Newmark-β. Themodels of the shallow and unsymmetrical loading tunnel lining were established and thedynamic responses of the tunnel portal section induced by intense earthquake were analyzed,the most unfavorable input direction of ground motion was determined too. Meanwhile, therelationships of the lining displacement, inner force and stress with the burial depth and thedifferences of those of the symmetrical loading&symmetrical loading were discussed. Thekey anti-seismic parts of the tunnel portal section in such kind of surrounding rock wereascertained.
     3) The effects of different grouting areas of ground and different lengths of anti-seismicprotected section to the anti-seismic and shock absorption of tunnel lining were studied byusing numerical simulations. The proper grouting areas of ground and suitable length ofanti-seismic protected section for the shallow and unsymmetrical loading tunnel lining wereobtained respectively. γ
     4) The transverse planar model of unsymmetrical loading tunnel portal was establishedto analyze the earthquake-induced dynamic responses of tunnel lining with different thickness.The conclusions show that the increasing of lining thickness can effectively reduce the axisstress in tunnel lining, but the bend stress in tunnel lining will increase with the increasing ofthickness, while the combined stress will gradually reduce with the increase of liningthickness. Thus, an integrated measure of increased grouting area of ground at tunnel portalsection, strengthened length of anti-seismic protected section, enhancing the intension byadding reinforcing bars in concrete and adopting a smoothed transition shape to reduce thestress concentration in the tunnel lining was proposed to ensure the safety of tunnel portalsection with unsymmetrical loadings under ground motion.
     5) The vibration equations for simplified mechanical model of the tunnel lining systemcomposed of the primary lining, layer of shock absorption and second lining were derived byusing the vibration theory. Based on the case study of Ma-Yazi tunnel, the conclusionscalculated by analytical method show that the tunnel lining system can effectively reduce theearthquake-induced dynamic responses in the tunnel lining where the stiffness ratio of layerof shock absorption and second lining (γ2) is0.01~0.5. And the calculated results by usingfinite element method indicate that the shock absorption effect is much better if the stiffnessratio of layer of shock absorption and second lining (γ2) is0.05~0.15.
引文
[1]李围.隧道及地下工程ANSYS实例分析[M].北京:中国水利水电出版社,2008.
    [2]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J]灾害学,1998,13(2):63-66.
    [3]潘昌实.隧道地震灾害综述[J].隧道及地下工程,1990,11(2):1~9.
    [4]Duke C.M., Leeds D.J. Effeets of Earthquake on Tunnels.Proteetive Construetion inANuelearAge[J].Proeeedings of the Seeond Proteetive Construetion SymPosium,Mareh24~26,1959,Vol.l:303~328.
    [5] Dowdings C.H.,Rozen A. Damage of Rock Tunnels from Earthquake Shaking.Journal of theGeotechnical Engineering Division[J]. ASCE,Proe.Paper13533,Feb.1978,104(GTZ): l75~191.
    [6] Dowdings C.H. Earthquake Stability of Rock Tunnels[J].Tunnels and Tunneling.June,1979: l~20.
    [7] Shunzoo K. Introduction to Earthquake Engineering[M]. University of Tokyo Press,1984.
    [8]蒋纯秋.世界地震工程100年(1891~1991)编年简史(一)[J].世界地震工程,1992,8(2):6~12.
    [9]高渠清.地震对地面及地下工程的破坏影响[J].国际隧道与地下工程学术讨论会,北京,1984.
    [10]Gao Q.Q. The Destructive Effects of Earthquake on Surface and Underground Constructions.Tunnelingand Underground Works [J].Beijing International Colloquium.1984:21~27.
    [11]许增会,刘刚.地震区隧道稳定性分析方法[J].公路,2004(110):189-193.
    [12]Youssef M.A.,Hashash J. J.,Hook B. S.et al. Seismic design and analysis of undergroundstructures[J].Tunnelling and Underground Space Technology,2001(16):247-293.
    [13]王文礼.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [14]宋胜武.汶川大地震工程震害调查分析与研究[M].北京:科学出版社,2009.
    [15]甘目飞.隧道工程在汶川地震中的震害调查及病害浅析[J].铁道工程学报,2008,12(增):228-233.
    [16]高波,王峥峥,袁松等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341.
    [17]吉随旺,唐永建,胡德贵等.四川省汶川地震灾区干线公路典型震害关键分析[J].岩石力学与工程学报,2009,28(6):1250-1260.
    [18]李天斌.汶川特大地震中山岭隧道变形破坏关键及影响因素分析[J].工程地质学报,2008,16(6):742-750.
    [19] Asakura T., Sato, Y. Damage to maintain tunnels in hazard area[J]. Soils Foundations,1996, SpecialIssue,301~310.
    [20] Asakura T., Sato Y., Mountain tunnels damage in the1995HYOGOKEN-NANBU Earthquake[J]. Q.Rep. RTRI,1998,39(1):9~16.
    [21] Chang C.T., Chang, S.Y. Preliminary inspection of dam works and tunnels after Chi-ChiEarthquake[J].Sino-Geotechnics,2000,77,101~108.
    [22]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996(5):7-16.
    [23]那向谦,罗奇峰,冯启民.阪神-淡路大震灾(兵库县南部地震)勘察报告[R].1995.
    [24] Wang W.L., Wang T.T., Su J.J. et al. Assessment of damage in mountain tunnels due to the TaiwanChi-Chi Earthquake[J]. Tunnelling and Underground Space Technology,2001(16):133-150.
    [25]李乔,赵世春.汶川大地震工程震害分析[M].成都:西南交通大学出版社,2008(9):196-213.
    [26]王文礼,苏灼谨,林峻弘等.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [27]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [28] Joseph P. Seismically induced racking of tunnel linings[J]. Earthquake Engineering Structuret.Dynamics.2000(29):683-691.
    [29] Hashash Y.M., Hook J.J., Schmidt B. et al. Seismic Design and Analysis of UndergroundStructure[J].Tunneling and Underground Space Technology,2001,16(4):247-293.
    [30] Gil L.M., Hernandez E., Delafuente P. Simplified Transverse Seismic Analysis of BuriedStructures[J].Soil Dynamics and Earthquake Engineering y,2001(21):735-740.
    [31]王峥峥,高波,索然绪.双洞隧道洞口段抗减震振动台试验[J].中国公路学报,2009,22(2):71-76.
    [32]邵根大,骆文海.强地震作用下铁路隧道衬砌耐震性的研究[R].北京:铁道部科学研究院,1990:92-109.
    [33]朱长安,高波,索然绪.强震区隧道洞口段振动台模型试验研究[J].现代隧道技术,2008,45(1):48~52.
    [34]孙铁成,高波,王峥峥.双洞隧道洞口段抗减震模型试验研究[J].岩土力学,2009,30(7):2021~2026.
    [35]孙铁成.双洞错距山岭隧道洞口段地震动力响应及减震措施研究[D].西南交通大学博士论文,2009,3.
    [36]王明年,崔光耀.高烈度地震区隧道减震模型的建立及其减震效果模型试验研究[J].岩土力学,2010,31(6):1884~1890.
    [37]曹国安.地下结构随机地震响应和极值分析[D].北方交通大学博士学位论文,1997.
    [38]慎国强,孟宪军,王玉梅等.随机地震反演方法及其在埕北35井区的应用[J].石油地球物理勘探,2004,39(1):75~81.
    [39]严松宏,高峰,高波.地下结构抗震动力可靠度分析[J].铁道学报,2004,26(5):96~100.
    [40]严松宏,梁波,高峰等.考虑地震非平稳性的隧道纵向抗震可靠度分析[J].岩石力学与工程学报,2005,24(5):818~822.
    [41]严松宏,梁波,高波.地下结构纵向抗震动力可靠度分析[J].岩石力学与工程学报,2005,24(1):71~76.
    [42]严松宏,高峰,高波等.沉管隧道地震反应分析若干问题的研究[J].岩石力学与工程学报,2004,23(5):846–850.
    [43]严松宏.地下结构随机地震响应分析及动力可靠度研究[D].西南交通大学博士学位论文,2003.
    [44] Cundall P. A. A computer model for simulating progressive large scale movement in blocky system,Proc[J]. Symp. Int. Soci. Rock Mech.1971(1):1-8.
    [45] Wilson E.L. A method of analysis for the evaluation of foundation-structure interaction[J].Proc.4thWorld conf. Earthquake Eng., Santiago, Chile,1969.
    [46] Lysmer J., Kulemeyer R.L. Finite dynamic model for infinite media[J]. Engng, Mech. Div. ASCE,1969Vo1.95:759-877.
    [47] Zienkiewicz O.C.著,严泽勇,江伯男译.有限单元法[M].北京:科学出版社,1985.
    [48]Owen D.R.J., Hinton E. Finite Elements in Plasticity-Theory and Practice[M]. Pineridge Press,Swansea, U.K.,1980.
    [49] Bath K. J.,Wilson E.L. Numerical Methods in Finite Element analysis[M]. Rentice-Hall, EnglewoogCliffs,1976.
    [50] Bathe K.J., Wilson E.L.著,林公豫,罗恩译.有限元分析中的数值方法[M].北京:科学出版社,1991.
    [51] Bathe K.J.著,傅子智译.工程分析中的有限元法[M].北京:机械工业出版社,1991.
    [52]朱伯芳.有限单元法原理及应用[M].北京:水利电力出版社,1979.
    [53]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [54] Owen D.R.J., Hinton E.著,曾国平等译.塑性力学有限元一理论与运用[M].北京:兵器工业出版社,1989.
    [55]廖振鹏.工程波动导引[M].北京:科学出版社,1996.
    [56]孙均,吴逸群.岩土介质中应力波传播问题的有限元法分析[J].岩土工程学报1993,Vo1.5(4):1116.
    [57]孙钧,汪炳鉴.地下结构(上)(下)[M].上海:同济大学出版社,1987:475-482.
    [58] Newmark N.M. A method of computation for structural dynamics[J].ASCE,1959.
    [59]Belytschko T., Black T. Elastic crack growth in finite elements with minimalremeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
    [60] Kuriyma K.,Mizuta Y..Three-dimensional elastic analysis by the displacement discontinuity methodwith boundary division into triangle leaf elements[J]. International Journal of Rock Mechanics and MiningScierces,Geomech.Abstr.,1995,32(1):77-83.
    [61]郭胜利.强震作用下土埋地下结构动力反应分析的研究[D].清华大学博士学位论文,1997,7.
    [62] Du X.L. Xiong J.G. Application of Boundary Element Method to Soil-Structure Interaction,Proc.Int.Sym.on Geo.Bri.and.Stru.,(China)1987.
    [63]田志敏,熊建国,杜修力.岩(土)中结构动力反应的分解分析法[J].岩土工程学报,1991,13(2):17-23.
    [64] Chopra A.K. Modelling of Dam-Foundations in Analysis of Arch Dams, Proc.lOth, WCEE, Madrid,1992.
    [65]Dominguez.J.,Maeso O. Model for the seismic Analysis of Arch Dams Including InteractionEFFECTS,Proc.10th,WCEE,Madrid,l992.
    [66]张楚汉.小湾高拱坝地震波动响应与抗震分析研究[R].1995.
    [67] Karabalis D.L., Bekos D.E. Dynamic Response of3-Dflexible Foundations by Time Domain BEMand FEM,SoilDyn.Earthq.Eng.,1985(4):,91-101.
    [68] Karabalis.D.L.,Bekos D.E. Dynamic Response of3-D Embeded Foundations by the BoundaryElement Method.Comp.Meth. Appl.Mech.Eng.,1986(56):91~120.
    [69]Fukui T. Tirne Marching Analysis of Boundary Integral Equations in two Dimensional Elastodynamics,Innovative Numerical Methods in Engineering, Berlin: Springer-Velag,1986,405~401.
    [70] Estorff O.V., Prabucki M.J., The Coupling of Boundary and Finite Elements to Solve TransientProblem in Elastodanamics, Boundary Element X, Springer-Velag,1988,447-459.
    [71]曾三平.爆炸波在非均匀介质中传播以及地下防护结构与围岩非线性动力相互作用分析[D].同济大学博士学位论文,1992.
    [72] Song C. H., Wolf J. P. Scale boundary finite-element method-alias consistent infinitesimalfinite-element cell method for elastodynamics[J]. Computer Methods in Applied Mechanics andEngineering,1997,147(3-4):329-355.
    [73] Nayroles B., Jousot G., villon P. Generalizing the finite element method: Diffuse approximation anddiffuse elements[J]. Computional mechanics,1992,10(5):307-318.
    [74] Sarma K. S. Stability analysis of embankments and slopes[J]. Journal of the Geotechnical EngineeringDivision,1979,105(12):1511-1524.
    [75] Belytschko T.,Plesha M., Dowding C. H. Computer method for stability analysis of caverns in jointedrock[J]. International Journal for Numerical and Analytical Methods in Geomechics,1984,8(5)473-492.
    [76] William K., Pramono E., Sture S. Fundamental issues of smeared crack models. Proc. SEM-RILEM.Int. Conf. On Fracture of Concrete and Rock. Shah S P and Swartz S E, Eds.,SEM,Bethel.1987,192-207.
    [77] Shi G. H. Discontinuous deformation analysis:a new numerical mode for the statics and dynamics ofblock system[Ph. D. Thesis][D]. Berkeley:Department of Civil Engineering,University of California,1988.
    [78] Courant R.Variational methods for the solution of problems of equilibrium and vibrations[J].Bulletin of American Mathematical Society,1943,49:1-23.
    [79]孙钧,汪炳.地下结构有限元解析[M].上海:同济大学出版社,1988.
    [80]潘昌实,Pande G.N.黄土隧道列车动荷载效应有限元初步数定分析研究[J].土木工程学报,1984,17(4):19-28.
    [81]潘昌实,杨力.黄土隧道地震反应分析初探[J].土木工程学报,1987,22(2):85-93.
    [82]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.
    [83]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [84]李育枢.山岭隧道地震动力响应及减震措施研究[D].同济大学博士学位论文,2006.
    [85] Alyami M., Rouainia M., Wilkinson S.M. Numerical analysis of deformation behaviour of quay wallsunder earthquake loading[J]. Soil Dynamics and Earthquake Engineering,2009(29):525–536.
    [86] Oden J. T. Finite element for nonlinear continua[M]. New York: McGraw-Hill,1972.
    [87] Inaba T., Dohi H., Okuta K.. et al. Nonlinear response of surface soil and NTT building due tosoil—structure interaction during the1995Hyogo-ken Nanbu (Kobe) earthquake [J]. Soil Dynamics andEarthquake Engineering,2000(20):289-300.
    [88]张华兵,倪玉山,赵学勐.黄土隧道围岩稳定性粘弹塑性有限元分析[J].岩土力学,2004,25(增).
    [89]张鸿,毕继红,张伟.地铁隧道地震反应非线性分析[J].地震工程与工程振动,2004,24(6):146-153.
    [90]卢慈荣.盾构法隧道纵向非线性地震响应分析与抗震设计研究[D].浙江大学硕士学位论文,2005.
    [91] Mauro D., Andreas K., Angelo M. et al. Marco Vona Vulnerability assessment and earthquake damagescenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies[J].Engineering Structures,2006(28):357–371.
    [92]顾俊.地铁隧道结构地震非线性动力响应分析[D].河海大学硕士学位论文,2007.
    [93] Mehmet I., Hayri B.O.,Huseyin B. Re-evaluation of building damage during recent earthquakes inTurkey[J]. Engineering Structures,2008(30):412–427.
    [94]刘晶波,杜修力编著.结构动力学[M].机械工业出版社,2005.
    [95]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124-130.
    [96]郑永来,杨林德.地下结构抗震[M].上海:同济大学出版社,2005.
    [97] Shunzo O. Introduction to Earthquake Engineering[M].Tokyo University Press,1984,527~554.
    [98]川岛一彦.地下构筑物耐震设计[M].日本:鹿岛出版会,1994.
    [99] Hamada H.,Kitahara M. Earthquake observation and BIE analysis on dynamic behavior of rock cavern,Numerical Methods in Geomechanics, Proceedings of the Fifth International Conference on NumericalMethods in Geomechanics, Nagoya1-5,April,1985,Vol3,1525-1532.
    [100] Shunzo O., Choshiro T. Behavior of Subaqueous Tunnels During Earthquakes[J]. EarthquakeEngineering and Structural Dynamics,1973,Vol.1,253-266.
    [101]Goto Y., Matsuda Y., Ejiri J. et al. Influence of distance between Juxtaposed Shield Tunnels on theirSeismic Responses,Proc,9th World Conf. On Earthquake, EngAug.2-9,1988,Tokyo-Kyoto,Japan,Vol.6,Ⅱ-569-574.
    [102]福季耶娃著,徐显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社,1986.
    [103] Kuesel T.R. Earthquake Design Criteria for Subways[J]. Journal of Structural Division, Procreedingof ASCE.1969(6):1213-1231.
    [104]阎盛海编译.地下结构抗震[M].大连:大连理工大学出版社,1989.
    [105] Sharma S., William R. J.著,雷谦荣译.地震对地下洞室的破坏[J].地下空间,1992,12(4):335-344.
    [106]王志杰,高波,关宝树.围岩-隧道衬砌结构体系的减震研究[J].西南交通大学学报,1996,31(4):590-594.
    [107]李德武.断层破碎带隧道衬砌受力特性研究[D].兰州:兰州大学博士学位论文,2004.
    [108]路仕洋.宝成铁路宝鸡-广元段隧道震害的调查与分析[J].国防交通工程与技术,2008(6):59-61.
    [109]蒋华,蒋树屏,王晓雯等.断层带处公路隧道横断面抗震分析[J].隧道建设,2009,29(1):14-18.
    [110]张庆贺,廖少明,胡向东.隧道与地下工程灾害防护[M].北京:人民交通出版社,2009.
    [111]南昆线8、9度地震区隧道洞口及浅埋大跨度段新结构设计、试验和研究[R].成都:铁道部第二勘测设计院等,1996.
    [112]高峰.地下结构动力分析若干问题研究[D].西南交通大学博士学位论文,2003.
    [113]高峰,石玉成,严松宏等.隧道洞口段的抗震设防长度[J].中国公路学报,2006,19(3):65-69.
    [114]王义军.国道318线黄草坪隧道地震动力响应及减震措施研究[D].成都理工大学硕士学位论文,2005.
    [115]Converse A. M., Gerald B. A. Basic strong-motion accelerogram processing software; version1.0
    [R]. United States Department of the Interior Geological Survey. Open-File Report.1992:92-296A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700