用户名: 密码: 验证码:
基于库伦摩擦效应的径向气体箔片轴承-转子系统振动特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动压气体箔片轴承较滚动轴承具有的运转速度高、无污染、回转精度高、运行寿命长、高温低温等极限环境适应性强等诸多优点使其在航空航天、低温制冷等关键领域具有广阔的发展前景和重要的应用价值。波箔型径向气体箔片轴承的弹性表面自适应性以及箔片结构内部干摩擦给轴承带来高转速、强稳定性等优点的同时也给轴承箔片结构理论建模带来了难度。本文针对轴承箔片结构内部的摩擦问题展开研究,从箔片轴承理论建模和数值计算方法等基本问题出发,分析了箔片结构内部摩擦效应对轴承静动态特性的影响,并在此基础上搭建了轴承性能测试试验台和轴承-转子系统特性试验台,对箔片轴承进行试验研究,为气体箔片轴承箔片结构摩擦特性提供新的研究方法和手段。
     基于有限单元法建立了充分考虑箔片结构内部摩擦效应的波纹箔片刚度理论计算模型,研究了摩擦效应对波纹箔片刚度特性的影响,分析结果表明箔片结构的库伦摩擦效应在一定程度上增大了波纹箔片的刚度,波纹箔片库伦摩擦模型具有比文献线性弹簧更复杂的刚度特性。
     在建立了考虑平箔片剪切刚度和箔片结构摩擦效应的箔片结构有限元模型的基础上,采用有限单元法(FEM)和有限差分法(FDM)耦合求解Reynolds方程和气膜厚度方程,研究了平箔片剪切刚度以及箔片结构库伦摩擦效应对轴承静态特性的影响,并将计算结果与NASA试验数据对比验证了箔片结构模型以及数值仿真方法的正确性。
     基于小扰动法,结合气体Reynolds方程、气膜压力、气膜厚度和箔片变形之间的数学关系推导出轴承动力学特性系数计算微分方程,通过有限差分法对其进行求解得到不同箔片结构摩擦系数条件下轴承动力学特性系数,获得了波纹箔片摩擦效应对轴承气膜刚度和阻尼系数的影响规律。
     根据有限元法建立实际的波箔型径向气体箔片轴承-转子系统模型,结合轴承在各个转速下的刚度和阻尼系数,通过求解转子系统频率方程分析了箔片结构摩擦效应对箔片轴承-转子系统前三阶临界转速的影响。利用Newmark数值计算方法分析了轴承-转子系统的动力学稳定性,结果表明轴承支承处振动幅值随着转速的升高而降低,虽然高速转速较低转速时振动出现低频分量,但轴心轨迹重复性好,并且波纹箔片和轴承壳之间摩擦系数越小,轴承-转子系统稳定性越高。
     设计并建立了波箔型径向气体箔片轴承特性测试试验台,通过改变轴承壳圆柱孔内表面粗糙度,提出了一种研究箔片结构摩擦效应对波箔型径向气体箔片轴承特性影响的试验方法,并对箔片轴承静刚度、起飞转速、极限承载力和轴承动力学特性系数进行了测试,结果表明降低轴承壳圆柱孔内表面粗糙度能够减小轴承静刚度,使得箔片轴承的悬浮转速降低,减少了轴承启停时表面磨损,延长了轴承寿命,同时还能够有效提高轴承极限承载力,为提高箔片轴承承载力提供新的思路。
     设计并搭建了波箔型径向气体箔片轴承-转子系统试验台,基于振动频率和平箔片温度测量准确判断了转子起飞转速,重点分析了波纹箔片和轴承壳之间摩擦效应对转子系统动力学特性的影响。通过降低轴承壳内表面粗糙度有效消除了转子高频振动,提高了转子系统运行稳定性,为提高箔片轴承-转子系统运行稳定性提供了新的方法。
Because of its many outstanding advantages compared with rolling bearingssuch as high speed, pollution free, high precision turning, long operating life, limitenvironment adaptability like high and low temperature, the hydrodynamic gas foilbearings have vast potential for future development and important valuableapplication in those fields including avigation, aerospce engineering, cryogenics andrefrigeration. The elastic surface self-adaptivity and foil structural dry fricition notonly make the bearing run in high speed and have strong rotating ability, but alsomake it difficult to establish theoretical model of bearing foil structure. In this paper,the internal friction effects in bearing foil strucure are investigated. Firstly, the foilbearing theoretical model is established and numerical algorithm analytical solutionis presented. Based on it the effects of internal friction in foil structure on static anddynamic characteristics of foil bearing are analyzed. Furthermore, the experimentalstudy of static and dynamic charactristics of foil bearing and dynamic performanceof bearing-rotor system provides a new method for research of frictioncharacteristics of foil structure in gas foil bearing.
     The theoretical calculation model of bump foil stiffness including foilstructural internal friction effects is developed by finite element method and theeffects of Coulomb friction on stiffness of bump foil are studied. The results indicatethat Coulomb friction force can enhance the stiffness of bump foil and the stiffnesscharacteristic of bump foil Coulomb friction model is more complex than linearspring stiffness model that in literatures.
     On the basis of establishing the foil structural finite element model with theconsideration of shear stiffness in top foil and foil structural friction effects, thecompressible gas lubricated Reynolds equation and film thickness equation aresolved together by using finite element mothod and finite difference method, thenthe effects of shear sthiffness in top foil and Coulomb friction in foil structure onbump foil static performance are studied. The accuracy of foil structural model andnumerical algorithm analytical solution are verified via comparing numerical resultswith test data from NASA.
     Differential equations for calculation of bump foil bearing dynamiccharacteristics are derived from air Reynolds equation, air pressure, gas filmthickness and bump foil deformation by using perturbation method. The effects ofCoulomb friction in foil structure on bump foil stiffness and damping coefficientsare studied via comparing of dynamic characteristics of bump foil bearing withdifferent foil structural friction coefficients.
     The practical bump type gas foil journal bearing-rotor system model is built.The critical speeds of rotor system are solved and the effects of foil structure frictionon critical speeds of rotor system are studied by solving rotor system frequencyequation combined with stiffness and damping coefficients of bearing at variousspeeds. The hydrodynamics of bearing-rotor system are analyzed by using Newmarkmethod. It shows that the vibration values at bearing supports decrease with theincreasing of rotor speed. Although some low frequency components occur at highrotating speed, but the shaft orbit has good repeatability and gas foil bearing-rotorsystem has good rotating stability at high speed.
     A bump type gas foil journal bearing performance test-bed is designed and built.A test method for studying effects of foil structure friction on performance of bumptype gas foil journal bearing is proposed by changing the roughness of bearinghousing cylindrical hole surface. The bearing performance including bearing staticstiffness, lift-off speed, limiting load capacity and dynamic coefficients are test andit indicates that reducing roughness of bearing housing cylindrical hole surface canweaken the bearing static stiffness, decrease the lift off speed, reduce the bearingsurface wear at start and stop stage and extend bearing life. Furthermore, decreasethe foil structural friction force can enhance bearing limiting load capacityeffectively and it can provide a new idea to improve the capacity pf gas foil bearing.
     A test-bed is developed for bump type gas foil bearing-rotor system. Thevibration frequency and foil temperature measurement can both determine thelift-off speed. The effects of friction between bump foil and bearing housing ondynamic performance of rotor system are analyzed. Reducing roughness of bearinghousing cylindrical hole surface can effectively eliminate high frequency vibrationand improve the stability of rotor system and it provides a new approach to improvethe stability of foil bearing-rotor system.
引文
1张直明,张言羊,谢友柏等.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986:1-107.
    2王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999:1-87.
    3Hurley K A. Experimental Determination of the Rotor Dynamic Coefficients ofa Gas Lubricated Foil Journal Bearing[D]. Pennsylvania: The PennsylvaniaState University,1998.
    4姚海.箔片式动压气体轴承在低温透平机械中的应用于研究[J].低温工程.1998,3:18-24.
    5侯予,熊联友,王瑾等.箔片式动压径向气体轴承的发展[J].润滑与密封.2000,2:2-8.
    6刘占生,许怀锦.波箔型动压气体径向轴承的应用于研究进展[J].轴承.2008,1:39-43.
    7朱朝辉,熊联友,侯予等.弹性箔片动压气体轴承在高速透平机械中的应用[J].设计制造.2002,2:6-9.
    8邓建,胡连桃,黄昌华等.箔片空气轴承的新近技术突破与应用进展[J].轴承.2004,8:41-44.
    9Gu A. Process Fluid Foil Bearing Liquid Hydrogen Turbopump[C].AIAA/SAE/ASME/ASEE24th Joint Propulsion Conference. Boston,Massachusetts. AIAA-1988-3130.
    10Saville M, Capaldi R, Gu A. Liquid Hydrogen Turbopump Foil Bearing[C].AIAA/SAE/ASME/ASEE27th Joint Propulsion Conference. Sacramento, CA.AIAA-1991-2108.
    11Stoltzfus J M, Dees J, Gu A, et al. Material Compatibility Evaluation ForLiquid Oxygen Turbopump Fluid Foil Bearings[C]. AIAA/SAE/ASME/ASEE28th Joint Propulsion Conference. Nashville, TN. AIAA-1992-3403.
    12Genge G G, Saville M Gu A. Foil Bearing Performance in Liquid Nitrogen andLiquid Oxygen[C]. AIAA/SAE/ASME/ASEE29th Joint PropulsionConference. Monterey, CA. AIAA-1993-2536.
    13Gilbrech R J, Gu A, Rigney, et al. Liquid Hydrogen Foil-BearingTurbopump[C]. AIAA/SAE/ASME/ASEE29th Joint Propulsion Conference.Monterey, CA. AIAA-1993-2537.
    14Gu A. Foil Bearing Turbopumps[C]. AIAA Space Programs and TechnologiesConference. Huntsville, AL. AIAA-1993-4222.
    15Gu A. Cryogenic Foil Bearing Turbopumps[C].32nd Aerospace Sciences.Reno, NV. AIAA-1994-0868.
    16Genge G, Saville M, Gu A. Foil Bearing Performance in a Liquid Nitrogen andLiquid Oxygen Turbopump[C]. AIAA/SAE/ASME/ASEE30th JointPropulsion Conference. Indianapolis, IN. AIAA-1994-3381.
    17Saville M, Gu A, Nunez S. Foil-Bearing LOX/LN2turbopump PerformanceDuring Rapid Transients and Low Flow Conditions[C]. AIAA/SAE/ASME/ASEE31th Joint Propulsion Conference. San Diego, CA. AIAA-1995-3105.
    18McFarlane J S, Saville M P, Nunez S C. Testing a10,000lbf Thrust HybridMotor with a Foil Bearing Lox Turbopump[C]. AIAA/SAE/ASME/ASEE31thJoint Propulsion Conference. San Diego, CA. AIAA-1995-2941.
    19Licht L, Mateo S and Calif. Resilient Foil Journal Bearing. U.S. Patent.1979,No.4133585.
    20Howard S, DellaCorte C. Gas Foil Bearings for Space Propulsion NuclearElectric Power Generation[J]. NASA, TM-2006-214115.
    21Miller W H, Schemechtady N Y. Compliant Hydrodynamic Fluid Bearing withResilient Support Matrix. U.S. Patent.1980, No.4222618.
    22Song J H. Design, Analyses and Experimetal Study of a Foil Gas Bearing withCompression Springs as a Compliant Support[D]. Texas: Texas A&MUniversity,2006.
    23Andrés L S, Chirathadam A T. Identification of Rotordynamic ForceCoefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations[J].Journal of Engineering for Gas Turbine and Power,2011,133(11):112501.1-112501.9.
    24Block. H, VanRossum J J. The Foil Bearing-A New departure in HydrodynamicLubrication[J]. Journal of Lubrication Engineering.1953,(9):316-330.
    25Walowit J A, Anno J N. Modern developments in lubrication mechanics [M].London: Applied Science Publishers Ltd,1975.
    26Heshmat H, Walowit J A, Pinkus O. Analysis of Gas-Lubricated Foil JournalBearings[J]. ASME Journal of Lubrication Technology,1983,105(4):647-655.
    27Heshmat H, Walowit J A, Pinkus O. Analysis of Gas-Lubricated ComplaintThrust Bearings[J]. ASME Journal of Lubrication Technology,1983,105(4):638-646.
    28Andrés L S. Turbulent Flow Foil Bearins for Cryogenic Applications[J]. ASMEJournal of Tribology,1995,117(1):185-195.
    29Peng J-P, Carpino M. Calculation of Stiffness and Damping Coefficients forElastically Supported Gas Foil Bearings[J]. ASME Journal of Tribology,1993,115(1):20-27.
    30Peng J-P, Carpino M. Coulomb Friciton Damping Effects in ElasticallySupported Gas Foil Bearings[J]. Trbology Transactions,1994,37(1):91-98.
    31Peng Z-C, Khonsari M M. Hydrodynamic Analysis of Compliant Foil BearingsWith Compressible Air Flow[J]. ASME Journal of Tribology,2004,126(3):542-546.
    32Peng Z-C, Khonsari M M. On the Limiting Load-Carrying Capacity of FoilBearings[J]. ASME Journal of Tribology,2004,126(4):817-818.
    33Kim T H, Andrés L S. Heavily Loaded Gas Foil Bearings: A Model Anchoredto Test Data[C]. ASME Paper2005-GT-68486,2005.
    34Kim T H, Andrés L S. Heavily Loaded Gas Foil Bearings: A Model Anchoredto Test Data[J]. Journal of Engineering for Gas Turbine and Power,2008,130(1):012504.1-012504.8.
    35Peng Z-C, Khonsari M M. A Thermohydrodynamic Analysis of Foil JournalBearings[J]. Journal of Tribology,2006,128(3):534-541.
    36Makwana N. FDM based analysis of gas lubricated foil journal bearing[C].ASME Paper2009-IJTC-15066,2009.
    37Roger K C-P, Heshmat H. Compliant Foil Bearing Structural Stiffness Analysis:Part I-Theoretical Model Including Strip And Variable Bump Foil[J]. ASMEJournal of Tribology,1992(2),144:394-400.
    38Roger K C-P, Heshmat H. Structural Stiffness and Coulomb Damping inCompliant Foil Journal Bearings: Parametric Studies[J]. Trbology Transactions,1994,37(3):455-462.
    39Roger K C-P, Heshmat H. Structural Stiffness and Coulomb Damping inCompliant Foil Journal Bearings: Theoretical Considerations[J]. TrbologyTransactions,1994,37(3):525-533.
    40Carpino M, Peng J-P. Theoretical Performance of a Hydrostatic Foil Bearing[J].Journal of Tribology,1994,116(1):83-89.
    41Carpino M, Medvetz L A, Peng J-P. Effects of Membrane Stresses in thePrediction of Foil Braeing Performance[J]. Trbology Transactions,1994,37(1):43-50.
    42Iordanoff I. Analysis of an Aerodynamic Compliant Foil Thrust Bearing:Method For a Rapid Design[J]. ASME Journal of Tribology,1999,121(4):816-822.
    43Lee N S, Choi D H, Lee Y B, et al. The Influence of the Slip Flow onSteady-State Load Capacity, Stiffness and Damping Coefficients of ElasticallySupported Gas Foil Bearings[J]. Tribology Transactions,2002,45(4):478-484.
    44Song J H, Kim D J. A New Foil Gas Bearing with Compression Springs asCompliant Structure for Microturbomachinery Applications[C]. ASME Paper2006-GT-90964,2006.
    45Song J H, Kim D J. Foil Gas Bearing with Compression Springs: Analyses andExperiments[J]. Journal of Tribology,2007,129(3):628-639.
    46Kim D J, Park S. Hybrid Air Foil Bearings with External Pressurization[C].ASME Paper2006-IMECE-16151,2006.
    47Kumar M, Kim D J. Parametric Studies on Dynamic Performance of HybridAirfoil Bearing[J]. Journal of Engineering for Gas Turbine and Power,2008,130(6):062501.1-062501.8.
    48Kim D J, Park S. Hydrostatic Air Foil Bearings: Analytical and ExperimentalInvestigation[J]. Tribology International,2009,42(3):413-425.
    49Lez L S, Arghir M, Frene J. A New Bump-Type Foil Bearing StructureAnalytical Model[J]. Journal of Engineering for Gas Turbine and Power,2007,129(4):1047-1057.
    50Lez L S, Arghir M, Frene J. Static and Dynamic Characterization of ABump-Type Foil Bearing Structure[J]. Journal of Tribology,2007,129(1):75-83.
    51Lez L S, Arghir M, Frene J. Nonlinear Numerical Prediction of Gas FoilBearing Stability and Unbalanced Response[J]. Journal of Engineering for GasTurbine and Power,2009,131(1):012503.1-012503.12.
    52Lez L S, Arghir M, Frene J. A Dynamic Model for Dissipative Structures usedin Bump-Type Foil Bearings[J]. Tribology Transactions,2009,52(1):36-46.
    53Andrés L S, Kim T H. Improvements to the Analysis of Gas Foil Bearings:Integration of Top Foil1D and2D Structural Models[C]. ASME Paper2007-GT-27249,2007.
    54Andrés L S, Kim T H. Analysis of Gas Foil Bearings Integrating FE Top FoilModels[J]. Tribology International,2009,42(1):111-120.
    55Ruscitto D, Cormick J M, Gray S. Hydrodynamic Air Lubricated CompliantSurface Bearing for an Automotive Gas Turbine Engine I-Journal BearingPerformance[J]. NASA CR-135368,1978.
    56Lee Y B, Park D J, Kim C H, et al. Operating Characteristics of the Bump FoilJournal Bearings with Top Foil Bending Phenomenon and Correlation amongBump Foils[J]. Tribology International,2008,41(4):221-233.
    57Carpino M, Talmage G. Subfoil Stiffness Effects in Gas-Lubricated FoilJournal Bearings[J]. Tribology Transactions,2008,51(5):602-608.
    58Lee D H, Kim Y C, Kim K W. The Static Performance Analysis of Foil JournalBearings Considering Three-Dimensional Shape of the Foil Structure[J].ASME Journal of Tribology,2008,130(7):031102.1-031102.10.
    59Feng K, Kaneko S. Link-Spring Model of Bump-Type Foil Bearings[C]. ASMEPaper2009-GT-59260,2009.
    60Lee D H, Kim Y C, Kim K W. The Effect of Coulomb Friction on the StaticPerformance of Foil Journal Bearings[J]. Tribology International,2010,43(5-6):1065-1072.
    61Feng K, Kaneko S. Analytical Model of Bump-Type Foil Bearings Using aLink-Spring Structure and a Finite-Element Shell Model[J]. Journal ofTribology,2010,132(2):021706.1-021706.11.
    62Salehi M, Swanson E and Heshmat H. Thermal Features of Compliant FoilBearings-Theory and Experiments[J]. ASME Journal of Tribology,2001,123(7):566-571.
    63Pinkus O, Bupara S S. Adiabatic Solution for Finite Journal Bearings[J].ASME Journal of Tribology,1979,101(4):492-496.
    64Andrés L S, Kim T H, Ryu K. Thermal Management and RotordynamicPerformance of a Hot Rotor-Gas Foil Bearings System. Part2: PredictionsVersus Test Data[C]. ASME Paper2010-GT-22983,2010.
    65Andrés L S, Ryu K, Kim T H. Thermal Management and RotordynamicPerformance of a Hot Rotor-Gas Foil Bearings System. Part II: PredictionsVersus Test Data[J]. Journal of Engineering for Gas Turbine and Power,2011,133(6):062502.1.1-062502-8.
    66Ryu K, Kim T H. Prediction of Axial and Circumferential Flow Conditions in aHigh Temperature Foil Bearing with Axial Cooling Flow[J]. Journal ofEngineering for Gas Turbine and Power,2012,134(9):094503.1.1-094503-6.
    67Andrés L S, Kim T H. Thermohydrodynamic Analysis of Bump Type Gas FoilBearings: A Model Anchored to Test Data[J]. Journal of Engineering for GasTurbine and Power,2010,132(4):042504.1-012504-10.
    68Lee D H, Kim D J. Thermohydrodynamic Analyses of Bump Air Foil Bearingswith Detailed Thermal Model of Foil Structures and Rotor[J]. Journal ofTribology,2010,132(2):021704.1-021704-12.
    69Lee D H, Kim D J, Sadashvia R P. Transient Thermal Behavior of PreloadedThree-Pad Foil Bearings: Modeling and Experiments[J]. Journal of Tribology,2011,133(2):021703.1-021703-11.
    70Sim K H, Kim T H. Thermohydrodynamic Analysis of Bump-Type Gas FoilBearings using Bump Thermal Contact and Inlet Flow Mixing Models[J].Tribology International,2012,48:137-148.
    71Reddy D S K, Swaranamani S, Prabhu B S. Analysis of Aerodynamic MultileafFoil Journal Bearings[J]. Wear,2012,1997(1-2):115-122.
    72Heshmat C A, Xu D S, Heshmat H. Analysis of Gas Lubricated Foil ThrustBearings Using Coupled Finite Element and Finite Difference Methods.[J]Journal of Tribology,2000,122(2):199-204.
    73Paouris L I, Bompos D A, Nikolakopoulos P G. Simulation of StaticPerformance of Air Foil Bearings Using Coupled FEM and CFDTechniques[C]. ASME Paper2013-GT-94951,2013.
    74DellaCorte C, Radil K C, Bruckner R J, et al. Design, Fabrication andPerformance of Open Source Generation I and II Compliant HydrodynamicGas Foil Bearings[J]. NASA/TM-2007-214691.
    75Kim D J, Creary A. LIGA-Fabricated Meso Scale Foil Gas Bearings forPalm-Sized Microturbomachinery[J]. ASME Paper2008-IJTC-71237,2008.
    76Kim D J, Creary A, Chang S S, et al. Mesoscale Foil Gas Bearings forPalm-Sized Turbomachinery: Design, Manufacturing, and Modeling[J]. Journalof Engineering for Gas Turbine and Power,2009,131(4):042502.1-012502-10.
    77Liscia M H D, Matute J A, Diaz G S, et al. A Novel Weldless Foils-CaseAttachment for Gas Foil Bearings[C]. ASME Paper2013-GT-94402,2013.
    78Dellacorte C. Tribological Composition Optimization of Chromium-Carbide-BasedSolid Lubricant Coating for Foil Gas Bearing at Temperatures to650℃[J].Surface and coating Technology,1988,36(1-2):87-97.
    79Dellacorte C, Edmonds B J. A New Self-Lubricating High TemperatureComposite Coating for Use to800℃[J]. NASA/TM-1996-107056.
    80Dellacorte C. The Evaluation of a Modified Chrome Oxide Based HighTemperature Solid Lubricant Coating for Foil Gas Bearings[J]. NASA/TM-1998-208660.
    81Dellacorte C, Lukaszewicz V, Valco M J, et al. Performance and Durability ofHigh Temperature Foil Air Bearing for Oul-Free Turbomachinery[J].NASA/TM-2000-209187/REVI.
    82Radil K C, Dellacorte C. the effect of journal roughness and foil coating on theperformance of heavily loaded foil air bearings[J]. NASA/TM-2001-210941.
    83Dellacorte C, Zaldana A R, Radil K C. A Systems Approach to the SolidLubrication of Foil Air Bearings for Oil-Free Turbomachinery[J]. NASA/TM-2002-211482.
    84Dellacorte C, Zaldana A R, Radil K C. A Systems Approach to the SolidLubrication of Foil Air Bearings for Oil-Free Turbomachinery[J]. ASMEJournal of Tribology,2004,126(1):200-207.
    85Stanford M K, DellaCorte C. Friction and Wear Characteristics of Cu-4Al FoilBearing Coating at25and650C[J]. NASA/TM-2004-212972.
    86Heshmat H, Hryniewicz P, Walton II J F, et al. Low-Friction Wear-ResisrantCoatings for High-Temperature Foil Bearings[J]. Tribology International,2005,38(11-12):1059-1075.
    87Salehi M, Hooshang H. High Temperature Performance Evaluation of aCompliant Foil Seal[C].36th AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhitbit. Huntsville, Alabama. AIAA-2000-3376.
    88Salehi M, Hooshang H. High Temperature Performance Evaluation of aCompliant Foil Seal[C].38th AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhitbit. Indianapolis, Indiana. AIAA-2002-3792.
    89Fanning C E, Blanchet T A. High-Temperature Evaluation of Solid LubricantCoatings in a Foil Thrust Bearing[J]. Wear,2008,265(7-8):1076-1086.
    90Jahanmir S, Heshmat H, Heshmat C. Evaluation of DLC Coatings forHigh-Temperature Foil Bearing Applications[J]. ASME Journal of Tribology,2006,131(1):011301-1-11.
    91Roger K C-P, Heshmat H. Compliant Foil Bearing Structural StiffnessAnalysis-Part II: Experimental Investigation[J]. ASME Journal of Tribology,1993,115(3):364-369.
    92Heshmat H, Roger K C-P. Structure Damping of Self-Acting Compliant FoilJournal Bearings[J]. ASME Journal of Tribology,1994,116(2)76-82.
    93Dellacorte C. A New Foil Air Bearing Test Rig for Use to700℃and70,000rpm[J]. NASA/TM-1997-107405.
    94Dellacorte C. A New Foil Air Bearing Test Rig for Use to700℃and70,000rpm[J]. Tribology Transactions,1998,41(3):335-340.
    95Heshmat H. Operation of Foil Bearings Beyond the Bending Critical Mode[J].ASME Journal of Tribology,2000,122(1):192-198.
    96Howard S A, Dellacorte C, Valco M J, et al. Dynamic Stiffness and DampingCharacteristics of a High-Temperature Air Foil Journal Bearing[J]. TribologyTransactions,2001,44(4):657-663.
    97Howard S A, Dellacorte C, Valco M J, et al. Steady-State Stiffness of Foil AirJournal Bearings at Elevated Temperatures[J]. Tribology Transactions,2001,44(3):489-493.
    98Kim T H, Breedlove A W, Andrés L S. Characterization of a Foil BearingStructure at Increasing Temperatures: Static Load and Dynamic ForcePerformance[J]. ASME Journal of Tribology,2009,131(4):041703.1-041703.9.
    99Radil K, Howard S, Brian Dykas. The Role of Radial Clearance on thePerformance of Foil Air Bearings[J]. NASA/TM-2002-211705.
    100Radil K, Zeszotek M. An Experimental Investigation into the TemperatureProfile of a Compliant Foil Air Bearing[J]. NASA/TM-2004-213100.
    101Song J H, Kim D J. Foil Bearing with Compression Springs: Analyses andExperiments[C]. ASME Paper2006-IJTC-12160,2006.
    102Rubio D, Andrés L S. Bump-Type Foil Bearing Structural Stiffness:Experiments and Predictions[J]. Journal of Engineering for Gas Turbine andPower,2006,128(3):653-660.
    103Salehi M, Heshmat H, Walton II J F. Advancements in the Structural Stiffnessand Damping of a Larg Compliant Foil Journal Bearing: An ExperimentalStudy[J]. ASME Journal of Engineering for Gas Turbines and Power,2007,128(1):154-161.
    104Kumar M, Kim D J. Load Capacity Measurements of Hydrostatic Bump FoilBearing[C]. ASME Paper2009-GT-59286,2009.
    105Kumar M, Kim D J. Static Performance of Hydrostatic Air Bump FoilBearing[J]. Tribology International,2010,43(4):752-758.
    106Kim D J, Zimbru G. Start-Stop Characteristics and Thermal Behavior of aLarge Hybrid Airfoil Bearing for Aero-Propulsion Applications[J]. ASMEJournal of Engineering for Gas Turbines and Power,2012,134(3):032502.1-032502.9.
    107Wang Y P, Kim D J. Experimental Identification of Force Coefficients of LargeHybrid Air Foil Bearings[C]. ASME Paper2013-GT-95765,2013.
    108Conlon M J, Dadouche A, Dmochowski W M, et al. A Comparison of theSteady-State and Dynamic Performance of First-and Second-Generation FoilBearings[C]. ASME Paper2010-GT-23683,2010.
    109Andrés L S, Chirathadam A T. Metal Mesh Foil Bearing: Effect of MotionAmplitude, Rotor Speed, Static Load, and Excitation Frequency on ForceCoefficients[J]. ASME Journal of Engineering for Gas Turbines and Power,2011,133(12):122503.1-122503.10
    110Lee Y B, Kim C H, Kim T H, et al. Effects of Mesh Density on Static LoadPerformance of Metal Mesh Gas Foil Bearings[J]. ASME Journal ofEngineering for Gas Turbines and Power,2012,134(1):012502.1~012502.8.
    111Andrés L S, Chirathadam A T. A Metal Mesh Foil Bearing and a Bump-TypeFoil Bearing: Comparison of Performance for Two Similar Size GasBearings[C]. ASME Paper2012-GT-68437,2012.
    112Jáuregui J C, Andrés L S. Identification of Bearing Stiffness and DampingCoefficients Using Phase-Plane Diagrams[C]. ASME Paper2012-GT-69980,2012.
    113Andrés L S, Chirathadam T A. Performance Characteristics of Metal Mesh FoilBearings: Predictions VS. Measurements[C]. ASME Paper2013-GT-95975,2013.
    114Kim T H, Song J W, Lee Y B, et al. Thermal Performance Measurement of aBump Type Gas Foil Bearing Floating on a Hollow Shaft for IncreasingRotating Speeed and Static Load[J]. ASME Journal of Engineering for GasTurbines and Power,2012,134(2):024501.1-024501.5.
    115Heshmat M. Advancements in the Performance of Aerodynamic Foil JournalBearings: High Speed and Load Capacity[J]. Journal of Tribology,1994,116(2):287-295.
    116Salehi M, Heshmat H, Walton II J F, Tomaszewski M. Operation of aMesoscopic Gas Turbine Simulator at Speeds in Excess of700,000rpm on FoilBearings[J]. ASME Journal of Engineering for Gas Turbine and Power,2007,129(1):170-176.
    117Howard S A. Misalignment in Gas Foil Journal Bearings: An ExperimentalStudy[J]. ASME Journal of Engineering for Gas Turbine and Power,2009,131(2):022501.1-022501.7.
    118Kim T H, Andrés L S. Effects of Mechanical Preload on the Dynamic ForceResponse of Gas Foil Bearings: Measurements and Model Predictions[J].Tribology transactions,2009,52(4):569-580.
    119Sim K, Kwon S B, Kim T H, et al. Feasibility Study of an Oil-FreeTurbocharger Supported on Gas Foil Bearings via On-Road Tests of A2-LiterClass Diesel Vehicle[C]. ASME Paper2012-GT-69586,2012.
    120Chirathadam T A, Andrés L S. Measurements of Rotordynamic Response andTemperatures in A Rotor Supported on Metal Mesh Foil Bearings[C]. ASMEPaper2013-GT-94321,2013.
    121李树森,张鹏顺,曲全利.气体润滑轴承技术的应用及发展趋势[J].润滑与密封.1999,2:9-10.
    122陈雪梅,黎文兰.气体轴承技术及其应用[J].润滑与密封.2000,4:61-63.
    123刘永强,张栋.润滑技术的新进展和发展趋势[J].润滑与密封.2003,4:103-104.
    124靳兆文.气体润滑技术及其研究进展[J].通用机械.2007,3:57-60.
    125龚焕孙.波箔轴承中波箔刚度的计算[J].上海机械学院学报.1980,4:16-32.
    126张鸿兴,吴永祥.支承在波形箔带上的弹性圆壳动压气体轴承(I)[J].上海机械学院学报.1980,4:1-15.
    127贺金星.波箔轴承中的波箔总静刚度分析[J].上海机械学院学报.1983,1:55-60.
    128陈武伟,张鸿兴.推力波箔轴承的理论分析和试验研究[J].上海机械学院学报.1989,11(3):95-110.
    129龚焕孙,张鸿兴,周国明.径向波箔轴承的设计计算和试验研究-(I)理论分析[J].上海机械学院学报.1991,13(4):1-17.
    130龚焕孙,张鸿兴,张台维,周国明.径向波箔轴承的静态特性计算及试验[C].第五届全国摩擦学学术会议.武汉,1992:340-350.
    131王兆伍,许尚贤.径向波箔轴承的动特性和稳定性分析[J].东南大学学报.1995,25(6):98-102.
    132殷晨波,许尚贤.波箔轴承的动态刚度和阻尼分析[C].第六界全国摩擦学学术会议论文集(上册).1997:136-138.
    133熊联友,侯予,吴刚等.平箔式箔片径向气体轴承的理论研究[J].西安交通大学学报.1998,32(9):56-59.
    134刘井龙.透平膨胀机新型弹性支承箔片动压止推气体轴承的研究[D].西安交通大学硕士学位论文.2001:2-40.
    135熊联友,王瑾,刘井龙等.平箔式箔片止推气体轴承静特性的理论研究[J].润滑与密封.2002,2:2-3.
    136王恒.弹性支承箔片动压气体径向轴承在透平膨胀机上的应用研究[D].西安交通大学硕士学位论文.2002:8-16.
    137朱朝辉.新型弹性支承箔片动压气体止推轴承的性能研究[D].西安交通大学硕士学位论文.2003:12-79.
    138周权,候予,崔明现等.新型弹性箔片动压气体止推轴承的理论研究[J].西安交通大学学报.2006,40(9):1032-1035.
    139侯予,赵祥维,赵红利等.弹性支承箔片动压气体径向轴承理论模型的研究[J].润滑与密封.2008,33(6):1-5.
    140周权,陈汝刚,侯予.考虑摩擦的弹性支承箔片径向轴承的结构刚度分析[J].润滑与密封.2010,35(9):18-20.
    141虞烈.弹性箔片轴承的气弹润滑解[J].西安交通大学学报.2004,38(3):327-330.
    142虞烈,戚社苗和耿海鹏.弹性箔片空气动压轴承的完全气弹润滑解[J].中国科学E辑工程科学材料科学.2005,35(7):746-760.
    143戚社苗,耿海鹏,郭海刚等.弹性箔片动压气体推力轴承承载性能研究[J].润滑与密封.2006,5(5):1-4.
    144崔明现,侯予,王林忠等.结构刚度与阻尼对箔片轴承承载力的影响[J].润滑与密封.2005,5:169-172.
    145崔明现,侯予,王林忠等.波箔轴承结构刚度的计算[J].润滑与密封.2006,5(5):57-63.
    146王林忠,侯予,崔明现等.影响箔片结构阻尼的因素及箔片径向轴承结构形式的进展[J].润滑与密封.2006,1:139-142.
    147王林忠,侯予,崔明现等.箔片轴承结构阻尼的评价[J].西安交通大学学报.2006.40(1):40-44.
    148戚社苗,耿海鹏,虞烈.动压气体轴承性能计算方法研究[J].机械强度.2006,28(3):369-373.
    149苏兵,侯予,赵红利等.飞机空调系统采用动压气体轴承的性能分析[J].低温工程.2008,3:50-54.
    150田野,孙岩桦,杨利花等.箔片-电磁混合轴承的稳态承载特性及控制[J].摩擦学学报.2013,33(1):49-56.
    151李二圣,陈国定.动压径向波箔轴承静态承载性能研究[J].机械设计与制造.2007,4:16-18.
    152许怀锦,刘占生,张广辉等.波箔片气体动压径向轴承气膜压力分布特点[J].轴承.2008,6:23-27.
    153许怀锦,刘占生,吕伟剑等.气体润滑弹性波箔片轴承动态特性分析[J].航空动力学报.2011,26(5):1185-1193.
    154刘占生,许怀锦,张广辉等.箔片预变形对箔片气体径向轴承静特性影响分析[J].航空动力学报.2009,24(1):181-188.
    155黄宜森.涡轮发电机轴向箔片气动轴承的建模与数值分析研究[D].哈尔滨工业大学硕士学位论文.2009:10-54.
    156徐国庆.弹性波箔动压径向气体轴承的理论分析与实验设计[D].南京航空航天大学硕士学位论文.2008:8-58.
    157徐润.波箔型动压径向气体轴承的性能研究[D].南京航空航天大学硕士学位论文.2010:8-56.
    158刘思幸,马希直.基于弹性壳体模型的波箔型气体动压径向轴承动特性分析[J].润滑与密封.2010,35(1):17-21.
    159刘思幸,马希直.基于弹性壳体模型的波箔型动压气体径向轴承动特性分析[J].润滑与密封.2010,35(11):33-38.
    160刘文琰,夏新沛,陈巍等.波箔式空气轴承箔片支承结构分析的研究进展[J].润滑与密封.2011,36(10):102-114.
    161夏新沛,刘文琰,陈巍等.波箔式气体轴承气膜流场分析[J].润滑与密封.2011,36(9):77-81.
    162刘文琰.箔片结构对箔片气体轴承性能影响的分析[D].中国科学院工程热物理研究所硕士学位论文.2011:12-73.
    163夏新沛.箔片气体轴承流场及平箔片变形对轴承性能影响分析[D].中国科学院工程热物理研究所硕士学位论文.2011:9-68.
    164张鸿兴,程诗虎,张鸿兴等.支承在波形箔带上的弹性圆壳动压气体轴承(II)-摩擦功耗试验及其参数分析[J].上海机械学院学报.1982,1:29-44.
    165陈伟武,冯懿治.新型推力波箔轴承的研制和试验[J].机械设计与研究.1986,4:6-16.
    166熊联友,侯予,王瑾等.多功能止推气体轴承试验台及微机动态测试系统[J].润滑与密封.2000,4:50-51.
    167朱朝辉.新型弹性材料支承箔片动压气体止推轴承的性能研究[D].西安交通大学硕士学位论文.2003:39-69.
    168林韶宁,李军,朱朝辉等.新型弹性箔片动压气体止推轴承的试验研究[J].西安交通大学学报.2005,39(7):701-705.
    169杨利花,石建华,刘恒等.弹性箔片动压径向气体轴承动特性的实验研究[J].摩擦学学报.2006,26(4):353-357.
    170杨利花.可倾瓦和弹性箔片动压气体轴承的性能研究[D].西安交通大学博士学位论文.2009:87-106.
    171陈汝刚,周权,刘烨等.新型箔片动压止推气体轴承承载特性的试验研究[J].西安交通大学学报.2010.44(9):54-58.
    172周权,侯予,陈汝刚.应用于高速透平膨胀机的箔片动压气体止推轴承的试验研究[J].西安交通大学学报.2012.46(11):49-52.
    173彭万欢,郑越青,徐刚.空气动压箔片轴承启停性能的实验研究[J].润滑与密封.2011,36(7):52-55.
    174陈汝刚,周权,刘烨等.平箔片径向气体轴承的试验研究[J].西安交通大学学报.1999,33(3):60-63.
    175侯予,熊联友,王瑾等.透平膨胀机新型动压径向气体轴承的试验研究[J].低温工程.1999,4:231-235.
    176侯予,王瑾,熊联友等.逆布雷顿(Reverse-Brayton)循环空气制冷系统试验台的建立[J].低温工程.2000,2:7-12.
    177熊联友,吴刚,侯予等.使用箔片径向气体轴承的透平-逆布雷顿循环空气制冷机[J].低温工程.2000,3:19-22.
    178王恒,熊联友,侯予等.全动压气体轴承低温透平膨胀机的开发[J].低温工程.2002,2:8-10.
    179侯予,王瑾,熊联友等.高速透平气体轴承试验台的建立[J].润滑与密封.2003,5:17-19.
    180朱朝辉,姚艳霞,侯予等.新型动压箔片径向气体轴承低温透平膨胀机的开发[J].低温与特气.2003,21(2):28~31.
    181林韶宁,姚艳霞,王可等.小型透平逆布雷顿循环空气制冷机的研制[J].低温与超导.2004,32(2):1-4.
    182侯予,林韶宁,陈纯正等.全动压气体轴承透平膨胀机机械性能的试验研究[J].西安交通大学学报.2005,39(5):476-489.
    183陈汝刚,周权,侯予等.微小型高速透平膨胀机箔片径向动压气体轴承的研究[C].第九届全国气体润滑与干气密封学术交流会.2010,19-23.
    184徐春荣.镀MoS2的波箔轴承之试验分析[J].固体润滑.1987,8(4):37-41.
    185姚海,陈纯正,吴亦农.低温透平膨胀机动压气体轴承表明镀层的研究[J].低温与特气.1994,3:24-27.
    186侯予,朱朝辉,姚艳霞等.高速动压气体轴承箔片材料表面处理的探讨[J].润滑与密封.2003,4:13-15.
    187郑越青.箔片轴承固体润滑用类金刚石薄膜的设计、制造和性能研究[D].中国工程物理研究院硕士学位论文.2010:58-67.
    188孟玉堂,汤光平,魏齐龙等人.箔片空气轴承表面掺杂DLC膜的制备与表征[J].机械工程材料.2011,35(1):69-71.
    189Maurice Petyrt. Introduction to Finite Element Vibration Analysis (2edition)[M]. New York: Cambridge University Press,2010.
    190赵均海,汪梦普.弹性力学及有限元(第2版)[M].武汉:武汉理工大学出版社,2008.
    191Feldman Y, Kligerman Y, Etsion I, Haber S. The Validity of the ReynoldsEquation in Modeling Hydrostatic Effects in Gas Lubricated Textured ParallelSurfaces[J]. Journal of Tribology,2006,128(2):128-135.
    192谭述君.精细积分法的改进及其在动力学与控制中的应用[D].大连:大连理工大学工学博士学位论文,2009.
    193邹经湘,王本利,王世忠等.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700