用户名: 密码: 验证码:
电液伺服斜盘柱塞式液压变压器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,能源问题越来越引起人们的重视,在液压传动领域,如何提高液压系统的效率,降低能耗一直是人们研究的热点。恒压网络二次调节技术一方面可以使动力源工作在高效区,另一方面降低了液压系统的节流损失并且可以对负负载的能量进行回收再利用,因此极大的提高了整个液压系统的传动效率,有广阔的应用前景。基于恒压网络容积控制的二次调节静液传动技术只能应用在旋转负载情况下,当执行元件为直线负载时就必须用到液压变压器。集成式液压变压器将液压泵/马达功能集成于一体,结构紧凑、体积小,可以在恒压网络容积控制二次调节静液传动系统中无节流损失的控制液压执行元件,还可以回收负负载的能量,简化了液压系统的结构,提高了液压系统的效率,因此,对集成式液压变压器的研究具有重要的理论意义和实用价值。
     在查阅大量国内外相关文献的基础上,对目前国内外研究的液压变压器进行了分类,重点分析了集成式液压变压器的工作原理及其应用前景,阐述了国内外集成式液压变压器的应用与发展状况,提出了论文的主要研究内容。
     集成式液压变压器是一种新型的液压元件,首先对其变压原理进行了理论分析,基于理论分析设计了电液伺服摆动液压马达做为液压变压器的伺服驱动机构,设计了一种电液伺服摆动液压马达控制的斜盘柱塞式液压变压器,实现了液压变压器通过电液伺服摆动液压马达来进行变压比的控制,在主轴上设计配流油路实现液压变压器的配流。该电液伺服斜盘柱塞式液压变压器具有体积小,结构紧凑,动态响应快,变压过程理论上无节流损失,变压范围大等优点。
     本文基于剩余压紧力和剩余压紧力矩法对液压变压器的平面配流结构进行了优化设计,并采用遗传算法进行了求解。采用三角锥作为配流盘缓冲槽的结构形式,建立了过渡过程的压力缓冲数学模型并进行了MATLAB仿真,得到了最佳的缓冲槽结构参数,运用ADINA软件的流固耦合功能进行了配流盘缓冲槽的有限元分析,并对液压变压器的噪声进行了测量。
     建立了电液伺服斜盘柱塞式液压变压器瞬时流量特性、瞬时转矩特性的数学模型,从液压变压器的控制角为零的情况推广到控制角为全区间的情况,仿真结果表明液压变压器的流量脉动率、转矩脉动率在全区间范围内很大,并对不同柱塞数下的流量脉动率进行了对比研究。
     针对电液伺服斜盘柱塞式液压变压器压力控制的特点,对其控制策略进行了研究。建立了电液伺服斜盘柱塞式液压变压器的数学模型,采用模糊–PID双模控制策略进行压力控制,在小偏差时,采用PID控制,可以提高系统的稳定性和减小误差,在大偏差时,采用模糊控制,提高系统的快速性和智能性。基于理论分析和手动控制的经验,对模糊控制器进行了设计,在MATLAB/Simulink环境下搭建了仿真模型并进行了仿真研究。
     最后,设计制造了一台电液伺服斜盘柱塞式液压变压器,搭建了实验平台,基于C++Builder编写了测控软件,基于该实验系统对电液伺服斜盘柱塞式液压变压器进行了实验研究,对液压变压器的性能进行了测试,验证了理论分析和控制策略的正确性和有效性。
With the development of human society, the energy issue is becoming a hottopic. Researchers are focusing on how to improve the efficiency and reduce theenergy consumption in the field of hydraulic transmission. The secondary regulationtechnology can make the power source work around the high efficiency part,moreover, it could not only reduce the hydraulic system throttling losses but alsoreuse the negative energy load. Therefore, the secondary regulation technology cangreatly improve the transmission efficiency of the entire hydraulic system and have abroad application prospect. However, since the secondary regulation technology canonly be used for driving the rotating load, a new type hydraulic component(Hydraulic Transformer) is needed to control the linear load. The integrated hydraulictransformer combines the two functions of hydraulic pumps and motors functions inan element. The element has characteristics of compact structure and small volume. Itcan simplify the structure and improve the efficiency of the hydraulic system.Therefore, the research on the integrated hydraulic transformer is meaningful.
     Based on reading a large number of domestic and foreign literatures, the authormakes a classification of the current domestic and international research abouthydraulic transformers. And the author analyzes the works of the integrated hydraulictransformer and its application prospect, and expounds the application anddevelopment of domestic and international integrated hydraulic transformers. Besides,the key technology of the integrated hydraulic transformer is outlined and the mainresearch content is confirmed.
     The integrated hydraulic transformer is a new type of hydraulic components.Firstly, its transformer principle is analyzed in theory. Based on the theoreticalanalysis, the author designs the electro-hydraulic servo swing hydraulic motor as theservo drive mechanism. An electro-hydraulic servo swing hydraulic motorcontrolling the swash plate piston hydraulic transformer is designed. Overallinstitutions of electro-hydraulic servo swing hydraulic motor and hydraulictransformer are designed. The transformer ratio of the hydraulic transformer iscontrolled by the electro-hydraulic servo hydraulic motor. The advantages of thisdesign are small volume, compact structure, big transformer ration range, and fastdynamic response. Furthermore, the throttling loss is avoided theoretically.
     The optimal design about the hydraulic transformer plane is accomplished basedon the remaining compaction force and the remaining clamping torque. The geneticalgorithm is adopted for solving the optimal result. Because the flow transition process may not only occur in the upper or lower dead point, the phenomenon willlead to a flow pulsation. Therefore the buffer tank port plate of the hydraulictransformer is optimized. According to the characteristics of different buffer tankstructure, the eventual adoption of the triangle cones is used. as the structure of thevalve plate buffer tank The author constructs the model of the pressure buffer andmakes the simulation through MATLAB. As a result, the best structural parameters ofthe buffer tank are obtained. The flow distribution structure finite element offluid-structure interaction is analyzed by the ADINA. And the author makes the testof the noise lever of the hydraulic transformer.
     The traffic and torque characteristic analysis of the Electro-hydraulictransformer is the basis for the application of hydraulic transformers. Themathematical model, including the Electro-hydraulic transformer transient flowcharacteristics and the instantaneous torque characteristics, are deduced. The controlangle changes from zero to all areas. Simulation results show that the flow pulsation,torque ripple rate are large during the entire range. The author comparatively studiesthe multiple plungers of hydraulic transformer flow pulsation rate.
     Taking into account the nonlinear characteristic of the Electro-hydraulictransformer pressure control, the author studies its control strategy. A mathematicalmodel of the Electro-hydraulic transformer is constructed. The fuzzy-PID dual-modecontrol strategy for pressure control is designed. When the small deviations appear,the stability of the system can be improved by using the PID strategy and the error isreduced; when the large deviations appear, the system is made fast and intelligent byusing the fuzzy control. Based on the experience of theoretical analysis and manualtest, the author designs the fuzzy controller and builds a simulation model to studywith the software of MATLAB/Simulink.
     Finally, an Electro-hydraulic transformer which is the type of the swash plateaxial piston is designed, and the experimental platform is built. The control softwareis written by C++builder. On the experimental system of the hydraulic transformer,the author conducts experimental research. On the experimental platform, the authortests the performance of the hydraulic transformer and verifies the correctness andvalidity of the theoretical analysis and control strategy.
引文
[1]肖皓,谢锐,万毅.节能型技术进步与湖南省两型社会建设[J].科技进步与对策,2012,29(9):36-42.
    [2]杨大雄,王春梅,刘小霞.液压系统的节能减排[J].科技创新与应用,2012,3(3):87-87.
    [3] Rydberg K E. Design of Energy Efficient Hydraulic Systems-SystemConcepts and Control Aspects[C]. Proceedings of the Fifth InternationSymposium on Fluid Power Transmission and Control. Qinhuandao:ISFP’2007,2007:943-949.
    [4]张树忠,邓斌,柯坚.基于液压变压器的挖掘机动臂势能再生系统[J].中国机械工程,2010,21(10):1161-1166.
    [5] Zhang Jian, Luo Nianning, Jiang Jihai. Research Survey of Hydraullic HybridVehicles[J]. Hydromechatronics Engineering,2012,(6):67-79.
    [6] Wang Xin, Jiang Jihai. Optimization matching of wheel drive hydraulic hybridvehicle components based on adaptive simulated annealing geneticalgorithm[C]. Proceeding of the2009IEEE International Conference onMechatronics and Automation. Changchun:IEEE Computer Society,2009:962-1967.
    [7] Wang Xin, Shen Wei, Yu Ancai. Sliding Mode Rotation Speed Control onSecondary Regulation Hydraulic System[C]. International Conference onElectronic and Mechanical Engineering and Information Technology. Harbin:IEEE Computer Society,2011(2):1058-1061.
    [8] Zhao Lijun, He Rui, Li Guojun. Study on the Engine Start/Stop ControlStrategy of Hybrid Vehicles[C].2010International Conference onManufacturing Engineering and Automation Advanced Materials Research.Guangzhou:Trans Tech Publications,2010:1591-1596.
    [9] Wang Hui, Duan Shucheng. Coupling influence analysis on the secondaryregulation servo loading system of axial plunger pump/motor[C].2010International Conference on E-Product E-Service and E-Entertainmen.Henan: IEEE Computer Society,2010:1-3.
    [10] He Long, Kong Xiangdong, Gao Yingjie. Study on secondary regulation loadtest of drive axle based on DCS control system[C].20094th IEEE Conferenceon Industrial Electronics and Applications. Xi’an:IEEE Computer Society,2009:2729-2733.
    [11]吴嘉斌,乌建中,张大兵,等.基于二次调节技术的旋挖钻机节能研究[J].流体传动与控制,2012,1(1):22-26.
    [12]林述温,花海燕.1种挖掘机恒压网络二次调节液压系统及其能耗分析[J].中国工程机械学报,2009,7(1):52-57.
    [13] Yu Ancai, Jiang Jihai. Research on the Regenerative Braking Control Strategyfor Secondary Regulation Hydrostatic Transmission[C].2009IEEEInternational Conference on Mechatronics and Automation. Changchun:IEEEComputer Society,2009:4600-4604.
    [14]于安才,姜继海.液压混合动力挖掘机能量再生控制研究[J].哈尔滨工程大学学报,2012,33(1):91-95.
    [15]刘顺安,姚永明,尚涛等.基于二次调节技术的小型装载机全液压驱动系统[J].吉林大学学报(工学版),2011,41(3):665-669.
    [16] Zang Faye. Research on the Performance Simulation of the TransmissionSystem of Loader with Secondary Regulating Technique[C].3rd InternationalConference on Engineering and Technologies and Ceeusro. Changzhou:TransTech Publications Ltd,2010:(426-427):299-302.
    [17]王慧,孙野,郭纯梁,等.基于二次调节的采煤机截割部模拟加载系统特性分析[J].煤矿机械,2010,31(4):77-80.
    [18]王爱芳,刘秀莲,周平.二次调节静液传动技术在液压电梯系统中的节能应用[J].机床与液压,2008,36(4):86-88.
    [19] Wang Aifang, Liu Xiaochun, Zhou Ping. The Application in Hydraulic ElevatorSystem with the Secondary Element in the Network of HydrostaticTransmission with Secondary Regulation[C].2012International Conference onFrontiers of Advanced Materials and Engineering Technology. Xiamen:TransTech Publications,2012:(430-432):1460-1463.
    [20]臧发业.基于二次调节技术的立体车库提升系统性能仿真[J].农业机械学报,2005,36(6):82-85.
    [21]姜继海,卢红影,周瑞艳,等.液压恒压网络系统中液压变压器的发展历程[J].东南大学学报自然科学版,2006,36(5):869-874.
    [22]杨华勇,欧阳小平,徐兵.液压变压器的发展现状[J].机械工程学报,2003,39(5):1-5.
    [23] Achten P A J, Zhao Fu, Vael G E M. Transforming future hydraulics: a newdesign of a hydraulic transformer[C]. The Fifth Scandinavian InternationalConference on Fluid Power. Sweden:Link ping University,1997:1-23.
    [24]卢红影,姜继海.液压变压器四象限工作特性研究[J].哈尔滨工业大学学报,2009,41(1):62-66.
    [25] Xu Bing, Zhang Bin, Ouyang Xiaoping. The CPR System Adopting a NewHydraulic Transformer to Drive Loads and Its Design[C]. The SixthInternational Conference on Fluid Power Transmission and Control.Hangzhou:Chinese Mechaical Engineering Society,2005:100-104.
    [26] Achten P A J, Vael G E M, Zhao F. The Innas Hydraulic Transformer-The Keyto the Common Pressure Rail[R]. SAE Technical Paper2000-01-2561.
    [27]姜继海,于安才,于斌,等.基于CPR网络混合动力全液压挖掘机的液压系统[P].专利号:200910310301.3.
    [28]郑澈,单绍福,陈勇,等.液压增压器[P].专利号:200920239163.X.
    [29] Elton Bishop. Digital Hydraulic Transformer-Efficiency of Natural Design[C].7th International Fluid Power Conference. Aachen:Link ping University,2010(1):349-361.
    [30] Merrill K, Holland M, Batdorff M, et al. Comparative Study of DigitalHydraulics and Digital Electronics[J]. International Journal of Fluid Power,2010,11(3):45-51.
    [31] Tyler H P. Fluid Intersifier[P]. US Patent3188963,1965.
    [32] Dantlgraber, J rg, Robohm, et al. Hydraulischer Transformator mit zweiAxialkolbenmaschinen mit einer gemeinsamen Schwenkscheibe[P].EP0851121B1.1997,12.
    [33] Vael G E M, Achten P A J, Jeroen Potma.Cylinder Control With The FloatingCup Hydraulic Transformer[R]. The Eighth Scandinavian InternationalConference on Fluid Power. Tampere:2003:1-16.
    [34]馬衛東,池尾茂.油圧トランスフオーマを用いたシリンダ駆動系の省エネルギー效果[J].日本フルードパワーシステム学会論文集,2004,35(1):15-21.
    [35] Ma Weidong, Likeo Shigeru, Ito Kazuhisa. Position Control of HydraulicCylinder using Hydraulic Transformer[J]. Japan Society of MechanicalEngineers.2004,70(6):1758-1763.
    [36] Ma Weidong, Sento Y, Ikeo S. A Hydraulic Cylinder drive using Constantpressure system[C]. Proceedings Of The Fifth International Conference OnFluid Power Transmission And Control. Hangzhou:International AcademicPublishers Ltd,2001:1-4.
    [37]池尾茂,馬衛東.油圧トランスフオーマを用いたシリンダのロバスト位置制御[J].日本フルードパワーシステム学会論文集,2005,36(2):45-50.
    [38] Ho Triet Hung, Ahn Kyoung Kwan. A Study on the Position Control ofHydraulic Cylinder Driven by Hydraulic Transformer Using DisturbanceObserver[C].2008International Conference on Control、 Automation andSystems. Seoul:Inst. Of Elec. and Elec. Eng. Computer Society,2008:2634-2639.
    [39] Ho Triet Hung, Ahn Kyoung Kwan. Saving Energy Control of Cylinder DriveUsing Hydraulic Transformer Combined With An Asseisted HydraulicCircuit[C]. ICROS-SICE International Joint Conference2009. Fukuoka:IEEEComputer Society,2009:2115-2120.
    [40]董宏林.基于二次调节原理的液压提升装置节能及控制技术研究[D].哈尔滨工业大学机械电子工程学科博士学位论文,2002:61-83.
    [41] Jiang Jihai, Dong Honglin, Wu Shenglin. A New Structure of EnergyRecuperation in Secondary Controlled System[C]. Proceedings of the fourthInternational Symposium on Fluid Power Transmission and Control. Wuhan:China Fluid Power Transmission and Control Society,2003:587-590.
    [42]王頔.液压变压器在垂直负载中的应用研究[D].哈尔滨工业大学机械电子工程学科硕士学位论文,2008:19-34.
    [43]刘贺,徐兵,欧阳小平,等.采用液压变压器原理的液压电梯节能系统设计[J].中国机械工程,2003,(10):19-21.
    [44]张斌,徐兵,欧阳小平,等.液压变压器恒压网络实验台的设计[J].液压与气动.2004,(10):8-12.
    [45] Werndin R, Achten P A J, Sannelius M, et al. Efficiency Performance andcontrol of a hydraulic transformer[C]. The sixth Scandinavian InternationalConference on Fluid Power. Tampere:Tampere University of Technology,1999:395-407.
    [46] Achten P A J, Palmberg J O, Koskinen K T. What a Difference a HoleMakes-The Commercial Value of the Innas Hydraulic Transformer[C]. Thesixth Scandinavian International Conference on Fluid Power. Tampere:Tampere University of Technology,1999:873-886.
    [47] Achten P A J, Zhao Fu. Valving Land Phenomena of the Innas HydraulicTransformer[J]. International Journal of Fluid Power,2000,1(1):33-42.
    [48] Achten P A J, Vael G E M, Jeroen Potma, et al.‘Shuttle’ Technology for NoiseReduction and Efficiency Improvement of Hydrostatic Machines[C]. TheSeventh Scandinavian International Conference on Fluid Power. Link ping:Link ping University,2001:73-83.
    [49] Werndin R, Achten P A J, Sannelius M, et al. Efficiency Performance andcontrol aspects of a hydraulic transformer[C]. Sixth Scandinavian InternationalConference on Fluid Power. Tampere:Tampere University of Technology,1999:395-407.
    [50] Peter Achten,Titus van den Brink,Georges Vael. A Robust Hydrostatic ThrustBearing for Hydrostatic Machines.7th International Fluid Power Conference.Aachen:University of Parma,2010:1-19.
    [51] Werndin R, Palmerg J O. Controller design for a hydraulic transformer[C]. TheFifth International Conference on Fluid Power Transmission and Control.Hangzhou:International Academic Publishers Ltd,2001:56-61.
    [52] Sch ffer, Rudolf, Mark, et al. Hydrotransformator. DE10025248A1.2001,11.
    [53] Dantlgraber, J rg. Hydrotransformator. EP1178209A2.2001,4.
    [54] Dantlgraber, J rg. Hydrotransformator. DE10037114A1.2001,7.
    [55] Dantlgraber, J rg. Hydrotransformator. DE10016955A1.2001,10.
    [56] Dantlgraber J rg. Hydrotransformator. DE10016954A1.2001,11.
    [57] Sch ffer, Rudolf. Hydrotransformator. DE10034239A1.2002,4.
    [58] Dantlgraber J rg. Hydrotransformator. DE10033285A1.2002,2.
    [59] Sch ffer, Rudolf.Hydrotransformator. DE10216951A1.2003,11.
    [60] Mark, Alexander. Hydrotransformator. DE10220543A1.2003,11.
    [61]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用[J].农业机械学报,2003,34(4):100-104.
    [62]欧阳小平,徐兵,杨华勇.拓宽液压变压器调压范围的新方法[J].机械工程学报,2004,40(9):28-32.
    [63] Ouyang Xiaoping, Xu Bing, Yang Huayong. Key Technologies of theHydraulic Transformer's Design[C]. Proceedings of the2004the EleventhWorld Congress in Mechanism and Machine Science. Tianjin:China MachinePress,2004:399-403.
    [64] Ouyang XiaoPing, Yang HuaYong, Xu Bing. Research on the HydraulicTransformer with new Distribution Pairs[J]. Science in China, Series E:Technological Sciences,2008,51(4):435-442.
    [65] Ma Jien, Xu Bing, Ouyang XiaoPing, et al. The CFD Simulation Research OnHydraulic Transformer[C]. Proceedings of the6th JFPS InternationalSymposium on Fluid Power. Tsukuba:2005JFPS,2005:334-339.
    [66]欧阳小平,杨华勇,徐兵,等.新型配流副液压变压器研究[J].中国科学E辑技术科学,2008,38(1):95-102.
    [67]马吉恩,杨华勇,徐兵,等.液压变压器效率特性的测试与分析[J].浙江大学学报(工学版),2008,42(7):1231-1235.
    [68] Ma Jien, Xu Bing, Zhang Bin, et al. Research on Key Techniques of TheHydraulic Transformer[C]. International Conference on Frontiers of Designand Manufacturing. Guangzhou:2006(2):127-132.
    [69] Ma Jien, Xu Bing, Zhang Bin. Experiment Study on Working Performance ofHydraulic Transformer. Fifth International Symposium on Fluid PowerTransmission and Control. Beidaihe:2007:90-94.
    [70]徐兵,欧阳小平,杨华勇,等.液压变压器排量特性[J].机械工程学报,2006,42(5):89-92.
    [71]徐兵,马吉恩,杨华勇.液压变压器瞬时流量特性分析[J].机械工程学报.2007,43(11):44-49.
    [72]欧阳小平,徐兵,杨华勇,等.液压变压器输出压力特性研究[J].中国机械工程.2006,17(23):2492-2495.
    [73]卢红影.电控斜轴柱塞式液压变压器的理论分析与实验研究[D].哈尔滨工业大学机械电子工程学科博士学位论文,2008:15-39.
    [74]卢红影,姜继海,张维官等.基于液压恒压网络系统的液压变压器控制液压缸系统的研究[J].吉林大学学报工学版,2009,39(4):885-890.
    [75]卢红影,姜继海,王頔.基于模糊自适应PID控制策略的液压变压器驱动直线负载系统研究[J].机床与液压,2009,37(1):58-61.
    [76] Lu Hongying, Jiang Jihai. Theoretical Analysis and Simulation Study on theHydraulic Transformer in Hybrid Vehicle[C]. Proceedings of the InternationalConference on Mechanical Engineering and Mechanics2005. Nanjing:Science Press Beijing,2005(1-2):1532-1536.
    [77]胡纪滨,苑士华,魏超,等.斜轴式液压变压器及变压方法.专利号:200810226067.1.
    [78]胡纪滨,苑士华,荆崇波,等.增大变压比调节范围的液压变压器.专利号:200810183259.9.
    [79]刘顺安,陈延礼,刘佳琳,等.内开路式液压变压器及变压方法.专利号:200910067270.3.
    [80] Zang Faye. Assembly Simulation Research for Hydraulic Transformer withVirtual Manufacturing Technology[C]. International Technology andInnovation Conference2009. Xian:Institution of Engineering and Technology,2009:240-244.
    [81]董东双,邓洪超.基于AMESim和MATLAB/Simulink的液压变压器联合仿真研究[J].液压气动与密封,2009(6):45-48.
    [82]荆崇波,魏超,丁雪原,等.斜轴式液压变压器效率特性分析[J].农业机械学报,2009,40(12):237-241.
    [83] Li Xiaojin, Yuan Shihua, Hu Jibin, et al. Mathematical Model for Efficiencyof the Hydraulic Transformer[C].2009Asia-Pacific Power and EnergyEngineering Conference. Wuhan:Inst. of Elec. and Elec. Eng. ComputerSociety,2009(1-7):200-204.
    [84]李小金,苑士华,胡纪滨.球面配流副二位稳态压力场的数值求解方法研究[J].中国机械工程,2010,21(2):150-154.
    [85]胡纪滨,李小金,魏超.液压变压器变压比特性研究[J].北京理工大学学报,2010,30(2):166-169.
    [86]陈延礼,刘顺安,苗淼,等.液压变压器配流盘控制性能研究[J].机床与液压,2010,38(21),75-79.
    [87] Sch ffer, Rudolf. Hydrotransformator[P]. DE10034238A1.2002,1.
    [88] Sch ffer, Rudolf. Hydrotransformator[P]. DE10216951A1.2003,6.
    [89]臧发业.吴芷红.郑澈.伺服电机控制的双作用叶片式液压变压器.专利号:200910015197.5.2009.05.26.
    [90]臧发业.吴芷红.郑澈.液压缸控制的双作用叶片式液压变压器.专利号:200910015199.4.2009.05.26.
    [91]臧发业.戴汝泉,孔祥臻,等.单作用叶片式液压变压器[P].专利号:200910016300.8.
    [92] Achen, Peter, Augustinus, et al. Hydraulic System with a Hydromotor fed by aHydraulic Transformer[P]. WO98/54468,1998.5.
    [93] Sameer M, Prabhu, Clayton. Control System for a Hydraulic Transformer[P].US6360536B1.2002.5.
    [94] Vael G E M, Achten P A J. The Innas Fork Lift Truck-Working under constantPressure[R].Innas BV,1997.
    [95] Achten P A J, Vael G E M, Hubertus Murrenhoff, et al. Low-emissionHydraulic Hybrid for Passenger Cars[R]. Adelwitz Technologiezentrum GmbH,2009(111):1-9.
    [96] Vael G E M, Achten P A J. IHT Controlled Serial Hydraulic Hybrid PassengerCars[C].7th International Fluid Power Conference. Aachen:University ofParma,2010:393-405.
    [97]姜继海,于安才,沈伟.基于CPR网络的全液压混合动力挖掘机[J].液压与气动,2010,(9):44-48.
    [98] Wei Shen, Jihai Jiang. Analysis and Development of the Hydraulic SecondarRegulation System Based on the CPR[C]. International Conference on FluidPower and Mechatronics.Beijing:IEEE Computer Society,2011:117-122.
    [99]陈建利.基于虚拟样机的液压挖掘机能量回收策略研究与仿真[D].江苏大学机械电子工程硕士学位论文.2009:14-22.
    [100]张树忠,邓斌,曹树森,等.挖掘机LUDV液压系统的能量流研究[J].机械科学与技术,2010,29(1):94-99.
    [101]刘顺安,姚永明,尚涛,等.叉车负载势能回收的研究[J].四川大学学报(工程科学版),2011,43(3):214-218.
    [102]姚永明,刘顺安,尚涛,等.基于恒压液压系统的ZL50装载机节能技术[J].吉林大学学报(工学版),2011,41(1):117-121.
    [103] Chen Yanli, Liu Shunan, Shang Tao, et al. Research on Control Strategy forEnergy-saving Optimization Algorithm of the Hydraulic Hybrid Vehicle[C].2nd International Conference on Manufacturing Science and Engineering.Guilin:Advanced Materials Research,2011(201-203):2229-2237.
    [104]刘顺安,陈延礼,苗淼,等.基于恒压液压系统的ZL50装载机节能技术[J].湖南大学学报(自然科学版),2010,37(12):36-40.
    [105]姚永明.基于液压变压器的装载机节能研究[D].长春:吉林大学流体传动与电液伺服控制学科博士学位论文,2011:60-63.
    [106]董东双,邓洪超,马文星.多功能清雪车单泵多马达液压系统功率分配分析[J].农业工程学报,2010,26(7),140-146.
    [107]施虎,龚国芳,杨华勇.采用液压变压器的盾构推进节能系统设计[J].工程机械,2009,40(5):36-41.
    [108]马文杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1021-1025.
    [109]张敏辉,赖麟,孙连海.基于遗传算法的研究与Matlab代码的实现[J].四川教育学院学报,2012,28(1):115-117.
    [110]岳戈. ADINA流体与固体耦合功能的高级应用[M].人们交通出版社,2010:1-80.
    [111] Chen Yanhua, Su Youpo. Application of ADINA to Modeling ofFluid-Structure Interaction in Buried Liquid-Conveying Pipeline[C].2ndInternational Conference on Information and Computing Science.Manchester:IEEE Computer SOC,2009(4):288-291.
    [112] Peng Yufeng, Tien Duongduc, Zhao Chunju. Simulations of PipeWaterhammer in Nuclear Installation with Consideration of Fluid-StructureInteraction by ADINA[C].2nd International Conference on Modelling andSimulation. Manchester:IEEE Computer SOC,2009(2):224-228.
    [113] Wang Zhao, Zhou Zhijin, Lu Hao, et al. Coupling model analysis on fluidstructure interaction in lifting pipeling based on ADINA [C].3rd internationalConference on Manufacturing Science and Engineering. Xiamen:Trans TechPublications,2012(468-471):238-244.
    [114]杨国来,马宏远,宋寿鹏等.模糊PID双模控制的开炼机液压调距系统设计[J].液压与气动,2010,(9):40-43.
    [115]乔兴宏,吴必军,邓赞高等.模糊/PID双模控制在光伏发电MPPT中的应用[J].电力自动化设备,2008,28(10):92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700