用户名: 密码: 验证码:
高真空高洁净磁悬浮复合分子泵及其控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神光III是我国在建的激光惯性约束核聚变工程,其中终端光学组件作为惯性约束核聚变中激光光路传输的末端装置,承担着频率转换、谐波分离和光路聚焦等功能。其核心元件KDP晶体镜片工作环境必须为高洁净和超高真空的大型密闭容器,要求无油和无碳氢化合物等污染,且工作真空度<1×10-8Pa,极限真空度甚至要达到1×10-9Pa。为了满足神光Ⅲ终端光学组件模块高真空、高洁净环境的要求,研制了磁悬浮复合分子泵作为达到高真空、高洁净环境的主要装置,采用无物理接触和无需润滑的磁轴承系统,融合涡轮叶片结构和多螺旋槽牵引结构,实现了无油蒸汽返流以及无其它碳氢化合物污染,对额定工作转速高于其刚性临界转速、转子大转速范围内稳定性、高速运转时陀螺效应对系统稳定性的影响、结构模态和高阶挠性模态振动的抑制、系统基座振动等问题进行分析研究,设计了磁悬浮复合分子泵结构和及其控制器。磁悬浮复合分子泵系统的研制为神光Ⅲ工程实现达标奠定了坚实的基础。
     依据神光Ⅲ终端光学组件对高真空高洁净环境的要求,确定磁悬浮复合分子泵的技术参数,对其总体结构进行了设计和分析;根据涡轮叶片结构和多螺旋槽牵引结构的工作原理,分别设计多级涡轮叶片和多螺旋槽牵引的结构和参数;利用Fluent软件分别对设计的多级涡轮叶片和多螺旋槽牵引结构进行了流场流态分析,对抽气通道内的流动规律进行了数值模拟,重点分析了多螺旋槽结构参数与抽速的关系,仿真结果为其结构设计和优化提供基础。其结果证明在磁悬浮复合分子泵结构设计中结合流场数值模拟可以节约设计成本,成为今后其结构设计的主要方法。
     根据磁轴承系统工作原理对磁悬浮复合分子泵的径向和轴向磁轴承机械结构进行设计和改进;针对磁悬浮复合分子泵高转速、支撑刚度可变、陀螺效应较强的特点以及薄叶片的结构特征,建立磁悬浮复合分子泵磁轴承支撑叶片转子系统模型,通过有限元软件对叶片转子系统进行模态分析分析了叶片转子系统的模态频率和模态振型,对叶片转子系统高转速下出现频率分叉现象进行分析,为控制器设计提供了理论基础。
     以磁悬浮复合分子泵叶片转子系统为对象建立系统控制模型,并以此为研究对象进行分散PID控制器设计以满足转子稳定悬浮和正常运转;设计交叉反馈控制器对转子陀螺效应进行抑制,通过Matlab软件进行仿真分析验证控制器的有效性;为了避免激发转子结构模态和挠性高频模态的振动,设计陷波滤波器;为了顺利到达叶片转子额定工作转速,解决转子大范围不稳定和转子过刚性临界转速的问题,设计了变增益自适应控制器;为了抑制磁悬浮复合分子泵转子同频振动和基座振动,设计不平衡补偿控制器。
     利用设计的变增益自适应控制器和不平衡补偿控制器对磁悬浮复合分子泵系统依次进行了转子静态悬浮、陀螺效应抑制、不平衡补偿控制和高速旋转实验测试。实验结果表明磁悬浮复合分子泵系统在变增益自适应控制器和不平衡补偿控制器共同作用下,不仅能实现顺利超越转子刚性临界转速的要求,而且能够克服转子陀螺效应的影响和抑制转子挠性模态频率,大幅度降低了系统基座的振动,具有较强的自适应性和鲁棒性,额定工作转速可达24000rpm,额定工作转速下转子最大径向振动小于7.8μm,转子可在0~24000rpm转速范围内任何频率处稳定运转。验证了变增益自适应控制器和不平衡补偿控制器的有效性和实用性,验证了磁悬浮复合分子泵转子系统机械结构设计和模态分析的有效性和实用性,积累了磁悬浮复合分子泵转子系统设计、调试和运行的经验。磁悬浮复合分子泵系统转子转速、转子振动和稳定性等性能指标已经能够基本满足神光Ⅲ终端光学组件模块高真空、高洁净环境对其的要求,整体性能居于国内领先水平。
Shenguang III is a large engineering project under construction for laser-driveninertial confinement fusion (ICF), of which end optical components are used as theend equipment in laser path to perform functions, such as transforming frequency,separating harmonic and laser focusing etc. The critical component is crystal KDPlens which must work in closed vessel of high clean and vacuum with no oil andhydrocarbon. The normal requirement of vacuum degree is less than1×10-8Pa, evenbelow1×10-9Pa. In order to meet the strict requirement of high vacuum and clean,magnetically suspended compound molecule pump is studied in this dissertation.Turbine blade, multi-spiral groove traction structure and magnetic bearing systemwhich has such advantages as non-contact and no lubrication, are adopted to avoidthe pollution of oil and hydrocarbon. Additionally, the rigid critical speed higherthan normal work speed, the stability of wide rotational speed of rotator, the systemstability of gyroscopic effect in high speed, structural-mode and the suppression ofhigh order of torsion vibration mode, the vibration of system base andelectromagnetic noise are analyzed respectively. At last, the magnetically suspendedcompound molecule pump and its controller are developed, which lay a solidfoundation for the success of Shenguang III project.
     Based on the requirement of high vacuum for end optical component inShenguang III, the parameter of the magnetically suspended compound moleculepump is determined and the whole analysis is performed for overall structure. Thearguments of multilevel turbine blade and multispiral groove are designedindividually based on the mechanism of turbine blade and multispiral groove. Theflow pattern analysis of flow field is performed for multilevel turbine blade andmultispiral groove in Fluent software. The numerical simulation of flow law isanalyzed for bleed-off passage. The relationship between the geometrical parameterof multispiral groove traction structure and the performance of air exhaust is alsoanalyzed. These simulated results provide a foundation for designing and optimizingstructure. The magnetically suspended compound molecule pump with thesimulation of flow field is demonstrated to cut the price, which becomes asignificant approach for the design of structure.
     Based on the mechanism of magnetic bearing, the radial and axial magneticbearing physical construction of the magnetically suspended compound moleculepump is designed and improved. Based on the magnetically suspended compoundmolecule pump characteristics of the high speed, metabolic support stiffness andgyroscopic effect and infinitely thin blade, the blade rotor systematic model of the magnetically suspended compound molecule pump is established, which issupported by magnetic bearing. The modal analysis is performed for blade rotorusing the finite element software, thus the modal frequency and modal shape isobtained. Additionally, the phenomenon of frequency bifurcation of blade rotor inhigh speed is analyzed. These will provide a theoretical foundation for the design forcontroller.
     To control the magnetically suspended compound molecule pump blade rotor,discrete PID controller is investigated to meet the levitation stability and normalrotation for rigid rotor. The constraint of gyro effect is analyzed based on crossfeedback controller and the validity of the controller is demonstrated based on thesimulation using Matlab software. In order to avoid the vibration of structure modaland bending resistance high frequency mode, the notching filter is developed.Variable gain adaptive controller is designed to solve the problem of wideinsatiability of rotor and critical speed of superabundant stiffness for the normalrotational speed of blade rotor. Under the control toward vibration of samefrequency and support of magnetic levitation compound molecule pump andelectromagnetic noise, the non equilibrium compensation controller is developed.
     To verify the feasibilty and correctness of designed variable-gain adaptivecontroller and imbalance compensating controller, experiments including rotor staticsuspension, the constraint of gyroscopic effect, the compensation of control forimbalance, and high speed rotation are carried out. The result shows that themagnetically suspended compound molecule pump system can not only satisfyingthe requirement of surpassing the rigid critical speed of rotor, but also can overcomeinfluence of gyroscopic effect of rotor and restrain the flexible modal frequency ofrotor. At the same time the blade rotor of the magnetically suspended compoundmolecule pump can rotate around its principle inertia axis, thus the pedestalvibration and electromagnetic noise of the system can be decreased. The controlsystem can have great self-adaptability and robustness. The maximum radialvibration of the rotor is less than10μm on the rated speed which can achieve24000rpm. The rotor can rotate steadily on any frequency in the speed range of0~24000rpm. The experiment verified the validity and practicability of variable-gainadaptive controller and imbalance compensating controller, and verified indirectlythe validity and practicability of the magnetically suspended compound moleculepump system’s mechanical structure design and modal analysis. The experimentaccumulated the experience of design, test and operate for the magneticallysuspended compound molecule pump system. The performance of rotor speed, rotorvibration and stability of the magnetically suspended compound molecule pump isable to satisfy the circumstance of high vacuum and clean for the end opticalcomponent module in shenguang III. And the overall performance of this pump is in the domestic leading level.
引文
[1] Tekle E, Wilson R, Paik T. CAD Model and Visual Assisted Control Systemfor NIF Target Positioners[J]. Operational Tools,2007(07):293-295.
    [2]华中一.真空技术基础[M].北京:科学技术出版社,1958.
    [3]达道安.真空设计手册[M].北京:国防工业出版社,1991.
    [4]王欲知,陈旭.真空技术(第二版)[M].北京:北京航空航天大学出版社,2007.
    [5]杨乃恒.干式真空泵的原理、特征及其应用[J].真空,2000(3):1-9.
    [6]姜燮昌.真空泵市场量大面广[J].化工设备与腐蚀,2001(4):21-22.
    [7]杨乃恒,巴德纯,等.有害气体的抽除与清洁真空的获得[J].真空,2004(4):15-20.
    [8]贺成玉.真空设备图形化控制界面研究[D].合肥:合肥工业大学硕士学位论文,2008:43-46.
    [9]李泽宇,李连生.涡旋式真空泵的发展回顾[J].通用机械,2010(1):87-90.
    [10]巴德纯,王晓冬,刘坤,等.现代涡轮分子泵的发展[J].真空,2010,47(4):1-6.
    [11]杨乃恒,巴德纯,王晓冬,等.如何选择和使用涡轮分子泵[J].真空,2010,47(2):1-6.
    [12]刘坤,巴德纯,杨乃恒,等.高真空直排大气干泵的最新进展[J].真空科学与技术学报,2008,28(1):21-25.
    [13]张春元,许忠旭.大型清洁超高真空获得初探[J].航天器环境工程,2002,19(1):59-62.
    [14] Myounggyu D, Seong-Rak C, Jin-Ho K, et al. Design and Implementation of aFault-Tolerant Magnetic Bearing System for Turbo-Molecular VacuumPump[J]. IEEE/ASME Transactions on Mechatronics,2005,10(6):626-631.
    [15] Kaoru W, Takashi I, Motoo Y, et al. Development of the Radiation-hardenedMagnetically Suspended Compound Molecular Pump[C].4th Vacuum andSurface Science Conference of Asia and Australia,Japan,2009,84(5):699-704.
    [16]王彦涛.分子泵磁轴承的模态识别与试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [17] Fanchun H, Pinghung L, Daren L, et al. Pumping performance analysis onturbomolecular pump[J]. Vacuum,2012,86(7):830-832.
    [18]杨乃恒,巴德纯.分子泵的世纪回顾与展望[J].真空,2001,(2):1-14.
    [19] Torras C, Pallaresb J, Garcia-Vallsa R, et al. Numerical simulation of the flowin a rotating disk filtration module[J]. Desalination,2009,235:122-138.
    [20] Hablanian M. Engineering aspects of turbomolecular pump design[J].Vacuum,2008,82:61-65.
    [21] Choumoff P. Vacuum science and technology: From Holweck to VenusExpress[J]. Vacuum,2007,81:721-726.
    [22] Bhatti J, Aijazi M, Khan A. Design characteristics of molecular drag pumps[J].Vacuum,2001,60:213-219.
    [23]浙江飞旋科技有限公司.一种外转子结构的磁轴承涡轮真空分子泵:中国,CN200710301430.7[P].2008-5-21.
    [24]浙江飞旋科技有限公司.一种调整磁悬浮真空分子泵转子动平衡的方法:中国, CN200710301429.4[P].2008-5-28.
    [25]北京中科科仪技术发展有限责任公司,清华大学.一种磁悬浮分子泵系统:中国, CN201020696084.4[P].2011-7-27.
    [26]北京中科科仪技术发展有限责任公司,清华大学.一种获取磁悬浮分子泵转子悬浮中心的控制方法:中国, CN201110405727.4[P].2012-4-25.
    [27] Schweitzer G, Bleuler H, Traxler A. Active Magnetic Bearings—Basics,Propertes and Application of Active Magnetic Bearings[M]. ETH,Switzerland,1994.
    [28] Dussaux M. The Industrial Applications of the Active Magnetic BearingsTechnology[C]. Proceedings of the2nd International Symposium on MagneticBearings,University of Tokyo,Tokyo,1990:33-38.
    [29] Field R J, Lannello V. A Reliable Magnetic System for Turbomachinery[C].Proceedings of the6th International Symposium on Magnetic Bearings,MIT,Cambridge,1998:42-51.
    [30] Kimiyo S, Satoshi F, Masaru M. Development and Test of Model Apparatus ofNon-Contact Spin Processor for Photo Mask Production Applying Radial-TypeSuperconducting Magnetic Bearing[J]. Physica C-Superconductivity and ItsApplications,2013,484:321-324.
    [31] Roman K, Krzysztof K, Aleksandra K B. Amorphous Soft Magnetic Materialsfor the Stator of a Novel High-Speed PMBLDC Motor[J]. IEEE Transactionson Magnetics,2013,49(4):1367-1371.
    [32] Zixu Z, Qiyuan P, Songbai C. Notes on Holographic Superconductor Modelswith the Nonlinear Electrodynamics[J]. Nuclear Physics,2013,871(1):98-110.
    [33] Yunus K, Ahmet C, Irfan Y. Driving Mechanism of a SuperconductingMagnetic Bearing System[J]. Journal of Superconductivity and NovelMagnetism,2013,26(4):1233-1239.
    [34] Virginie K, Bruno D. Dynamical Electromechanical Model for MagneticBearings Subject to Eddy Currents[J]. IEEE Transactions on Magnetics2013,49(4):1444-1452.
    [35] Bangcheng H, Shiqiang Z, Xiaofei H. Dynamic Factor Models of a ThrustMagnetic Bearing With Permanent Magnet Bias and Subsidiary Air Gap[J].IEEE Transactions on Magnetics,2013,49(3):1221-1230.
    [36] Bassani, Roberto. Magnetoelastic Stability of Magnetic Axial Bearings[J].Tribology Letters,2013,49(2):397-401.
    [37] Vanschoor G, Niemann A C, Durand C P. Evaluation of DemodulationAlgorithms for Robust Self-Sensing Active Magnetic Bearings[J]. Sensors andActuators A-Physical,2013,189:441-450.
    [38] Yuan R, Jiancheng F. Current-Sensing Resistor Design to Include CurrentDerivative in PWM H-Bridge Unipolar Switching Power Amplifiers forMagnetic Bearings[J]. IEEE Transactions on Industrial Electronics,2012,59(12):4590-4600.
    [39] Tong W, Jiancheng F. A Feedback Linearization Control for the Nonlinear5-DOF Flywheel Suspended by the Permanent Magnet Biased HybridMagnetic Bearings[J]. Acta Astronautica,2012,79:131-139.
    [40] Kejian J, Changsheng Z, Ming T. A Uniform Control Method for ImbalanceCompensation and Automation Balancing in Active Magnetic Bearing-RotorSystems[J]. Journal of Dynamic Systems Measurement and ControlTransactions of the ASME,2012,134(2):021006.
    [41] Hui G, Longxiang X, Yili Z. Unbalance Vibratory DisplacementCompensation for Active Magnetic Bearings[J]. Chinese Journal ofMechanical Engineering,2013,26(1):95-103.
    [42] Adam C W, Jerzy T S, Alexander H P. Rotor Model Updating and Validationfor an Active Magnetic Bearing Based High-Speed Machining Spindle[J].Journal of Engineering for Gas Turbines and Power-Transactions of theAsme,2012,134(12):122509.
    [43] Jiqiang T, Jinji S, Jiancheng F, et al. Low Eddy Loss Axial Hybrid MagneticBearing with Gimballing Control Ability for Momentum Flywheel[J]. Journalof Magnetism and Magnetic Materials,2013,329:153-164.
    [44] Jiqiang T, Jiancheng F, Wen T. Superconducting Magnetic Bearings andActive Magnetic Bearings in Attitude Control and Energy Storage Flywheelfor Spacecraft[J]. IEEE Transactions on Applied Superconductivity,2012,22(6):5702109.
    [45] Jiqiang T, Jiancheng F, Shuzhi G. Roles of Superconducting MagneticBearings and Active Magnetic Bearings in Attitude Control and EnergyStorage Flywheel[J]. Physica C-Superconductivity and its Applications,2012,483:178-185.
    [46] Kumbernuss J, Chen J, Junhua W, et al. A Novel Magnetic Levitated BearingSystem for Vertical Axis Wind Turbines[C]. International Conference onApplied Energy on Energy Solutions for a Sustainable World,Singapore,2012,90(1):148-153.
    [47] Weijun Y, Xianyi Q. Stability of Wind Power Turbine's Magnetic Bearing[C].International Conference on Mechanical Engineering and Intelligent Systems,Beijing,2012,195-196:47-51.
    [48] Ryan V M, KuoChi L, Jihua G. Testbed for a Wind Turbine with MagneticBearing[C].1st International Conference on Energy and EnvironmentalProtection,Hohhot,2012,512-515:657-660.
    [49] Simon E M, Zongli L, Paul E A. Design, Construction, and Modeling of aFlexible Rotor Active Magnetic Bearing Test Rig[J]. IEEE/ASMETransactions On Mechatronics,2012,17(6):1170-1182.
    [50] Lei S, Suyuan Y, Guojun Y. Technical Design and Principle Test of ActiveMagnetic Bearings for the Turbine Compressor of HTR-10GT[J]. NuclearEngineering and Design,2012,251:38-46.
    [51]赵鸿宾.高技术的结晶—磁轴承[J].国际学术动态,1990,6:86-89.
    [52] Kai Z, Lei Z, Hongbin Z. Research on Control of Flywheel Suspended byAMBs with Significant Gyroscopic Effects[J]. Chinese Journal of MechanicalEngineering,2004,17(1):63-66.
    [53]张剀.磁悬浮动量轮系统研究[D].北京:清华大学博士学位论文,2004.
    [54]谷会东.磁轴承-挠性转子系统研究[D].北京:清华大学博士学位论文,2005.
    [55]白清顺.磁悬浮轴承控制系统设计及实验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2000.
    [56]赵雷.可控磁悬浮轴承—转子系统的理论与实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1996.
    [57]谭峰,段广仁,孙德波.单自由度磁浮陀螺寻北仪的控制及分析[J].中国惯性技术学报,2005,13(4):1-6.
    [58]邢涛.电磁轴承磨床系统控制方法及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2005.
    [59]李国栋.磁悬浮飞轮系统复合控制方法及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [60] Xiaoming Z, Wanqing T. Overview of Development Plans for MagneticBearing Control System[C].3rd International Conference on DigitalManufacturing and Automation,Guangxi,2012,190-191:1157-1161.
    [61] Zhuravlyov Y N. On LQ-Control of Magnetic Bearing[J]. IEEE TransactionOn Control Systems Technology,2000,8(2):344-350.
    [62] Pilat A. Feedback Linearization Control of AMB System[C]. Proceedings ofthe8th International Symposium on Magnetic Bearings,Japan,2002:465-470.
    [63] Hoshik K, Sangyong O, Ohseop S. H-infinity Control of a Rotor-magneticBearing System Based on Linear Matrix Inequalities[J]. Journal of Vibrationand Control,2011,17(2):291-300.
    [64] Hui G, Longxiang X. Real-time Feed-forward Force Compensation for ActiveMagnetic Bearings System Based on H infinity Controller[J]. Chinese Journalof Mechanical Engineering,2011,24(1):58-66.
    [65] Lee D H, Park J B, Joo Y H, et al. Robust H-infinity Control for UncertainNonlinear Active Magnetic Bearing Systems via Takagi-Sugeno FuzzyModels[J]. International Journal of Control Automation and Systems,2010,8(3):636-646.
    [66] Nair S S, Vaidyan M V, Joy M L. Generalized Design and DisturbanceAnalysis of Robust H infinity Control of Active Magnetic Bearings[C].IEEE/ASME International Conference on Advanced Intelligent MechatronicsSingapore:IEEE,2009:1117-1122.
    [67] Sch nhoff U, Luo J, Li G, et al. Implementation Results of Μ-SynthesisControl for an Energy Storage Flywheel Test Rig[C]. Proceedings of the7thInternational Symposium on Magnetic Bearings,Zürich,Switzerland,2000:317-322.
    [68] Yanli Y, Zhenxing Z. Sliding Mode Variable Structure Control of ActiveMagnetic Bearings Using Boundary Layer Approach[C]. InternationalConference on Precision Engineering and Non-Traditional Maching,Xian,2012,411:213-217
    [69] Sung H C, Park J B, Joo Y H, et al. Robust Digital Implementation of FuzzyControl for Uncertain Systems and Its Application to Active Magnetic BearingSystem[J]. International Journal of Control Automation and Systems,2012,10(3):603-612.
    [70] Picheng T, Mongtao T, Kuanyu C, et al. Design of Model-Based UnbalanceCompensator with Fuzzy Gain Tuning Mechanism for an Active MagneticBearing System[J]. Expert Systems with Applications,2011,38(10):12861-12868.
    [71] Mongtao T, Picheng T, Kuanyu C. Experimental Evaluations of ProportionalIntegral Derivative Type Fuzzy Controllers with Parameter Adaptive Methodsfor an Active Magnetic Bearing System[J]. Expert Systems,2011,28(1):5-18.
    [72] Lee D H, Park J B, Joo Y H, et al. Robust H-Infinity Control for UncertainNonlinear Active Magnetic Bearing Systems Via Takagi-Sugeno FuzzyModels[J]. International Journal of Control Automation and Systems,2010,8(3):636-646.
    [73] Nagi F H, InayatHussain J I, Ahmed S K. Fuzzy Bang-Bang Relay Control of aSingle-Axis Active Magnetic Bearing System[J]. Simulation ModellingPractice and Theory,2009,17(10):1734-1747.
    [74] Syuanyi C, Faajeng L. Decentralized PID Neural Network Control for FiveDegree-Of-Freedom Active Magnetic Bearing[J]. Engineering Applications ofArtificial Intelligence,2013,26(3):962-973.
    [75] Faajeng L, Syuanyi C. Tracking Control of Thrust Active Magnetic BearingSystem Via Hermite Polynomial-Based Recurrent Neural Network[J]. IetElectric Power Applications,2010,4(9):701-714.
    [76] Huannkeng C, Chaoting C, YongTang J. Fuzzy Control with Fuzzy BasisFunction Neural Network in Magnetic Bearing System[C].21st IEEEInternational Symposium on Industrial Electronics,Hangzhou,2012:846-851.
    [77]田希晖,房建成,刘刚.一种磁悬浮飞轮增益预调交叉反馈控制方法[J].北京航空航天大学学报,2006,32(11):1299-1302.
    [78]张剀,赵雷,赵鸿宾.磁悬浮飞轮低阶变增益鲁棒控制器设计[J].机械工程学报,2005,41(9):198-201.
    [79]韩辅君,房建成,刘刚.磁悬浮飞轮磁轴承系统变增益H∞控制器设计[J].系统工程与电子技术,2008,30(9):1748-1751.
    [80]李文忠.高速转子系统振动控制技术评述[J].机械强度,2005,27(1):44-49.
    [81]杨静,虞烈.电磁轴承过临界转速的非线性极点配置[J].轴承,2002,11:1-4.
    [82]张剀,赵雷,赵鸿宾.磁悬浮飞轮控制系统设计中LOR方法的应用研究[J].机械工程学报,2004,40(2):127-131.
    [83] Beat A,Matthias K,Jurjen Z,et al. Model Based Decoupling Control of a DiscRotor Active Magnetic Bearings[C]. Proceedings of the7th InternationalSymposium on Magnetic Bearings. ETH Zurich,Switzerland,2000:245-250.
    [84] Sivrioglus S. Gain-Scheduled H Infinity Control of Active Magnetic BearingSystem with Gyroscopic Effect[J]. Transactions of the Japan Society ofMechanical Engineer,1997,63(610):1940-1947.
    [85] Sivrioglus S,Nongame K. Sliding Mode Control with Time-Varying HyperPlane for AMB Systems[J]. IEEE Trans Mech,1998,3(1):51-59.
    [86] Ahrens M,kucera L. Cross Feedback Control of a Magnetic Bearing SystemController Design Considering Gyroscopic Effects[C].3rd Int Symp MagneticSuspension Technol. Pennsylvania,USA,1995:177-194.
    [87]董淑成,房建成,俞文伯.基于PID控制的主动磁轴承-飞轮转子系统运动稳定性研究[J].宇航学报,2005,26(3):296-300.
    [88]俞文伯,桑胜,房建成. CMG磁悬浮转子系统的模型与控制律[J].航空学报,2006,24(6):541-545.
    [89]田希晖,房建成,刘刚.一种磁悬浮飞轮增益预调交叉反馈控制方法[J].北京航空航天大学学报,2006,32(11):1300-1303.
    [90] Fan Y H,Fang J C. Experimental Research on the Notational Stability ofMagnetically Suspended Momentum Wheel in Control Moment Gyroscope[C].Proceedings of the9th International Symposium on Magnetic Bearings,Lexington,Kentucky,2004:116.
    [91] Markus A,Ladislav K,Rene L. Performance of a Magnetically SuspendedFlywheel Energy Storage Device[J]. IEEE Transactions on Control SystemsTechnology,1996,4(5):494-502.
    [92] Yasushi H,Masao I,Norio S,et al. Development of Magnetic BearingMomentum Wheel for Ultra-Precision Spacecraft Attitude Control[C].Proceedings of the7th International Symposium on Magnetic Bearings,ETHZurich,Switzerland,2000:525-530.
    [93]张削,赵雷,赵鸿宾.电磁力超前控制在磁悬浮飞轮中的应用[J].机械工程学报,2004,40(7):175-179.
    [94] Kuseyri, Sina I. Robust Control and Unbalance Compensation of Rotor/ActiveMagnetic Bearing Systems[J]. Journal of Vibration and Control,2012,18(6):817-832.
    [95] Wookjin L,Seungseok O,Dalho C. Rotor Unbalance Compensation withoutAngular Position Sensor for Active Magnetic Bearing[C].8th InternationalConference on Power Electronics,Korea,2011:2446-2449.
    [96] Nonami K,Fan Q.Unbalance Vibration Control of Magnetic Bearing SystemsUsing Adaptive Algorithm with Disturbance Frequency Estimation[C].6thInternational Symposium on Magnetic Bearings,Cambridge,1998,63:1148-1154.
    [97] Ahmed J,Bernstein D.Adaptive Force Balancing of an Unbalanced Rotor[C].38th Conference On Decision&Control,USA,1999,1:773-778.
    [98] Shi J,Zoomd R,Qin L J,et al.The Direct Method for Adaptive Feed-ForwardVibration Control of Magnetic Bearing Systems[C]. Seventh InternationalConference on Control,Automation,Robotics and Vision,Singapore,2002,2:675-680.
    [99]张德魁,江伟,赵鸿宾.磁悬浮轴承系统不平衡振动控制的方法[J].清华大学学报:自然科学版,2000,40(10):28-31.
    [100]孙岩桦,罗崛,虞烈.基于自适应陷波器的电磁轴承不平衡补偿方法[J].振动工程学报,2002,13(4):610-614.
    [101] Herzog R, Conrad G, Rene L. Unbalance Compensation Using GeneralizedNoted Filters in the Multivariable Feedback of Magnetic Bearings[J]. IEEETrans on Control Systems Technology,1996,4(5):580-586.
    [102] Dekui Z, Wei J, Hongbin Z,et al. Unbalance Vibration Control Methods forActive Magnetic Bearings System[J]. J. Tsinghua Univ.: Sci.&Tech.,2000,40(10):28-31.
    [103] Shijing H, Lichang L. Fuzzy Dynamic Output Feedback Control with AdaptiveRotor Imbalance Compensation for Magnetic Bearing Systems[C]. IEEETransactions on Systems,Man and Cybernetics,Cybernetics,2004,34(4):1854-1864.
    [104] Hector G,Pablo S M.Unbalance Compensation for Active Magnetic BearingUsing ILC[C].2001IEEE International Conference on Control Applications,Mexico,2001:58-63.
    [105] Arias-montiel M,Silva-navarro G. Finite Element Modeling and UnbalanceCompensation for a Two Disks Asymmetrical Rotor System[C].20085thInternational Conference on Electrical Engineering,Computing Science andAutomatic Control,Mexico City,2008:386-391.
    [106] Tamisier V, Font S, Lacou M, et al. Attenuation of Vibrations Due toUnbalance of an Active Magnetic Bearings Milling Electro-Spindle[J]. CIRPAnnals Manufacturing Technology,2001,50(1):255-258.
    [107] Abdetfatah M. Application of Discrete Time Gain-Scheduled QParameterization Controllers to MB System with Imbalance[C]. AmericanControl Conference,San Diego,Califorrnia,1999,1:598-602.
    [108] Keogh P,Cole M,Sahinkaya N,et al.On the Control of SynchronousVibration in Rotor/Magnetic Bearing Systems Involving Auxiliary BearingContact[C]. ASME Turbo Expo2002Amsterdam,Netherlands,2002,4:599-606.
    [109]北京航空航天大学.一种磁悬浮反作用飞轮开环高精度不平衡振动控制系统:中国, CN200710098561.X[P].2007-4-20.
    [110]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2010:21-27.
    [111] Joong-Sik H, Young-Kyu H. Performance Characteristics of Single StageDisk-Type Drag Pump[J]. Vacuum,2002,20(5):1621-1630.
    [112]董帝渤.无油真空机组的设计[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011.
    [113] Versluis R, Dorsman R, Thielen L, et al. Numerical Investigation ofTurbomolecular Pumps Using the Direct Simulation Monte Carlo Method withMoving Surfaces[J]. Journal of Vacuum Science&Technology,2009,27(3):543-547.
    [114] Sheng W, Hisashi N, Elia M, et al. Numerical Study of a Single Blade Row inTurbomolecular Pump[J]. Vacuum,2009,83(8):1106-1117.
    [115]徐成海.真空工程技术[M].北京:化学工业出版社,2006.
    [116] Birda G A. Effect of Inlet Guide Vanes and Sharp Blades on the Performanceof a Turbomolecular Pump[J]. Vacuum,2011,29(1):1-6.
    [117] Xusheng Z, Zhiquan D, Bo W, et al. Structure and Finite Element Analysis fora Permanent Magnet Bias Axial Magnetic Bearing[C]. InternationalConference on Manufacturing Science and Technology,Singapore,2012,383-390:4803-4809.
    [118] Weiyu Z, Wei P, Zebin Y, et al. Finite Element Method Analysis and DigitalControl for Radial AC Hybrid Magnetic Bearings[J]. Advanced ScienceLetters,2011,4(8-10):2869-2874.
    [119] Guoqing W, Weinan Z, Jingling Z. Finite Element Analysis of Radial BearingMagnetic Field[C]. International Conference on Engineering Design andOptimization,Ningbo,China,2011,37-38:486-490.
    [120] Giors S, Campagna, L. New Spiral Molecular Drag Stage Design for HighCompression Ratio, Compact Turbomolecular-Drag Pumps[C].56th AnnualMeeting of the American-Vacuum-Society,San Jose,2009,28(4):931-936.
    [121] Weifeng W, Shuo S, Quanke F. A Numerical Contour Method for SimulatingSpiral Groove Bottom Profiles[J]. Journal of Mechanical Design,2012,134(2):024501.
    [122] RongYuan J, HongPing C, YuWen C, et al. Designs Analysis and Tests of aSpiral-Grooved Turbo Booster Pump[J]. Vacuum,2000,18(3):1016-1024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700