用户名: 密码: 验证码:
纳米薄膜光催化剂的制备及光催化降解农药产物或其中间体的电化学检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农药的生产和使用量逐年增加,含农药的废水的排放量也越来越大。农药废水成分复杂,毒性高,因而很难处理。在能源紧缺的今天,开发高效、低耗的农药废水处理技术具有重要意义。近年来,光催化技术在有机废水处理领域中得到了广泛的研究,然而由于光催化剂量子效率低、催化活性不高等瓶颈问题,该技术应用到实际废水处理中还具有一定的困难。为了解决这一问题,本论文尝试通过贵金属沉积的方法对TiO_2纳米管膜进行改性以获得更高的光催化效率;此外还研究了纳米多孔Ta_2O_5薄膜这一钽基氮氧化物的前驱物的制备方法和性质,为后续可见光光催化剂的研究打基础。
     在关注农药母体对环境影响的同时,也应给予降解产物或中间体足够的重视,因为这些产物或中间体同样有可能具有高毒性或高风险。在农药降解或农药生产过程中,通常伴随有产物或中间体的排放,例如磷酸盐即是有机磷农药的降解产物之一,其对环境的危害同样不可忽视;另外,被广泛用于合成除草剂、灭菌剂等农药的肼,对环境亦有危害。目前,对于磷酸盐和肼的检测方法多为光度法或发光法,尽管这些方法准确度较高,但易受到水体颜色、浊度等因素的干扰。电化学分析技术操作简单、测试灵敏、速度快,但在以往的研究中,均存在一定的问题,或采用的电极不够稳定,使用寿命短;或测试条件比较苛刻,易产生二次污染;或电极的制备过程比较复杂等等。因此,肼和磷酸盐的测定方法还需进一步改进。本文拟以更灵敏、更稳定的电极为研究对象,开展肼和磷酸盐的电化学检测方法研究。围绕以上两个方面,本论文主要开展研究内容如下:
     (1)采用阳极氧化法制备TiO_2纳米管薄膜光催化剂,并对其进行Au-Pd共修饰,以有机磷农药马拉硫磷为探针考察Au-Pd沉积对光催化剂活性的影响。结果显示,光还原法修饰Au,Pd后,TiO_2纳米管薄膜形貌基本没有变化,XRD等表征分析证实了Au-Pd以富金型合金形式存在。光催化实验结果表明,Au-Pd共修饰TiO_2纳米管膜(Au-Pd-TiO_2)光催化活性明显高于未经修饰的TiO_2纳米管,反应速率常数提高1.72倍,单位级数能耗显著降低。催化活性的提高主要归因于Au-Pd的沉积改性:一方面,光生电子可以快速转移至Au-Pd上,从而抑制光生电荷载流子的复合;另一方面,电子在Au-Pd的催化作用下更易与氧分子反应生成超氧自由基阴离子(O_2)和过氧化氢(H_2O_2)。由此,光生空穴寿命得以延长,进而更有效地参与氧化反应。过氧化氢产率实验也表明,Au-Pd共修饰后,H_2O_2产率提高了1.89倍,这一结果说明还原反应也得到了加强。
     (2)采用阳极氧化法在有机-无机混合电解质中制备多孔Ta_2O_5纳米薄膜,考察了制备条件对薄膜形貌的影响,并利用SEM、XRD等手段进行了表征。结果显示,在阳极氧化过程中,水/磷酸含量及氟离子含量是至关重要的两个参数。较高的水或磷酸含量有利于钽金属的阳极氧化反应,得到的Ta_2O_5薄膜呈现致密的、板结片状形貌。当水含量降低后,如采用水含量为10%的乙二醇为电解质溶液,同时提高氟化铵含量至3%,则此时制备的Ta_2O_5薄膜呈多孔状,均匀分布,孔径30-50nm,孔道相互交错,深度150-200nm,薄膜与基底接触紧密而牢固,适合用于进一步改性,就表面积而言,远优于板结片状Ta_2O_5薄膜。煅烧处理后,Ta_2O_5薄膜由无定型转化为正交斜方晶系,在短波紫外光区的吸收性能显著提高。
     (3)采用电化学聚合法对玻碳电极进行了聚孔雀绿(PMG)修饰。研究表明,PMG与玻碳电极之间接触良好,电化学反应过程主要受电子传递动力学控制。溶液中磷酸盐与钼酸铵反应生成电活性物质磷钼酸,在PMG修饰电极表面的电化学反应主要受扩散控制,这是采用伏安法检测磷酸盐的理论基础。PMG修饰后,大大拓展了伏安法检测磷酸盐的线性范围,其中差分脉冲伏安法(DPV)检测线性范围为0.05-10.0mg·L-1,超过标准光度法10倍以上。另外,与未修饰的玻碳电极相比,磷酸盐的检测限显著降低,达到国家标准光度法水平(0.01mg·L-1)。PMG修饰电极伏安法(尤其是DPV法)在检测低浓度磷酸盐方面与标准方法相当,但在检测范围方面远远优于光度法,这主要是源于导电聚合膜PMG在电荷传递、离子传输和催化能力等方面的优良特性。
     (4)以BDD为电极,研究高电位下硫酸肼的电化学行为,同时采用伏安法对其进行检测。结果表明,硫酸肼在BDD电极上可以被直接氧化,反应过程受扩散控制,整个氧化过程中转移电子数为4。电化学阻抗研究表明,BDD电极氧化硫酸肼的电荷传递电阻显著小于析氧反应。加入硫酸肼后电荷传递电阻由200kΩ降低至300Ω,降低约3个数量级。DPV法检测硫酸肼的测量信号分别在低浓度区段(0.002-0.1mM)和高浓度区段(0.1-4.0mM)与相应硫酸肼浓度呈现良好的线性关系,但不同区段灵敏度不同。在低浓度区段BDD电极对硫酸肼响应更灵敏,每mmol可产生55.75μA的响应值,而高浓度区段响应值降低为33.50μA。当硫酸肼浓度超过4.0mM后,响应值偏离线性。另外,平行实验结果表明该方法重复性较好。
The pesticide wastewater is more difficult to remove from wastewater due to its hugeamount, complex components, and high toxicity. In view of energy shortage, the investigationof an efficient, low energy consumped pesticide wastewater treatment technology issignificantly important. In recent years, photocatalytic technology has been studied widely inthe field of organic wastewater treatment. However, owing to its low quantum efficiency andphotocatalytic activity, this technology has not been applied in practice. Therefore, we havedeveloped an approach to enhanced the photocatalytic efficiency of TiO_2nanotube membraneby depositing noble metal on the surface of the TiO_2nanotube membrane. Besides, we haveinvestigated the fabrication of nano-porous Ta_2O_5films which can be used as a precursor forpreparation of nitrogen oxide tantalum.
     It is well known that the degradation products or intermediates are also important asmuch as the parent compound of pesticide due to their high toxicity or high risk. For example,phosphate is one of the products when organic phosphorus pesticides degrade. Phosphate willbe harmful if the content in water reaches a certain level. Hydrazine is another hazardouschemical that can be used as a raw material for the herbicide or fungicide production. Atpresent, there are some methods to detect phosphate and hydrazine such as spectrophotometryand luminescence measurement. Although these methods are normally accurate, they arevulnerable to water color, turbidity, and other factors. Electrochemical analysis possessesmany advantages including simple operation, sensitive test, fast speed, and so on. However, inthe previous works, there were still some problems in practic application, such as bad stability,short service life, harsh testing conditions and complex processes for preparing electrodes.Therefore, the other purpose of this work is to explore a more sensitive and stable electrode inorder to determine hydrazine and phosphate in aqueous solution. The main content is asfollows:
     (1) We have prepared a TiO_2nanotube film by anodic oxidation, and then modified itwith Au-Pd bimetal. The effect of the bimetal deposition on photocatalytic activity wasinvestigated using malathion, an organic phosphorus pesticide, as a probe. The experimentalresults suggest that the morphology of TiO_2nanotube film modified with Au-Pd (gold richalloy) by the photoreduction method is similar with that of original TiO_2nanotube film. Thephotocatalytic experiments indicate that the catalytic activity of the Au-Pd modified TiO_2nanotube membrane (Au-Pd-TiO_2) is significantly higher than that of the naked TiO_2nanotube, and the reaction rate increases by1.72times. The energy consumption per order isreduced remarkably. The improvement of catalytic activity is mainly attributed to the deposition of Au-Pd alloy. On one hand, the photogenerated electrons can be rapidlytransferred to the Au-Pd, thereby inhibiting the photogenerated charge carriers recombination;on the other hand, the electrons on Au-Pd can be trapped readily because molecular oxygencan form superoxide radical anions (O_2) and hydrogen peroxide (H_2O_2). Thus, the life ofphotogenerated hole is prolonged, which is of great benefit to the oxidation reaction. Thereduction reaction can also be improved due to the fact that the yield of H_2O_2increased by1.89times after depositing Au-Pd bimetal.
     (2) We have also prepared nano-porous Ta_2O_5films by anodic oxidation inorganic-inorganic hybrid electrolytes. The influences of preparation conditions on the filmgrowth were investigated using SEM, XRD, etc. The results demonstrate that water/phosphatecontent and fluorine ion content are two essential parameters in anodic oxidation processes.Ta_2O_5film exhibites a dense, lamellar morphology at a higher water or phosphate content.When the water content is decreased, i.e.10%water with the rest of ethylene glycol as theelectrolyte solution (3%ammonium fluoride), nano-porous Ta_2O_5films appeare uniformly.The pores interlace each other with an average diameter of30-50nm and a depth of150-200nm. The film is contacted with the substrate closely and firmly. Undoubtedly, owing its highsurface area, the nano-porous Ta_2O_5film will be far superior to a dense, lamellar film. Aftercalcination, amorphous Ta_2O_5can be crystallized orthorhombic crystal system. The absorptionin the short wave ultraviolet light region is improved greatly.
     (3) Poly-malachite green (PMG) was electrochemically polymerized on a glassy carbonelectrode. The results indicate that PMG is well contacted with the glassy carbon electrode,and the reaction between them is controlled by electron transfer kinetics. On the surface ofPMG modified electrode, the redox of phosphomolybdic acid, a electroactive substanceformed by phosphate and ammonium molybdate, is mainly controlled by mass transfer, whichis the theoretical basis of the voltammetric detection of phosphate. The linear range for thevoltammetric detection of phosphate is greatly expanded due to PMG modification. The linearrange of the method for differential pulse voltammetry (DPV) is0.05-10.0mg·L-1, which ismore than10times wider than that for the standard photometric method. In addition,compared with that of the bare glassy carbon electrode, the detection limit of PMG modifiedelectrode is lower and reach the national standard photometric level (0.01mg·L-1). Thevoltammetric detection of phosphate (especially DPV) using PMG modified electrode canprovide a lower detection limit and a wider linear range, which is mainly derived fromexcellent characteristics of the conductive polymerized film PMG, such as charge transfer, iontransport, and catalytic ability.
     (4) The electrochemical behavior of hydrazine sulfate was investigated on a boron dopeddiamond (BDD) electrode under a high potential. At the same time, the voltammetricdetection of hydrazine sulfate was also carried out. The results demonstrate that hydrazine sulfate can be directly oxidized on the BDD electrode. The reation is controlled by the masstransfer process. The number of electrons involved in the reation is four. Electrochemicalimpedance studies indicate that the charge transfer resistance of hydrazine oxidation issubstantially smaller than that of oxygen evolution. The charge transfer resistance can bedecreased from200kΩ to300Ω (about3orders) by adding hydrazine sulfate into solutionsunder the same conditions. The linear range for DPV detection of hydrazine sulfate is dividedto two sections,0.002-0.1mM and0.1-4.0mM, while the sensitivity in different segments isnot same. The BDD electrode is more sensitive to hydrazine when its concentration is lowerthan0.1mM. One mmol of hydrazine could produce55.75μA signal current. The currentdecreases to33.50μA in the range of0.1-4.0mM. The reponse value deviates from the linearwhen hydrazine sulfate concentration exceed4mM. In addition, the parallel experimentresults confirme that this method could be well repeated.
引文
[1]辛明远.我国农药发展现状与微生物农药的应用前景[J].现代化农业,2009,11:5-9.
    [2]王献忠.我国农药生产和使用现状及其展望[J].科技信息,2011,13:777.
    [3]桥彩山,王中伟,衫关故等.我国农药废水的处理现状及发展趋势[J].环境科学与管理,2006,31(7):111-114.
    [4]胡大波,刘福强,凌盼盼等.农药废水的处理技术进展与展望[J].环境科技,2009,22(5):63-66.
    [5] Zhang Y, Pagilla K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fentonoxidation[J]. Desalination,2010,263:36-44.
    [6]董欣,康健.农药废水高级氧化处理技术的研究现状及发展[J].中国新技术新产品,2009,6:6.
    [7] Lafi W K, Al-Qodah Z. Combined advanced oxidation and biological treatment processes for theremoval of pesticides from aqueous solutions[J]. Journal of Hazardous Materials,2006,137:489–497.
    [8] Liu L, Zhao G, Pang Y, et al. Integrated biological and electrochemical oxidation treatment for hightoxicity pesticide pollutant[J]. Ind Eng Chem Res,2010,49:5496–5503.
    [9] Chen S, Sun D, Chung J. Treatment of pesticide wastewater by moving-bed biofilm reactor combinedwith Fenton-coagulation pretreatment[J]. Journal of Hazardous Materials,2007,144:577–584.
    [10]叶蓓蓉,姚日生,边侠玲.农药生产废水处理技术与研究进展[J].工业用水与废水,2009,40(4):23-26.
    [11] Badawy M I, Ghaly Montaser Y, Gad-Allah Tarek A. Advanced oxidation processes for the removal oforganophosphorus pesticides from wastewater[J]. Desalination,2006,194:166-175.
    [12]丁飞,周元祥,崔康平.电催化氧化法处理有机农药废水[J].环境科学与管理,2010,35(10):60-63.
    [13] Devipriya S, Yesodharan S. Photocatalytic degradation of pesticide contaminants in water [J]. SolarEnergy Materials and Solar Cells,2005,86:309-348.
    [14] Kralj M B, ernigoj U, Franko M, et al. Comparison of photocatalysis and photolysis of malathion,isomalathion, malaoxon, and commercial malathion products and toxicity studies[J]. Water Res,2007,41:4504-4514.
    [15]舒启溢,邱俊明,张玉英.光催化氧化降解处理有机废水研究进展[J].广东化工,2010,37(4):126-127.
    [16] Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment I: oxidationtechnologies at ambient conditions[J]. Advances in Environmental Research,2004,8:501–551.
    [17] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductorphotocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [18]付贤智,李旦振.提高多相光催化氧化过程效率的新途径[J].福州大学学报(自然科学版),2001,29(6):104-114.
    [19]王积森,冯忠彬,孙金全等.纳米TiO2的光催化机理及其影响因素分析[J].微纳电子技术,2008,45(1):28-32.
    [20]张文彬,谢利群,白元峰.纳米TiO2光催化机理及改性研究进展[J].化工科技,2005,13(6):52-57.
    [21]郭建平,刘祖武,郭军等.纳米TiO2光催化氧化机理及研究进展[J].天津化工,2003,17(4):1-3.
    [22]赵毅,许勇毅,赵莉等.纳米级TiO2光催化氧化机理及其在污染治理中的应用[J].电力环境保护,2005,21(4):43-47.
    [23] Kim Y S, Linh L T, Park E S, et al. Antibacterial performance of TiO2ultrafine nanopowdersynthesized by a chemical vapor condensation method: effect of synthesis temperature and precursor vaporconcentration[J]. Powder Technology,2012,215-216:195-199.
    [24] Wu F, Li X, Wang Z, et al. Preparation of TiO2nanosheets and Li4Ti5O12anode material from naturalilmenite[J]. Powder Technology,2012,213:192-198.
    [25] Xue L, Juan P, Joo-Hee K,et al. One step route to the fabrication of arrays of TiO2nanobowls via acomplementary block copolymer templating and sol–gel process[J]. Soft Matter,2008,4:515-521.
    [26] Troitskaia I B, Gavrilova T A, Atuchin V V. Structure and micromorphology of titanium dioxidenanoporous microspheres formed in water solution[J]. Physics Procedia,2012,23:65-68.
    [27] Song C, Yu W, Zhao B, et al. Efficient fabrication and photocatalytic properties of TiO2hollowspheres[J]. Catalysis Communications,2009,10:650-654.
    [28] Gao M, Wang X, Guo M, et al. Contrast on COD photo-degradation in coking wastewater catalyzedby TiO2and TiO2–TiO2nanorod arrays[J]. Catalysis Today,2011,174:79–87.
    [29] Zhu H, Tao J, Wang T, et al. Growth of branched rutile TiO2nanorod arrays on F-doped tin oxidesubstrate[J]. Applied Surface Science,2011,257:10494–10498.
    [30] Lei M, Zhang Y B, Fu X L, et al. Solvothermal route to novel TiO2capped ZnS nanowires[J].Materials Letters,2011,65:3577–3579.
    [31] Sun M, Fu W, Yang H, et al. One-step synthesis of coaxial Ag/TiO2nanowire arrays on transparentconducting substrates: Enhanced electron collection in dye-sensitized solar cells[J]. ElectrochemistryCommunications,2011,13:1324–1327.
    [32] Wang N, Li X, Wang Y, et al. Evaluation of bias potential enhanced photocatalytic degradation of4-chlorophenol with TiO2nanotube fabricated by anodic oxidation method[J]. Chemical EngineeringJournal,2009,146:30-35.
    [33] Tang X, Li D. Fabrication, geometry, and mechanical properties of highly ordered TiO2nanotubulararrays[J]. J Phys Chem C,2009,113:7107–7113.
    [34] Ji Y, Lin K, Zheng H, et al. Fabrication of double-walled TiO2nanotubes with bamboo morphologyvia one-step alternating voltage anodization[J]. Electrochemistry Communications,2011,13:1013–1015.
    [35] Pan H, Qian J, Yu A, et al. TiO2wedgy nanotubes array flims for photovoltaic enhancement[J].Applied Surface Science,2011,257:5059–5063.
    [36]付川,陈书鸿,傅杨武等. Fe(III)掺杂对TiO2光催化活性的影响机理[J].重庆大学学报(自然科学版),2005,28(8):96-99.
    [37] Dai K, Peng T, Chen H, et al. Photocatalytic degradation of commercial phoxim over La-doped TiO2nanoparticles in aqueous suspension[J]. Environ Sci Technol,2009,43:1540–1545.
    [38]岳林海,水淼,徐铸德等.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报(理学版),2000,27(1):69-74.
    [39]崔玉民,张文保,苗慧等.稀土修饰TiO2光催化降解甲基橙反应机理[J].哈尔滨工业大学学报,2009,41(10):229-232.
    [40] Iwasaki M, Hara M, Kawada H, et al. Cobalt ion-doped TiO2photocatalyst response to visible light[J].Journal of Colloid and Interface Science,2000,224:202–204.
    [41]吴树新,马智,秦永宁等.掺杂纳米TiO2光催化性能的研究[J].物理化学学报,2004,20(2):138-143.
    [42]蒋晶晶,龙明策,吴德勇等.氟改性纳米TiO2的制备及其光催化降解甲基橙机理[J].物理化学学报,2011,27(5):1149-1156.
    [43]王韵芳,孙彦平. Si掺杂TiO2光催化材料的制备、活性及其机理[J].硅酸盐学报,2011,39(2):204-209.
    [44] Mekprasart W, Pecharapa W. Synthesis and characterization of nitrogen-doped TiO2and itsphotocatalytic activity enhancement under visible light[J]. Energy Procedia,2011,9:509-514.
    [45] Muruganandham M, Kusumoto Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS asa visible light-responsive photocatalyst[J]. J Phys Chem, C2009,113:16144–16150.
    [46] Chen D, Jiang Z, Geng J, et al. A facile method to synthesize nitrogen and fluorine co-doped TiO2nanoparticles by pyrolysis of (NH4)2TiF6[J]. J Nanopart Res,2009,11:303–313.
    [47]魏凤玉,倪良锁.硼硫共掺杂TiO2的光催化性能及掺杂机理[J].催化学报,2007,28(10):905-909.
    [48] Wanga P, Yap P, Lim T. C–N–S tridoped TiO2for photocatalytic degradation of tetracycline undervisible-light irradiation[J]. Applied Catalysis A: General,2011,399:252-261.
    [49] Zhang L, Li L, Mou Z, et al. Study on microstructure and catalytic performance of B, C, N co-doppedTiO2[J]. Procedia Engineering,2012,27:552-556.
    [50] Ma Y, Zhang J, Tian B, et al. Synthesis and characterization of thermally stable Sm,N co-doped TiO2with highly visible light activity[J]. Journal of Hazardous Materials,2010,182:386-393.
    [51] Stergiopoulos T, Ghicov A, Likodimos V, et al. Dye-sensitized solar cells based on thick highlyordered TiO2nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media[J].Nanotechnology,2008,19:235602.
    [52] Suzuki A, Kobayashi K, Oku T, et al. Fabrication and characterization of porphyrin dye-sensitizedsolar cells[J]. Materials Chemistry and Physics,2011,129:236-241.
    [53] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2and CdS/TiO2heterojunctions as an availableconfiguration for photocatalytic degradation of organic pollutant[J]. Journal of Photochemistry andPhotobiology A,2004,163(3):569-580.
    [54] Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior ofTiO2capped SnO2nanocrystallites[J]. The Journal of Physical Chemistry,1995,99(22):9182-9188.
    [55] Higashimoto S, Sakiyama M, Azuma M. Photoelectrochemical properties of hybrid WO3/TiO2electrode. Effect of structures of WO3on charge separation behavior[J]. The Solid Films,2006,503(1-2):201-206.
    [56] Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2andWO3/TiO2films and their photocatalytic properties[J]. Chemistry of Materials,2001,13(7):2349-2355.
    [57] MarcìG, Augugliaro V, López-Mu oz M J, et al. Preparation characterization and photocatalyticactivity of polycrystalline ZnO/TiO2systems.2. Surface, bulk characterization, and4-Nitrophenolphotodegradation in liquid-solid regime[J]. Journal of Physical Chemistry B,2001,105(5):1033-1040.
    [58] Lee M K, Shih T H. High photocatalytic activity of heterojunction of zinc selenide grown onnanoscaled titanium oxide[J]. Journal of The Electrochemical Society,2008,155(4): K63-K65.
    [59] Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2andZnMn2O4/TiO2heterojunctions[J]. Catalysis Today,2005,101(3-4):315-321.
    [60] Kim S K, Chang H, Cho K, et al. Enhanced photocatalytic property of nanoporous TiO2/SiO2micro-particles prepared by aerosol assisted co-assembly of nanoparticles[J]. Materials Letters,2011,65:3330-3332.
    [61] Hu Y, Li D, Zheng Y, et al. BiVO4/TiO2nanocrystalline heterostructure: A wide spectrum responsivephotocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Applied Catalysis B:Environmental,2011,104(1–2):30-36.
    [62] Zhao H, Fu W, Yang H, et al. Synthesis and characterization of TiO2/Fe2O3core–shellnanocomposition film and their photoelectrochemical property[J]. Applied Surface Science,2011,257:8778-8783.
    [63] Brahimi R, Bessekhouad Y, Bouguelia A, et al. CuAlO2/TiO2heterojunction applied to visible light H2production[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,186:242–247.
    [64] Deng F, Li Y, Luo X, et al. Preparation of conductive polypyrrole/TiO2nanocomposite via surfacemolecular imprinting technique and its photocatalytic activity under simulated solar light irradiation[J].Colloids and Surfaces A: Physicochem Eng Aspects,2012,395:183-189.
    [65] XU S, Jiang L, Yang H, et al. Structure and Photocatalytic Activity of Polythiophene/TiO2CompositeParticles Prepared by Photoinduced Polymerization[J]. Chinese Journal of Catalysis,2011,32(4):536-545.
    [66] Ma L, Chen A, Zhang Z, et al. In-situ fabrication of CNT/TiO2interpenetrating network film on nickelsubstrate by chemical vapour deposition and application in photoassisted water electrolysis[J]. CatalysisCommunications,2012,21:27-31.
    [67] Xu Z, Long Y, Kang S, et al. Application of the Composite of TiO2Nanoparticles and CarbonNanotubes to the Photo-Reduction of Cr(VI) in Water[J]. Journal of Dispersion Science and Technology2008,29:1150-1152.
    [68] Lv X, Zhang G, Fu W. Highly efficient hydrogen evolution using TiO2graphene compositephotocatalysts[J]. Procedia Engineering,2012,27:570-576.
    [69] Huang B, Yang Y, Chen X, et al. Preparation and characterization of CdS–TiO2nanoparticlessupported on multi-walled carbon nanotubes[J]. Catalysis Communications,2010,11:844-847.
    [70]李粉玲.贵金属沉积对TiO2薄膜光催化活性的影响[J].天津化工,2006,20(4):25-26.
    [71] Chen Zi, Hu Y, Liu T, et al. Mesoporous TiO2thin films embedded with Au nanoparticles for theenhancement of the photocatalytic properties[J]. Thin Solid Films,2009,517:4998-5000.
    [72] Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution overCu-, Pd-, and Au-loaded mesoporous TiO2photocatalysts[J]. Catalysis Communications,2005,6:661-668.
    [73] Bavykina D V, LapkinAlexei A, Plucinski P K, et al. Deposition of Pt, Pd, Ru and Au on the surfacesof titanate nanotubes[J]. Topics in Catalysis,2006,39(3-4):151-159.
    [74] Ishihara T, Hata Y, Nomura Y, et al. Pd–Au Bimetal Supported on Rutile–TiO2for Selective Synthesisof Hydrogen Peroxide by Oxidation of H2with O2under Atmospheric Pressure[J]. Chemistry Letters,2007,36(7):878-879.
    [75] Zhang F, Chen J, Zhang X, et al. Simple and low-cost preparation method for highly dispersed PdTiO2catalysts[J]. Catalysis Today,2004,93–95:645–650.
    [76] Mohapatra S K, Kondamudi N, Banerjee S, et al. Functionalization of self-organized TiO2nanotubeswith pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination[J]. Langmuir,2008,24:11276-11281.
    [77] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metaldeposition: characterisation and photonic efficiency of Pt, Au and Pd depositedon TiO2catalyst[J]. WaterRes,2004,38:3001–3008.
    [78] Colindres S C, Garcia J R V, Antonio J A T, et al. Preparation of platinum-iridium nanoparticles ontitania nanotubes by MOCVD and their catalytic evaluation[J]. Journal of Alloys and Compounds,2009,483(1-2):406-409.
    [79] Chan S C, BarteauMark A. Preparation of highly uniform Ag/TiO2and Au/TiO2supportednanoparticle catalysts by photodeposition[J]. Langmuir,2005,21:5588-5595.
    [80] Paramasivam I, Macak J M, Ghicov A, et al. Enhanced photochromism of Ag loaded self-organizedTiO2nanotube layers[J]. Chem Phys Lett,2007,445:233–237.
    [81] Rupa A V, Divakar D, Sivakumar T. Titania and noble metals deposited titania catalysts in thephotodegradation of tartazine[J]. Catalysis letters,2009,132(1-2):259-267.
    [82] Sun L, Li J, Wang C, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2nanotubearrays to enhance photocatalytic activity[J]. Journal of Hazardous Materials,2009,171(1-3):1045-1050.
    [83] Kumar K J, Raju N R C, Subrahmanyam A. Properties of pulsed reactive DC magnetron sputteredtantalum oxide (Ta2O5) thin films for photocatalysis[J]. Surface&Coatings Technology,2011,205:S261-S264.
    [84]陈胜龙,杨建广,高亮. Ta2O5薄膜制备的研究现状及进展[J].材料导报,2010,24(1):25-29.
    [85] Chiu H, Wang C, Chuang S. Metal-Organic CVD of Tantalum Oxide from tert-Butylimidotris(diethylamido) tantalum and Oxygen[J]. Chem Vap Deposition,2000,6(5):223-225.
    [86] Murali S, Deshpande A, Takoudis C G. Modeling of the metalorganic chemical vapor deposition oftantalum oxide from tantalum ethoxide and oxygen[J]. Ind Eng Chem Res,2005,44:6387-6392.
    [87] Zeng W, Eisenbraun E, Frisch H, et al. CVD of tantalum oxide dielectric thin films for nanoscaledevice applications[J]. Journal of The Electrochemical Society.2004,151(8): F172-F177.
    [88]杨声海,刘银元,邱冠周等.乙醇钽化学气相沉积制备Ta2O5薄膜研究进展[J].稀有金属材料与工程,2007,36(12):2075-2079.
    [89] Seman M, Robbins J J, Agarwal S, et al. Self-limiting growth of tantalum oxide thin films by pulsedplasma-enhanced chemical vapor deposition[J]. Applied Physics Letters,2007,90:131504.
    [90] Ndiege N, Subramanian V, Shannon M, et al. Rapid synthesis of tantalum oxide dielectric films bymicrowave microwave-assisted atmospheric chemical vapor deposition[J]. Thin Solid Films,2008,516:8307-8314.
    [91] Nandi S K, Chatterjee S, Samanta S K, et al. Electrical properties of Ta2O5films deposited on ZnO[J].Bull Mater Sci,2003,26(4):365-369.
    [92]闫志巧,熊翔,肖鹏等.化学气相沉积法制备Ta2O5薄膜的研究进展[J].功能材料,2006,37(4):511-514.
    [93] Matizamhuka W R, Sigalas I, Herrmann M. Synthesis, sintering and characterisation of TaONmaterials[J]. Ceramics International,2008,34:1481–1486.
    [94] Ngaruiya J M, Venkataraj S, Drese R, et al. Preparation and characterization of tantalum oxide filmsproduced by reactive DC magnetron sputtering[J]. Phys Stat Sol (a),2003,198(1):99-110.
    [95] Wang S, Liu K, Huang J. Tantalum oxide film prepared by reactive magnetron sputtering depositionfor all-solid-state electrochromic device[J]. Thin Solid Films,2011,520(5):1454–1459.
    [96] Kwak J, Lee Y, Choi B. Preparation of tantalum oxide thin films by photo-assisted atomic layerdeposition[J]. Applied Surface Science,2004,230:249–253.
    [97] Wu C T, Ko F, Lin C. Self-organized tantalum oxide nanopyramidal arrays for antireflectivestructure[J]. Applied Physics Letters,2007,90:171911.
    [98] Agrawal M, Pich A, Gupta S, et al. Synthesis of novel tantalum oxide sub-micrometer hollow sphereswith tailored shell thickness[J]. Langmuir.2008,24:1013-1018.
    [99] Vladoiu R, Ciupina V, Mandes A, et al. Growth and characteristics of tantalum oxide thin filmsdeposited using thermionic vacuum arc technology[J]. Journal of Applied Physics,2010,108:093301.
    [100] Kominami H, Miyakawa M, Murakami S, et al. Solvothermal synthesis of tantalum(V) oxidenanoparticles and their photocatalytic activities in aqueous suspension systems[J]. Phys Chem Chem Phys,2001,3:2697-2703.
    [101] Lu Q, Mato S, Skeldon P, et al. Anodic film growth on tantalum in dilute phosphoric acid solution at20and85℃[J]. Electrochimica Acta,2002,47:2761-2767.
    [102] Wosu Sylvanus N. Anodic oxidation of tantalum in water and biological solutions using currentlimiting constant voltage method[J]. J. Mater Sci,2007,42:4087–4097.
    [103] Sloppy Jennifer D, Podraza Nikolas J, Dickey Elizabeth C, et al. Complex dielectric functions ofanodic bi-layer tantalum oxide[J]. Electrochimica Acta,2010,55:8751-8757.
    [104] Sloppy J D, Macdonald D D, Dickey E C. Growth laws of bilayer anodized tantalum oxide filmsformed in phosphoric acid[J]. Journal of The Electrochemical Society,2010,157: C157-C165.
    [105] El-Sayed H, Singh S, Greiner M T, et al. Formation of highly ordered arrays of dimples on tantalumat the nanoscale[J]. Nano Lett,2006,6(12):2995-2999.
    [106] Wei W, Macak J M, Schmuki P. High aspect ratio ordered nanoporous Ta2O5films by anodization ofTa[J]. Electrochemistry Communications,2008,10:428-432.
    [107] Lee K, Schmuki P. Highly ordered nanoporous Ta2O5formed by anodization of Ta at hightemperatures in a glycerol/phosphate electrolyte[J]. Electrochemistry Communications,2011,13:542-545.
    [108] Sieber I, Kannan B, Schmuki P. Self-assembled porous tantalum oxide prepared in H2SO4/HFElectrolytes[J]. Electrochemical and Solid-State Letters,2005,8(3): J10-J12..
    [109] Mozalev A, Sakairi M, Saeki I, et al. Controlled Interconversion of Nanoarray of Ta Dimples andHigh Aspect Ratio Ta Oxide Nanotubes[J]. Nano Letters,2009,9(4):1350-1355.
    [110] Sieber Irina V, Schmuki P. Porous tantalum oxide prepared by electrochemical anodic oxidation[J].Journal of The Electrochemical Society,2005,152(9): C639-C644.
    [111] Sieber I, Hildebrand H, Friedrich A, et al. Initiation of tantalum oxide pores grown on tantalum bypotentiodynamic anodic oxidation[J]. J Electroceram,2006,16:35–39.
    [112] Wei W, Macak J, Shrestha N, et al. Self-assembled fabrication of vertically oriented Ta2O5nanotubearrays, and membranes thereof, by one-step tantalum anodization[J]. Chem Mater,2008,20:6477-6481.
    [113] Chandrasekhar M, Chandra S V, Uthanna S. Characterization of bias magnetron sputtered tantalumoxide films for capacitors[J]. Indian Journal of Pure&Applied Physics,2009,47:49-53.
    [114] Deloffre E, Montès L, Ghibaudo G, et al. Electrical properties in low temperature range (5K–300K)of tantalum oxide dielectric MIM capacitors[J]. Microelectronics Reliability,2005,45:925-928.
    [115] Chen H. Electrical and material characterization of tantalum pentoxide (Ta2O5) charge trapping layermemory[J]. Applied Surface Science,2011,257:7481-7485.
    [116] Arnould C, Korányi T I, Delhalle J, et al. Fabrication of tantalum oxide carbon nanotubes thin filmcomposite on titanium substrate[J]. Journal of Colloid and Interface Science,2010,344:390-394.
    [117]邱凌峰,应传友. Ti/IrO2-Ta2O5阳极电催化氧化法处理含酚废水[J].化学工程与装备,2008,9:141-145.
    [118] Kaneda K, Kitsuka K, Nowatari Y, et al. A tantalum oxide electrode for electrochemical ozonegeneration[J]. ECS Transactions,2008,6(21):33-39.
    [119] Zhang Y, Wang W, Jia Q, et al. Electrochemical property of La doped Ta2O5film electrode[J].内蒙古大学学报(自然科学版),2010,41(3):307-312.
    [120] Guo G, Huang J. Preparation of mesoporous tantalum oxide and its enhanced photocatalyticactivity[J]. Materials Letters,2011,65:64-66.
    [121] Zhao Y, Hou L, Li X, et al. Photocatalytic Activity of W Doped Ta2O5Particles for Methylene BlueDegradation under UV-Light[J]. Advanced Materials Research,2011,197-198:281-284.
    [122] Xu L, Guan J, Gao L, et al. Preparation of heterostructured mesoporous In2O3/Ta2O5nanocompositeswith enhanced photocatalytic activity for hydrogen evolution[J]. Catalysis Communications,2011,12:548-552.
    [123]李莉,张秀芬,张文治等.复合光催化材料H3PW12O40/Ta2O5光催化降解染料的研究[J].化学通报,2008,9:714-717.
    [124] Stodolny M, Laniecki M. Synthesis and characterization of mesoporous Ta2O5-TiO2photocatalystsfor water splitting[J]. Catalysis Today,2009,142:314-319.
    [125] Takahara Y, Kondo J N, Takata T, et al. Mesoporous tantalum oxide.1. Characterization andphotocatalytic activity for the overall water decomposition[J]. Chem Mater,2001,13:1194-1199.
    [126] Sreethawong T, Ngamsinlapasathian S, Suzuki Y, et al. Nanocrystalline mesoporous Ta2O5-basedphotocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H2evolution[J].Journal of Molecular Catalysis A: Chemical,2005,235:1-11.
    [127] Noda Y, Lee B, Domen K, et al. Synthesis of crystallized mesoporous tantalum oxide and itsphotocatalytic activity for overall water splitting under ultraviolet light irradiation[J]. Chem Mater,2008,20:5361-5367.
    [128]孙晓君,王芳,魏金枝等. TaON的制备及可见光下降解苯酚的研究[J].材料科学与工艺,2007,15(6):801-804.
    [129] Hara M, Takata T, Kondo J N, et al. Photocatalytic reduction of water by TaON under visible lightirradiation[J]. Catalysis Today,2004,90:313-317.
    [130] Hou J, Wang Z, Cao R, et al. Preparation of polyaniline modified TaON with enhanced visible lightphotocatalytic activities[J]. Dalton Trans,2011,40:4038-4041.
    [131] Ito S, Thampi K R, Comte P, et al. Highly active meso-microporous TaON photocatalyst driven byvisible light[J]. Chem Commun,2005,2:268-270.
    [132] Abe R, Higashi M, Domen K. Facile fabrication of an efficient oxynitride taon photoanode foroverall water splitting into H2and O2under visible light irradiation[J]. J Am Chem Soc,2010,132:11828-11829.
    [133] Kerlau M, Merdrignac-Conanec O, Guilloux-Viry M, et al. Synthesis of crystallized TaON and Ta3N5by nitridation of Ta2O5thin films grown by pulsed laser deposition[J]. Solid State Sciences,2004,6:101-107.
    [134] Zhang Q, Gao L. Ta3N5nanoparticles with enhanced photocatalytic efficiency under visible lightirradiation[J]. Langmuir,2004,20:9821-9827.
    [135] Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5photoanodes for watersplitting under visible light irradiation[J]. Energy Environ Sci,2011,4:4138-4147.
    [136] Fu B, Gao L, Yang S. CNTs/Ta3N5nanocomposite with enhanced photocatalytic activity undervisible light irradiation[J]. J Am Ceram Soc,2007,90(4):1309-1311.
    [137]梁慧荣,张耀君,郭烈锦. N掺杂Ta2O5的制备及其光催化分解水制氢性能研究[J].太阳能学报,2006,27(10):1032-1036.
    [138]洪颖.环境水体中痕量总磷的光催化氧—分光光度测定方法研究[D]:[硕士学位论文].南京:南京工业大学,2004.
    [139]张丰如.氮、磷快速连续测定方法的研究[D]:[硕士学位论文].广东工业大学,2005.
    [140]吴春艳.滇池水体磷污染的研究及其控制方法初探[D]:[硕士学位论文].哈尔滨:东北农业大学,2003.
    [141]孙华,梁伟.我国水体磷污染及其监控管理技术的研究[J].浙江师范大学学报(自然科学版),2007,30(2):201-205.
    [142]石春养.磷污染,不可忽视[J].沿海环境,1999,5:18.
    [143]熊强,幸治国,钟成华等.三峡库区总磷污染现状及防治措施[J].云南环境科学,2004,23(4):49-51.
    [144]王毛兰,周文斌,胡春华.鄱阳湖区水体氮、磷污染状况分析[J].湖泊科学,2008,20(3):334-338.
    [145]高宇,宓永宁.辽宁省水库氮、磷污染及富营养化研究[J].水利技术监督,2003,2:40-42.
    [146]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [147]马剑.海水中超痕量活性磷的检测方法及其船载式仪器研究及应用[D]:[博士学位论文].厦门:厦门大学,2008.
    [148]何宇霆,张新申,张一等.磷酸盐测定方法及研究进展[J].皮革科学与工程,2008,18(4):26-29.
    [149] Matsunaga K, Kudo I, Yanada M. Differential-Pulse Anodic Voltammetric Determination ofDissolved And Adsorbed Phosphate In Turbid Natural Waters[J]. Analytica Chimica Acta,1986,185:355-358.
    [150] Fogg A G, Bsebsu N K. Differential-pulse Anodic Voltammetric Determination of Phosphate,Silicate, Arsenate and germanate as β-heteropolymolybdates at a Stationary Glassy-carbon Electrode[J].Talanta,1981,28:473-476.
    [151] Quintana J C, Idrissi L, Palleschi G, et al. Investigation of amperometric detection of phosphateApplication in seawater and cyanobacterial biofilm samples[J]. Talanta,2004,63:567-574.
    [152] Engblom S O. Determination of inorganic phosphate in a soil extract using a cobalt electrode[J].Plant and Soil,1999,206:173-179.
    [153] Tanaka T, Miura M, Ishiyama T. Adsorptive Voltammetric Determination Of Orthophosphate At AGlassy Carbon Electrode[J]. J. Trace and Microprobe Techniques,2001,19(4):591-599.
    [154] Villalba M M, McKeegan K J, Vaughanb D H, et al. Bioelectroanalytical determination of phosphate:A review[J]. Journal of Molecular Catalysis B: Enzymatic,2009,59(1-3):1-8
    [155]刘宏欣,张军,王伯光等.水质监测中总磷无损的近红外光谱分析研究[J].分析科学学报,2008,24(6):664-666.
    [156]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社,2003.
    [157]郭伟华.多酸基复合修饰电极的制备及其电催化和光电催化性能研究[D]:[博士学位论文].长春:东北师范大学,2010.
    [158] Wan Q L, Wang X X, Wang X, et al. Poly(malachite green) film: Electrosynthesis, characterization,and sensor application[J]. Polymer,2006,47:7684-7692.
    [159] Umasankar Y, Periasamy A P, Chen S M. Poly(malachite green) at nafion doped multi-walledcarbon nanotube composite film for simple aliphatic alcohols sensor[J]. Talanta,2010,80:1094-1101.
    [160] Wang X X, Yang N J, Wan Q J, et al. Catalytic capability of poly(malachite green) films basedelectrochemical sensor for oxidation of dopamine[J]. Sensors and Actuators B,2007,128:83-90.
    [161] Chen S M, Chen J Y, Thangamuthu R. Electrochemical Preparation of Poly(Malachite Green) FilmModified Nafion-Coated Glassy Carbon Electrode and Its Electrocatalytic Behavior Towards NADH,Dopamine and Ascorbic Acid[J]. Electroanalysis,2007,19(14):1531-1538.
    [162] Fang C, Tang X R, Zhou X Y. Preparation of Poly(malachite green) Modified Electrode and theDetermination of Dopamine and Ascorbic Acid[J]. Analytical Sciences,1999,15,41-46.
    [163]张旭麟,王宗花,王晓彤等.聚孔雀石绿功能化碳纳米管修饰电极的电化学研究[J].青岛大学学报(工程技术版),2007,22(2):84-88.
    [164]周谷珍,胡霞,曾华波等.利用聚孔雀石绿薄膜修饰电极测定磺胺醋酰钠[J].湖南文理学院学报(自然科学版),2009,21(3):57-58,72.
    [165]高晓霞等.电分析化学导论[M].北京:科学出版社,1986.
    [166] Norouz M, Afsaneh S, Elahe F, et al. Palladium nanoparticle decorated carbon ionic liquid electrodefor highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Analytica Chimica Acta,2008,611:151-155.
    [167]张晓林等.现代环境监测方法[M],天津:天津大学出版社,1993.
    [168] Sanford D Z, David R M, Philip C S. Occupational Exposure to Hydrazines: Treatment of AcuteCentral Nervous System Toxicity[J]. Aviation, Space, and Environmental Medicine,2003,74(12):1285-1291.
    [169] Vernot E H, Macewen J D, Bruner R H, Haun C C, et al. Long-Term Inhalation Toxicity ofHydrazine[J]. Fundamental and Applied Toxicology,1985,5:1050-1064.
    [170] Christopher A R, Steven D A. Peroxidase Substrates Stimulate the Oxidation of Hydralazine toMetabolites Which Cause Single-Strand Breaks In DNA[J]. Chem Res Toxicol,1997,10:328-334.
    [171] Sarah G, Mary E B, Andrew W N, et al. Integrated Metabonomic Analysis of the Multiorgan Effectsof Hydrazine Toxicity in the Rat[J]. Chem Res Toxicol,2005,18:115-122.
    [172]张杰,李丹.水合肼的生产技术及其应用进展[J].化工中间体,2006,3:8-12.
    [173]张宏陶.水质分析大全[M].重庆:科学技术文献出版社重庆分社,1989.
    [174]李文,姜雪英,张炳坤.对二甲氨基苯甲醛测定水环境中肼的探讨[M].海峡预防医学杂志,2003,9(4):55-56.
    [175] Mary G, Nagaraja K S, Balasubramanian N. Spectrophotometric determination of hydrazine[J].Talanta,2008(75):27–31.
    [176] Ali A E, Naderi B. Flow-Injection Spectrophotometric Determination of Hydrazine[J].Microchemical Journal,1997,56:269–275.
    [177] Haji Shabani A M, Dadfarnia S, Dehghan K. Indirect Spectrophotometric Determination of TraceQuantities of Hydrazine[J]. Bull Korean Chem Soc,2004,25(2):213-215.
    [178] Collins G E, Latturner S, Rose-pehrsson S L. Chemiluminescence Detection of Hydrazine Vapor[J].Talanta,1995,42(4):543-551.
    [179] Afsaneh S, Mohammad A K. Flow injection chemiluminescence determination of hydrazine byoxidation with chlorinated isocyanurates[J]. Talanta,2002(58):785-792.
    [180] Safavi A, Baezzat M R. Flow injection chemiluminescence determination of hydrazine[J]. AnalyticaChimica Acta,1998,358:121-125.
    [181]唐尧基,樊静,冯素玲.环境水样中痕量肼的荧光分析[J].分析试验室,2003,22(1):48-50.
    [182] Ali A E, Rezaei B. Flow injection determination of hydrazine with fluorimetric[J]. Talanta,1998,47:645–649.
    [183] Collins G, Rose-Pehrsson S L. Fluorescent detection of hydrazine, monomethylhydrazine, and1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes[J]. Analyst,1994,119(8):1907-1913.
    [184] Richard P S J, Sriman N S. Amperometric determination of hydrazine using a surface modifiednickel hexacyanoferrate graphite electrode fabricated following a new approach[J]. Journal ofElectroanalytical Chemistry,2008,617:111-120.
    [185] Yi Q, Li L, Yu W, et al. A novel titanium-supported Ag/Ti electrode for the electro-oxidation ofhydrazine[J]. Journal of Molecular Catalysis A: Chemical,2008,295:34-38.
    [186] Abdollah S, Layla M, Rahman H. Amperometric and voltammetric detection of hydrazine usingglassy carbon electrodes modified with carbon nanotubes and catechol derivatives[J]. Talanta,2008,75:147–156.
    [187] Jill S P, Kenneth L B, Paul A D, et al. Amperometric detection of hydrazine by cyclic voltammetryand flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta,2007,71:1219-1225.
    [188] Kenneth I. Ozoemena. Anodic Oxidation and Amperometric Sensing of Hydrazine at a GlassyCarbon Electrode Modified with Cobalt (II) Phthalocyanine–cobalt (II) Tetraphenylporphyrin (CoPc-(CoTPP)4) Supramolecular Complex[J]. Sensors2006,6:874-891.
    [189] Mohammad M A, Payam E K, Parvaneh R, et al. Electrocatalytic hydrazine oxidation on quinizarinemodified glassy carbon electrode[J]. Electrochimica Acta,2007,52(20):6118–6124.
    [190] Ali A E, Elham M. Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator onglassy carbon electrode[J]. Journal of Electroanalytical Chemistry,2005,583:176-183.
    [191] Wang G F, Zhang C H, He X P, et al. Detection of hydrazine based on Nano-Au deposited onPorous-TiO2film[J]. Electrochimica Acta,2010,55:7204-7210.
    [192] Fang B., Shen R. X., Zhang W., et al. Electrocatalytic oxidation of hydrazine at a chromiumhexacyanoferrate/single-walled carbon nanotube modified glassy carbon electrode[J]. Microchim Acta,2009,165:231-236.
    [193] Kamyabi M A, Narimani O, Hosseini Monfared H. Electrocatalytic oxidation of hydrazine usingglassy carbon electrode modified with carbon nanotube and terpyridine manganese(II) complex[J]. Journalof Electroanalytical Chemistry,2010,644:67-73.
    [194] Golabi S M, Zare H R. Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modifiedglassy carbon electrode[J]. Journal of Electroanalytical Chemistry,1999,465:247168-176.
    [195] Abbaspour A, Kamyabi M A. Electrocatalytic oxidation of hydrazine on a carbon paste electrodemodified by hybrid hexacyanoferrates of copper and cobalt films[J]. Journal of ElectroanalyticalChemistry,2005,576:73-83.
    [196] Abbaspour A, Khajehzadeh A, Ghaffarinejad A. Electrocatalytic oxidation and determination ofhydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode[J]. Journal ofElectroanalytical Chemistry,2009,631:52-57.
    [197] Cleone D C C, Ronaldo C F, Orlando F, et al. Electrocatalytic Oxidation and VoltammetricDetermination of Hydrazine in Industrial Boiler Feed Water Using a Cobalt Phthalocyanine-modifiedElectrode[J]. Analytical Letters,2009,41(6):1010-1021.
    [198] Yang M, Li H L. Differential Pulse Voltammetric Determination of Traces of Hydrazine UsingMagnetic Microspheres[J]. Mikrochim,2002,138,65-68.
    [199] Raoof J B, Ojani R, Mohammadpour Z. Electrocatalytic Oxidation and Voltammetric Determinationof Hydrazine by1,1′-Ferrocenedicarboxylic Acid at Glassy Carbon Electrode[J]. Int J Electrochem Sci,2010,5:177-188.
    [200] Mori M, Tanaka K, Xu Q, et al. Highly sensitive determination of hydrazine ion by ion-exclusionchromatography with ion-exchange enhancement of conductivity detection[J]. Journal of ChromatographyA,2004,1039:135-139.
    [201] Seifart H I, Gent W L, Parkin D P, et al. High-performance liquid chromatographic determination ofisoniazid, acetylisoniazid and hydrazine in biological fluids[J]. Journal of Chromatography B,1995,674:269-275.
    [202] Gracy E, William F B. Hydrazine determination in sludge samples by high-performance liquidchromatography[J]. J Sep Sci,2006,29:460-464.
    [203] Zheng X W, Zhang Z J, Guo Z H, et al. Flow-injection electrogenerated chemiluminescencedetection of hydrazine based on its in-situ electrochemical modification at a pre-anodized platinumelectrode[J]. Analyst,2002,127:1375-1379.
    [204] He Z.K., Fuhrmann B., Spohn U.. Coulometric microflow titrations with chemiluminescent andamperometric equivalence point detection Bromimetric titration of low concentrations of hydrazine andammonium[J]. Analytica Chimica Acta,2000,409:83-91.
    [205]陈乾旺,娄正松,王强等.人工合成金刚石研究进展[J].物理,2005,34(3):199-204.
    [206] Pleskov Y V. Electrochemistry of diamond: a review[J]. Russian Journal of Electrochemistry,2002,38(12):1275-1291.
    [207] Rao T N, Fujishima A. Recent advances in electrochemistry of diamond[J]. Diamond and RelatedMaterials,2000,9(3-6):384-389.
    [208] Sarada B V, Rao T N, Trykd A, et al. Electroanalytical applications of conductive diamondelectrodes[J]. New Diamond and Frontier Carbon Technology,1999,9(5):364-377.
    [209]方宁,贾金平,钟登杰等.掺硼金刚石薄膜电极在水处理中应用的研究进展[J].环境污染与防治,2007,29(9):708-712.
    [210] Xu J, Granger M C, Chen Q, et al. Boron-doped diamond thin-film electrodes[J]. AnalyticalChemistry News and Features,1997,69(19):591A-597A.
    [211] Sarada B V, Rao T N, Trykd A, et al. Electroanalytical applications of conductive diamondelectrodes[J]. New Diamond and Frontier Carbon Technology,1999,9(5):364-377.
    [212] Sarada B V, Rao T N, Trykd A, et al. Electroanalytical applications of conductive diamondelectrodes[J]. New Diamond and Frontier Carbon Technology,1999,9(5):364-377.
    [213] Maeda Y, Sato K, Ramaraj R, et al. The electrochemical response of highly boron-doped conductivediamond electrodes to Ce3+ions in aqueous solution[J]. Electrochimica Acta,1999,44(20):3441-3449.
    [214] Honda K, Yamaguchi Y, Yamanaka Y, et al. Hydroxyl radical-related electrogeneratedchemiluminescence reaction for a ruthenium tris(2,2’)bipyridyl/co-reactants system at boron-dopeddiamond electrodes[J]. Electrochimica Acta,2005,51(4):588-597.
    [215] Holt K B, Forryan C, Compton R G, et al. Anodic activity of boron-doped diamond electrodes inbleaching processes[J]. New Journal of Chemistry,2003,27(4):698-703.
    [216] Marselli B, Garcia-Gomez J, Michaud P A, et al. Electrogeneration of Hydroxyl Radicals onBoron-Doped Diamond Electrodes[J]. Journal of The Electrochemical Society,2003,150(3): D79-D83.
    [217]只金芳,田如海.金刚石薄膜电化学[J].化学进展,2005,17(1):55-63.
    [218] Martin H B, Argoitia A, Landau U, et al. Hydrogen and oxygen evolution on boron-doped diamondelectrodes[J]. Journal of The Electrochemical Society,1996,143(6): L133-L136.
    [219] Kraft A. Doped diamond: a compact review on a new, wersatile electrode material. InternationalJournal of Electrochemical Science,2007,2(5):355-385.
    [220] Panizza M, Michaud P A, Cerisola G, et al. Anodic oxidation of2-naphthol at boron-doped diamondelectrodes[J]. Journal of Electroanalytical Chemistry,2001,507(1-2):206-214.
    [221] Ca izares P, Sáez C, Lobato J, et al. Electrochemical treatment of4-nitrophenol-containing aqueouswastes using boron-doped diamond anodes[J]. Industrial and Engineering Chemistry Research,2004,43(9):1944-1951.
    [222] Panizza M, Delucchi M, Cerisola G. Electrochemical degradation of anionic surfactants[J]. Journalof Applied Electrochemistry,2005,35(4):357-361.
    [223] Xu L, Wang W, Wang M, et al. Electrochemical degradation of tridecane dicarboxylic acidwastewater with tantalum-based diamond film electrode[J]. Desalination,2008,222(1-3):388-393.
    [224] Mitadera M, Spataru N, Fujishima A. Electrochemical oxidation of aniline at boron-doped diamondelectrodes[J]. Journal of Applied Electrochemistry,2004,34(3):249-254.
    [225] Bellagamba R, Michaud P A, Comninellis C, et al. Electro-combustion of polyacrylates withboron-doped diamond anodes[J]. Electrochemistry Communications,2002,4(2):171-176.
    [226] Polcaro A M, Mascia M, Palmas S, et al. Electrochemical degradation of diuron and dichloroanilineat BDD electrode[J]. Electrochimica Acta,2004,49(4):649-656.
    [227] Li S, Bejan D, Mcdowell M S, et al. Mixed first and zero order kinetics in the electrooxidation ofsulfamethoxazole at a boron-doped diamond (BDD) anode[J]. Journal of Applied Electrochemistry,2008,38(2):151-159.
    [228] Ammar S, Abdelhedi R, Flox C, et al. Electrochemical degradation of the dye indigo carmine atboron-doped diamond anode for wastewaters remediation[J]. Environmental Chemistry Letters,2006,4(4):229-233.
    [229] Cabeza A, Urtiaga A M, Ortiz I. Electrochemical treatment of landfill leachates using a boron-dopeddiamond anode[J]. Industrial and Engineering Chemistry Research,2007,46(5):1439-1446.
    [230] Kraft A, Stadelmann M, Blaschke M. Anodic oxidation with doped diamond electrodes a newadvanced oxidation process[J]. Journal of Hazardous Materials B,2003,103(3):247-261.
    [231] Lévy-Clément C, Ndao N A, Katty A, et al. Boron doped diamond electrodes for nitrate eliminationin concentrated wastewater[J]. Diamond and Related Materials,2003,12(3-7):606-612.
    [232] Ca izares P, Díaz M, Domínguez J A, et al. Electrochemical treatment of diluted cyanide aqueouswastes[J]. Journal of Chemical Technology and Biotechnology,2005,80(5):565-573.
    [233] Waterston K, Bejan D, Bunce N J. Electrochemical oxidation of sulfide ion at a boron-dopeddiamond anode[J]. Journal of Applied Electrochemistry,2007,37(3):367-373.
    [234] Jeong J, Kim J Y, Yoon J. The role of reactive oxygen species in the electrochemical inactivation ofmicroorganisms[J]. Environmental Science and Technology,2006,40(19):6117-6122.
    [235] Furuta T, Tanaka H, Nishiki Y, et al. Legionella inactivation with diamond electrodes[J]. Diamondand Related Materials,2004,13(11-12):2016-2019.
    [236] Panizza M, Duo I, Michaud P A, et al. Electrochemical detection of2-naphthol on boron-dopeddiamond[J]. Electrochemical and Solid-State Letters,2000,3(9):429-430.
    [237] Pedrosa V A, Codognoto L, Machado S A, et al. Is the boron-doped diamond electrode a suitablesubstitute for mercury in pesticide analyses? A comparative study of4-nitrophenol quantification in pureand natural waters[J]. Journal of Electroanalytical Chemistry,2004,573(1):11-18.
    [238] Prado C, Murcott G G, Marken F, et al. Detection of chlorophenols in aqueous solution viahydrodynamic channel flow cell voltammetry using a boron-doped diamond electrode[J]. Electroanalysis,2002,14(14):975-979.
    [239] Sp taru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine at conductivediamond electrodes[J]. Analytical Chemistry,2001,73(3):514-519.
    [240] Chailapakul O, Siangproh W, Sarada B V, et al. The electrochemical oxidation of homocysteine atboron-doped diamond electrodes with application to HPLC amperometric detection[J]. The Analyst,2002,127(9):1164-1168.
    [241] Nekrassova O, Lawrence N S, Compton R G. Selective electroanalytical assay for cysteine at aboron doped diamond electrode[J]. Electroanalysis,2004,16(16):1285-1291.
    [242] Nekrassova O, Lawrence N S, Compton R G. Electrochemically initiated catalytic oxidation of5-thio-2-nitrobenzoic acid (TNBA) in the presence of thiols at a boron doped diamond electrode:implications for total thiol detection[J]. Electroanalysis,2003,15(21):1655-1660.
    [243] Lawrence N S, Thompson M, Prado C, et al. Amperometric detection of sulfide at a boron dopeddiamond electrode: the electrocatalytic reaction of sulfide with ferricyanide in aqueous solution[J].Electroanalysis,2002,14(7-8):499-503.
    [244] Sp taru T, Sp taru N, Fujishima A. Detection of aniline at boron-doped diamond electrodes withcathodic stripping voltammetry[J]. Talanta,2007,73(2):404-406.
    [245] Oliveira R T S, Salazar-Banda G R, Machado S A S, et al. Electroanalytical determination ofn-nitrosamines in aqueous solution using a boron-doped diamond electrode[J]. Electroanalysis,2008,20(4):396-401.
    [246] Koppang M D, Witek M, Blau J, et al. Electrochemical oxidation of polyamines at diamond thin-filmelectrodes[J]. Analytical Chemistry,1999,,71(6):1188-1195.
    [247] Jolley S, Koppang M, Jackson T, et al. Flow injection analysis with diamond thin-film detectors[J].Analytical Chemistry,1997,69(20):4099-4107.
    [248] Ward-Jones S, Banks G E, Simm A O, et al. An in situ copper plated boron-doped diamondmicroelectrode array for the sensitive electrochemical detection of nitrate[J]. Electroanalysis,2005,17(20):1806-1815.
    [249] Welch C M, Hyde M E, Banks C E, et al. The detection of nitrate using in-situ copper nanoparticledeposition at a boron doped diamond electrode[J]. Analytical Sciences,2005,21(12):1421-1429.
    [250] Sp taru N, Rao T N, Tryk D A, et al. Determination of nitrite and nitrogen oxides by anodicvoltammetry at conductive diamond electrodes[J]. Journal of The Electrochemical Society,2001,148(3):E112-E117.
    [251] Ji X, Banks C E, Compton R G. The electrochemical oxidation of ammonia exhibits analyticallyuseful signals in aqueous solutions[J]. The Analyst,2005,130(10):1345-1347.
    [252] Batchelor-McAuley C, banks C E, Simm A O, et al. The electroanalytical detection of hydrazine: acomparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium platedBDD microdisc array[J]. The Analyst,2006,131(1):106-110.
    [253] Xu J, Swain G M. Oxidation of azide anion at boron-doped diamond thin-film electrodes[J].Analytical Chemistry,1998,70(8):1502-1510.
    [254] Charoenraks T, Chuanuwatanakul S, Honda K, et al. Analysis of tetracycline antibiotics using hplcwith pulsed amperometric detection[J]. Analytical Sciences,2005,21(3):241-245.
    [255] Wei M, Zhou Y, Zhi J, et al. Comparison of boron-doped diamond and glassy carbon electrodes fordetermination of procaine hydrochloride[J]. Electroanalysis,2008,20(2):137-143.
    [256] Chailapakul O, Fujishima A, Tipthara P, et al. Electroanalysis of glutathione and cephalexin usingthe boron-doped diamond thin-film electrode applied to flow injection analysis[J]. Analytical Sciences,2001,17(supplement):1419-1422.
    [257] Uslu B, Topal B D, Ozkan S A. Electroanalytical investigation and determination of pefloxacin inpharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes[J]. Talanta,2008,74(5):1191-1200.
    [258] Suzuki A, Ivandini T A, Yoshimi K, et al. Fabrication, characterization, and application ofboron-doped diamond microelectrodes for in vivo dopamine detection[J]. Analytical Chemistry,2007,79(22):8608-8615.
    [259] Suryanarayanan V, Zhang Y, Yoshihara S, et al. Voltammetric assay of naproxen in pharmaceuticalformulations using boron-doped diamond electrode[J]. Electroanalysis,2005,17(11):925-932.
    [260] Omanovi D, Kwokal, Goodwin A, et al. Trace metal detection in ibenik bay, Croatia: cadmium,lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. A casestudy[J]. Journal of the Iranian Chemical Society,2006,3(2):128-139.
    [261] Prado C, Wilkins S J, Marken F, et al. Simultaneous electrochemical detection and determination oflead and copper at boron-doped diamond film electrodes[J]. Electroanalysis,2002,14(4):262-272.
    [262] Song Y, Swain G M. Development of a method for total inorganic arsenic analysis using anodicstripping voltammetry and a Au-coated, diamond thin-film electrode[J]. Analytical Chemistry,2007,79(6):2412-2420.
    [263] Rao T N, Loo B H, Sarada B V, et al. Electrochemical detection of carbamate pesticides atconductive diamond electrodes[J]. Analytical Chemistry,2002,74(7):1578-1583.
    [264] Murugananthan M, Yoshihara S, Rakuma T, et al. Electrochemical degradation of17β-estradiol (E2)at boron-doped diamond (Si/BDD) thin film electrode[J]. Electrochimica Acta,2007,52(9):3242-3249.
    [265] Zhao G, Qi Y, Tian Y. Simultaneous and Direct determination of tryptophan and tyrosine atboron-doped diamond electrode[J]. Electroanalysis,2006,18(8):830-834.
    [266] Ducolomb Y, Casas E, Valdez A, et al. In vitro effect of malathion and diazinon on oocytesfertilization and embryo development in porcine[J]. Cell Biol Toxicol,2009,25:623–633.
    [267] Venezia A M, Parola V L, Deganello G, et al. Synergetic effect of gold in Au/Pd catalysts duringhydrodesulfurization reactions of model compounds[J]. J Catal,2003,215:317–325.
    [268] Liu R, Yu Y, Yoshida K, et al. Physically and chemically mixed TiO2-supported Pd and Au catalystsunexpected synergistic effects on selective hydrogenation of citralin supercritical CO2[J]. J Catal,2010,269:191–200.
    [269] Liu X, Devaraju M K, Yin S, et al. The preparation and characterization of tabular, pearlescentFe-doped potassium lithium titanate[J]. Dyes Pigments,2010,84:237–241.
    [270] Bard A.J., Faulkner L.R. Electrochemical Methods Fundamentals and Applications[M]. New York:Wiley,2003.
    [271] Chen Q, Ai S, Ma Q, et al. Selective determination of dopamine in the presence of ascorbic acidusing ferrocenyl-tethered PAMAM dendrimers modified glassy carbon electrode[J]. J Appl Electrochem,2010,40(7):1379-1385.
    [272] Tsierkezos N G, Ritter U. Electrochemical impedance spectroscopy and cyclic voltammetry offerrocene in acetonitrileacetone system[J]. J Appl Electrochem,2010,40:409-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700