用户名: 密码: 验证码:
低溶解氧丝状菌污泥微膨胀的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前我国应用最广泛的城市污水处理技术,其结构简单,运行管理方便,但是存在曝气能耗大的缺点,并且饱受污泥膨胀问题的困扰。污泥膨胀具有影响因素多、产生危害大、治理方法难、发生频率高等特点。为了更科学地对待污泥膨胀问题,本课题组在长期采用活性污泥法处理城市污水的过程中,总结生产实践经验,在国内外首次提出了“低溶解氧(DO)丝状菌污泥微膨胀节能理论和方法”。它的核心内容是人为地减少曝气量,调节活性污泥系统在低溶解氧环境下运行,引发丝状菌的适度增长,同时控制其膨胀程度不会影响到系统的正常运转。利用丝状菌具有比表面积大,抗低溶解氧和降解低浓度底物能力强的生理特点,在节能的基础上改善出水水质。
     为了更好地在生产实践中应用低DO丝状菌污泥微膨胀,采用小试SBR进行试验,通过调节不同的运行方式和反应条件,研究了低DO丝状菌污泥膨胀的引发、过度丝状菌膨胀的抑制以及微膨胀的稳定维持方法。系统地考察了低DO状态下,各种常见的环境因子和工艺参数对活性污泥法运行效果,尤其是污泥沉降性的影响。深入地了解活性污泥法的特性,通过对所得试验数据进行优化,建立了引发和抑制丝状菌生长的有效方法。并将所建立的控制方法分别在处理模拟生活污水和实际生活污水的SBR中进行了验证,同时考察了低DO丝状菌污泥微膨胀状态下的污染物去除特点。
     建立了丝状菌污泥微膨胀的引发方法。发现了在低DO下,污泥沉降性与有机负荷关系密切。没有前置缺氧段时,负荷在0.30~0.35kgCOD·(kgMLSS·d)~(-1)仅靠维持低DO不会引起丝状菌增殖,小于0.25或大于0.40kgCOD·(kgMLSS·d)~(-1)才会引发丝状菌激增;有前置缺氧段时,负荷小于0.30kgCOD·(kgMLSS·d)~(-1)仅靠维持低DO不会引起丝状菌增殖,大于0.40kgCOD·(kgMLSS·d)~(-1)会引发丝状菌激增。通过优化,提出单级好氧方式运行,同时延长反应时间降负荷到0.25kgCOD·(kgMLSS·d)~(-1)是引发丝状菌增殖的最有效方法。
     建立了过度丝状菌膨胀的抑制方法。发现了单独提高DO或有机负荷等因素难以有效地抑制丝状菌生长,使用前置缺(厌)氧+好氧运行方式是改善沉降性的有效手段。对于缺氧选择器,良好的除磷性能是其有效抑制丝状菌生长的必要条件;在除磷良好且反硝化充分时,进水RBCOD: NO_3~--N比在33.00~66.00可以成功地抑制丝状菌生长,小于33.00或大于66.00时则会抑制失效。对于厌氧选择器,良好的除磷能力对于抑制丝状菌也非常重要。在PO_4~(3-)–P过量时,进水COD:PO_4~(3-)–P比对沉降性的改善速率没有影响。在沉降性恶化和改善过程中,污泥容积指数(SVI)在200mL·g~(-1)左右存在阈值效应,会在短期内骤变。
     发现了温度、pH和DO等环境因子以及SRT、MLSS和进水方式等工艺参数对活性污泥法运行效果、尤其是污泥沉降性的不同影响。短期变温不会改变污泥絮体中丝状菌的含量,污泥沉降性在降温时会因EPS大量分泌而恶化,在升温时会因絮体的疏松而恶化。生物硝化和除磷过程在小幅变温时波动不大,在温度大幅骤降时(22~12°C),都会明显恶化;在温度大幅骤升时(12~22°C),除磷不受影响,硝化严重恶化。硝化、反硝化等许多生化反应都直接消耗或产生碱度,再加上水溶液中普遍存在多种离子对的电离平衡,使得活性污泥混合液有良好的调节pH能力。原水pH在6~9变化时,污泥沉降性波动不大,沉后上清液在酸性环境下较浑浊,在碱性环境下十分清澈。DO的高低不是影响丝状菌生长的重要因素。污泥沉降性随着SRT的降低而改善。硝化速率、放磷量和吸磷量都随着SRT的降低而减小,而比硝化速率、比释磷速率和比吸磷速率都随着SRT的降低而增大。无论是不膨胀污泥还是膨胀污泥,当MLSS过低时污泥絮体都呈离散或半离散状态,沉速较快,泥水分界面模糊,沉后上清液浑浊。当MLSS升高时,各种污泥的沉速都会变慢,泥水分界面变得清晰。验证了由不同进水方式产生的贮存选择作用不能作为一条抑制丝状菌生长的普遍规律。
     通过联合运用试验前期建立的丝状菌污泥微膨胀的引发方法和过度丝状菌膨胀的抑制方法,分别在处理模拟生活污水和实际生活污水的SBR中实现了低DO丝状菌污泥微膨胀的长期稳定维持。当SVI在阈值附近时,虽然可以根据需要灵活地改变沉降性,但是活性污泥系统并不稳定。为了稳定地在SBR中维持微膨胀,建议在SVI处于250~300mL·g~(-1)时再调节运行方式控制污泥沉降性。活性污泥法在低DO下长期运行,有利于短程硝化和同步硝化反硝化(SND)的发生。发现了在每周期时间与进水水质不变时,缺(厌)氧时间与好氧时间的比值是决定SND率大小的重要因素。
Activated sludge process is the most widely applied municipal wastewatertreatment technology. It owns the characteristics of simple configuration andconvenient management, but has the disadvantage of big aeration energyconsumption. What is more, it is suffered by sludge bulking seriously. Sludgebulking has the characteristics of many influence factors, huge damage, difficulttreatment, high occurrence frequency and so on. Our laboratory team had beentreating municipal wastewater by activated sludge process many years, in order totreat sludge bulking more scientifically,"The theory and technique of saving energyachieved by limited filamentous bulking under low dissolved oxygen (DO)" wasproposed firstly by our laboratory team through summarizing practical experiences.Its core content is adjusting the activated sludge system operate under low DOcondition through decreasing aeration rate artificialy. Filamentous bacterium will beproliferated by low DO, meanwhile, sludge bulking extent is prevented fromdamaging normal operation. On the basis of saving energy, effluent quality can beimproved through using the filamentous bacterial physiological characteristics suchas large specific surface area, strong low DO enduring ability and strongdecomposing low substrate ability.
     In order to apply the low DO limited filamentous sludge bulking in practicebetter, lab-scale sequencing batch reactor (SBR) was used through adjustingdifferent operation patterns and conditions. The approaches to induce limitedfilamentous bulking, inhibit excessive filamentous bulking and maintain low DOlimited filamentous bulking were all investigated. Under low DO condition, theinfluences of various normal environmental factors and process parameters onactivated sludge process operation effects, especially the sludge settleability, werealso investigated. Through optimizing the experimental datas, the characteristics ofactivated sludge process had been understood further, and the effective approachesto induce and inhibit filamentous bacterium proliferation were established. Finally,the established approaches to control sludge settleability had been verified in theSBR treating synthetic wastewater and real municipal wastewater, respectively.Meanwhile, the pollutants removal characteristics under low DO limited bulkingwere investigated.
     The approaches to induce limited filamentous bulking were established. It wasfound that sludge settleability and organic loading rate (OLR) had close relationship under low DO condition. When there was no pre-anoxic phase, filamentous bacteriacan not proliferate excessively by adjusting low DO alone when OLR was in therange of0.30~0.35kgCOD·(kgMLSS·d)~(-1), while it will proliferate excessivelywhen OLR was smaller than0.25or larger than0.40kgCOD·(kgMLSS·d)~(-1). Whenthere was pre-anoxic phase, filamentous bacteria can not proliferate excessively byadjusting low DO alone when OLR was smaller than0.30kgCOD·(kgMLSS·d)~(-1),while it will also proliferate excessively when OLR was larger than0.40kgCOD·(kgMLSS·d)~(-1). After optimization, it was proposed the most effectiveapproach to induce filamentous bacteria proliferation was decreasing OLR under0.25kgCOD·(kgMLSS·d)~(-1)by prolonging aeration time without pre-anoxic phase.
     The approaches to inhibit excessive filamentous bulking was established. Itwas found increase DO or OLR alone was difficult to inhibit filamentous bacteria,while operate as anoxic(anaerobic)/aerobic was effective to improve sludgesettleability. For anoxic selector, excellent phosphorus removal ability is necessaryto inhibit filamentous bacteria effectively. When phosphorus removal performancewas well and the anoxic time was sufficient, filamentous bacteria can be inhibitedsuccessfully when influent RBCOD: NO_3~--N ratio was in the range of33.00~66.00,while it will lost when the ratio was smaller than33.00or larger than66.00. Foranaerobic selector, excellent phosphorus removal ability was also important toinhibit filamentous bacteria. When PO_4~(3-)–P was excessive, the influentCOD:PO_4~(3-)–P ratio had no impact on sludge settleability improvement rate. Duringsludge settleability deterioration or improvement processes, sludge volume index(SVI) existed a threshold effect around200mL·g~(-1), where it will change sharply ina short time.
     It was found the environmental factors like temperature, pH, DO and theprocess parameters like sludge retention time (SRT), mixed liquid suspended solids(MLSS), feeding pattern had different impacts on activated sludge processoperation effect, especially the sludge settleability. Temperature variation in a shortterm had no impact on filamentous bacterial content. Sludge settleabilitydeteriorated by the excessive excreted extracellular polymeric substances (EPS)when temperature was decreased, while it will deteriorated by the looser flocsconfiguration when temperature was increased. Nitrification and phosphorusremoval processes fluctuated slightly when temperature varied smal. Theydeteriorated seriously when temperature decreased sharply (22~12°C). Whentemperature incresed sharply (12~22°C), nitrification will deteriorated seriously,while phosphorus removal was not affected. Nitrification, denitrification and many other biochemical reactions can consume or produce alkalinity, with a lot of ionpairs existed ionization equation in the water solution, the activated sludge mixturehad excellent pH adjusting ability. When influent pH was in the range of6~9, pHhad little influence on sludge settleabiliy. The supernatant was turbid under aciditycondition, while it was clear under alkaline condition. DO was not an importantfactor to influence filamentous bacterial proliferation. Sludge settleability improvedwith SRT deduction, nitrification rate, the amounts of PO_4~(3-)–P released and uptakendecreased with SRT deduction, while the specific nitrification rate, specific PO_4~(3-)–Preleasing rate and uptaken rate increased with SRT deduction. No matter non-bulking sludge or bulking sludge, when MLSS was too low the activated sludgewould have the characteristics like dispersed or semi-dispersed configuration, rapidsedimentation rate, fuzzy sludge-water interface, tuibid supernatant. When MLSSwas bigger, the sedimentation rate would decrease, and the sludge-water interfacebecome clear. It was verified the storage selection effect caused by different feedingpatterns can not be acceptted as a general law to inhibit filamentous bacterialproliferation.
     Through combined utilizing the approaches to induce or inhibit filamentousbacterial proliferation estabilished above, the low DO limited filamentous bulkinghad been firstly maintained steadily in SBR treating synthetic municipal wastewaterand real municipal wastewater, respectively. When SVI was close to the thresholdvalue, although sludge settleability could be changed easily, the activated sludgesystem was very unsteady. In order to maintain the limited filamentous bulkingsteadily, it was recommended operation patterns should be altered when SVI was inthe range of250~300mL·g~(-1). Operating under low DO in a long term is benificalfor short-cut nitrification and simultaneous nitrification denitrification (SND) totake place. It was found when each cycle duration and influent quality wereconstant, the value of anoxic (anaerobic) time to aerobic time ratio was a determinefactor for SND ratio.
引文
[1]高婷,于航宇.浅析我国水环境现状及城市污水的处理.生态与环境工程[J],2011,16:197-197
    [2]中华人民共和国住房和城乡建设部.关于全国城镇污水处理设施2010年第四季度建设和运行情况的通报[R].2011.
    [3]彭永臻,郭建华,王淑莹,等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础.环境科学[J],2008,29(12):3342-3347
    [4] Sezgin M, Jenkins D, Parker D S. A Unified Theory of Filamentous activatedSludge Bulking [J]. Water Pollution Control,1978,50(2):362-381.
    [5] Richard M, Hao O, Jenkins D. Growth Kinetics of Sphaerotilus Species andtheir Significance in Activated Sludge Bulking [J]. Journal Water PollutionControl Federation.1985,57(1):68-81.
    [6] Eikelboom D H, Andreadakis A, Andreasen K. Survey of FilamentousPopulations in Nutrient Removal Plants in Four European Countries [J]. WaterScience and Technology.1998,37(4-5):281-289.
    [7] Palm J C, Jenkins D, Parker D S. Relationship Between Organic Loading,Dissolved Oxygen Concentration and Sludge Settleability in the Completely-Mixed Activated Sludge Process [J]. Journal Water Polluttion ControlFederation,1980,52(10):2484-2506.
    [8]刘旭亮,彭永臻,彭赵旭,等.高曝气量引发的活性污泥粘性膨胀研究[J].中国给水排水,2011,27(17):1-5
    [9]高春娣,彭永臻,王淑莹等.氮缺乏引起的非丝状菌活性污泥膨胀[J].环境科学,2001.22(6):61-65
    [10]陈滢,彭永臻,刘敏,等.营养物质对污泥沉降性能的影响及污泥膨胀的控制[J].环境科学,2004,25(6):54-58
    [11]王建芳,赵庆良,林佶侃,等.低溶解氧和磷缺乏引发的非丝状菌污泥膨胀及控制[J].环境科学,2007,28(3):545-549
    [12]高春娣,彭永臻,潼川哲夫,等.营养物质缺乏引起的丝状菌污泥膨胀及其控制[J].水处理技术,2003,29(3):159-162
    [13] Anette A, Hallvard, Greta B. The Effect of Sulphide and Organic Matter onthe Nitrification Activity in A Biofilm Process [J]. Water Science andTechnology,1998,37(1):115-122
    [14]崔洪升,白晓慧,李刚,等.寒冷地区城市污水处理厂污泥膨胀及其控制方法[J].哈尔滨建筑大学学报.2001,34(2):79-82
    [15] Knoop S, Kunst S. Influence of tamperature and sluge loading on activatedsludge settling, especially on MICROTHEIX PARVICELLA [J]. WaterScience and Technology,1998.37(4~5):27-35
    [16]杨培,王淑莹,顾升波,等.中试SBR长期运行中粘性膨胀现象及原因分析[J].环境科学学报,2010,30(7):1384-1389
    [17]丁峰,彭永臻,支霞辉. SBR法处理工业废水中pH值对污泥膨胀的影响[J].环境工程,2004,22(1):29-32
    [18]王淑莹,白璐,宋乾武,等.低氧丝状菌污泥微膨胀节能方法[J].北京工业大学学报,2006,32(12):1082-1086
    [19] Grau P, Da-Rin B P. Management of Toxicity Effects in A Large WastewaterTreatment Plant [J]. Water Science and Technology,1997,36(2-3):1-8
    [20]周利,彭永臻,高春娣,等. SBR工艺中污泥负荷对丝状菌污泥膨胀的影响[J].中国给水排水,1999,15(6):11-13
    [21] Chao A C, Keinath T M. Influence of process loading indensity on sludgeclarification and thickening charateristics [J]. Water Research,1979,13(12):1213-1223
    [22]王凯军.活性污泥膨胀的机理与控制(M).中国环境科学出版社.1992
    [23] Lau Q A, Strom P E, Jenkins D. Growth kinetics of Sphaerotilus natans and afloc former in pure and continuous culture [J]. Journal Water PollutionControl Federation,1984,56(1):41-51
    [24] Martins A M P, Van Loosdrecht M C M, Heijnen J J. Effect of feeding patternand storage on the sludge settleability under aerobic conditions [J]. WaterResearch,2003,37(11):2555-2570
    [25] Ciggin A S, Karahan O, Orhon D. Effect of feeding pattern on biochemicalstorage by activated sludge under anoxic conditions [J]. Water Research,2007,41(4):924-934
    [26] Chudoba J, Grau P, Ottovla V. Control of activated sludge filamentous bulking-2Selection of microorganisms by means of a selector [J]. Water Research,1973,7(10):1398-1406
    [27] Casey T G, Wentzel M C, Ekama G A. Fliamentous organism bulking innutrient removal activated sludge systems. Paper11;A biochemical/microbiological model for proliferation of anoxic-aerobic(AA) filamentousorganisms [J]. Water S A,1999,25(4):443-451
    [28] Andreasen K, Nielsen P. Growth of Microthrix parvicella in nutrient removalactivated sludge plants: studies of in situ physiology [J]. Water Research,2000,34(5):1559-1569.
    [29] Seka A M, van de Wiele T, Verstraete W. Feasibility of a multi-componentadditive for efficient control of activated sludge filamentous bulking [J].Water Research,2001,35(12):2995-3003
    [30] Saayman G B, Schutte C F, van Leeuwen J. The effect of chemical bulkingcontrol on biological nutrient removal in a full scale activated sludge plant [J].Water Science and Technology,1996,34(3-4):275-282.
    [31] Hwang Y, Tanaka T. Control of Microthrix parvicella foaming in activatedsludge [J]. Water Research,1998,32(5):1678-1686.
    [32] Eikelboom D. H, Grovenstein J. Control of bulking in a full-scale plant byaddition of talc (PE8418)[J]. Water Science and Technology,1998,37(4-5):297-301.
    [33] Chudoba J, Blaha J, Madera V. Control of activated sludge filamentousbulking~III. Effect of sludge loading [J]. Water Research,1974,8(4):231-237
    [34] Still D A, Ekama G A, Wentzel M C, et al Filamentous organism bulking innutrient removal activated sludge.Paper2stimulation of the selection of theselector effect under aerobic conditions [J]. Water S A,1996,22(2):97-118
    [35] Martins A M P, Pagilla K, Heijnen J J, et al. Filamentous bulking sludge-acritical review [J]. Water Research,2004,38(4):793-817
    [36] Kruit J, Hulsbeek J, Visser A. Bulking sludge solved [J]. Water Science andTechnology,2002,46(1~2):457-464
    [37]刘娟,杨敏,齐嵘,等.污泥膨胀状态下原生动物群落结构分析[J].环境工程学报,2009,3(2):229-233
    [38]龙腾锐,何强,林刚.活性污泥中丝状菌与絮体结构的关系研究[J].中国给水排水,2000,16(2):5-8
    [39]王凯军.高负荷活性污泥膨胀控制的试验研究[J].给水排水.1999,25(11):30-33
    [40]张小玲,李斌,杨永哲,等.低DO下的短程硝化及同步硝化反硝化[J].中国给水排水,2004,20(5):13-16
    [41]陈滢,彭永臻,杨向平,等,低溶解氧SBR除磷工艺研究[J].中国给水排水,2004,20(8):40-42
    [42]李军,彭永臻,顾国维,等. SBBR同步硝化反硝化处理生活污水的影响因素[J].环境科学学报,2006,26(5):728-733
    [43]郭建华,王淑莹,彭永臻,等.低溶解氧污泥微膨胀节能方法在A/O中的试验验证[J].环境科学,2008,29(12):3348-3352
    [44] Guo J H, Peng Y Z, Peng C Y, et al. Energy saving achieved by limitedfilamentous bulking sludge under low dissolved oxygen [J]. BioresourceTechnology,2010,101(4):1120-1126
    [45] Guo J H, Peng Y Z, Wang S Y, et al. Stable limited filamentous bulkingthrough keeping the competition between floc-formers and filaments inbalance [J]. Bioresource Technology,2012,103(1):7-15
    [46] Smolders G J F, vander Meij J, van Loosdrecht M C M, et al. Stoichiometricmodel of the aerobic metabolism of the biological phosphorus removalprocess [J]. Biotechnology Bioengineering,1994,44(7):837-848.
    [47]国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002
    [48] Vaiopoulou E, Melidis P, Aivasidis A. Growth of filamentous bacteria in anenhanced biological phosphorus removal system [J]. Desalination,2007,213(1-3):288-296
    [49] Tsang Y F, Chua H, Sin S N, et al. A novel technology for bulking control inbiological wastewater treatment plant for pulp and paper making industry [J].Biochemical Engineering Journal,2006,32(3):127-134.
    [50] Huang L, Ju L W. Sludge settling and online NAD(P)H fluorescence profiles inwastewater treatment bioreactors operated at low dissolved oxygenconcentrations [J]. Water Research,2007,41(9):1877--1884.
    [51] Schuler A. J, Jiang H. Causes of variable biomass density and its effects onsettleability in full-scale biological wastewater treatment systems [J].Environmental Science and Technology,2007,41(5):1675-1681.
    [52] Schuler A J, Jassby D. Filament content threshold for activated sludge bulking:Artifact or reality [J]? Water Research,2007,41(19):4349-4435
    [53] Ahn J, Daidou T, Tsuneda S, et al. Transformation of phosphorus and relevantintracellular compounds by a phosphorus-accumulating enrichment culture inthe presence of both the electron acceptor and electron donor [J].Biotechnology Bioengineering,2002,79(1):83-93.
    [54] Ni B J, Yu H Q. Kinetic modeling microbial storage process in activated sludgeunder anoxic conditions [J]. Chemical Engineering Science,2008,63(10):2785-2792
    [55] Brdjanovic D, Slamet A, Van Loosdrecht M C M, et al. Impact of excessiveaeration on biological phosphorus removal from wastewater [J]. WaterResearch,1998,32(1):200-208.
    [56] Dircks K, Henze M, van Loosdrecht M C M, et al. Storage and degradation ofPoly-β-hydroxybutyrate in activated sludge under aerobic conditions [J].Water Research,2001,35(9):2277-2285
    [57] Caravelli A, Giannuzzi L, Zaritzky N. Effect of chlorine on filamentousmicroorganisms present in activated sludge as evaluated by respirometry andINT-dehydrogenase activity [J]. Water Research,2004,38(9):2395-2405
    [58] Agridiotis V, Forster C F, Carliell-Marquet C. Addition of Al and Fe saltsduring treatment of paper mill effluents to improve activated sludge settlementcharacteristics [J]. Bioresource Technology,2007,98(15):2926-2934
    [59]孙剑晖,闫怡新.循环式活性污泥法中厌氧生物选择区的运行条件研究[J].重庆环境科学,2003,25(9):38-43
    [60]王嵘,王华,万金保.膜生物反应器污泥培养过程中丝状菌污泥膨胀的控制[J].中国给水排水,2009,25(3):46-49
    [61]李昌湖,范举红,徐子松.桐乡市城市污水处理厂对丝状菌膨胀的控制实践[J].中国给水排水,2008,24(22):95-97
    [62]陈梅雪,杨敏,齐嵘,等.实时控制条件下外加碳源用于低C/N比养殖废水处理中污泥膨胀的控制研究[J].环境科学学报,2007,27(1):59-63
    [63]杨冬梅.城市污水处理厂污泥膨胀原因分析及控制方法[J].绿色科技,2011,6(6):56-58
    [64] Jolis D, Mitch A A, Marneri M, et al. Effects of anaerobic selector hydraulicretention time on biological foam control and enhanced biological phosphorusremoval in a pure-oxygen activated sludge system [J]. Water EnvironmentResearch,2007,79(5):472-478
    [65] Auvray F, van Hullebusch E D, Deluchat V, et al. Laboratory investigation ofthe phosphorus removal (SRP and TP) from eutrophic lake water treated withaluminium [J]. Water Research,2006,40(14):2713-2719
    [66] Casey T G, Wentzel M C, Loewenthal R E, et al. A hypothesis for the cause oflow F/M filament bulking in nutrient removal activated sludge systems [J].Water Research,1992,26(6):867-879
    [67] Henze M, Grady C P L Jr, Gujer W, et al,“Activated sludge model No.1”.(IAWPRC scientific and tech report No.1)[M]. London: IAWPRC,(1987).
    [68] Filipe C, Daigger G J R C. Stoichiometry and kinetics of acetate uptake underanaerobic conditions by an enriched culture of phosphorus-accumulatingorganisms at different pHs [J]. Biotechnology and bioengineering,2001,76(1):32-43.
    [69] Seviour R T, Mino T, Onuki M. The microbiology of biological phosphorusremoval in activated sludge systems.[J]. FEMS Microbiology Reviews,2003,27(1):99-127
    [70] Bond P L, Rees G N.(1999) Microbiological aspects of phosphorus removal inactivated sludge systems. In: Microbiology of Activated Sludge (Seviour, R.J.and Blackall, L.L., Eds.), pp.227-256. Kluwer Academic Publishers,Dordrecht
    [71] Gaval G, Pernelle J J. Impact of the repetition of oxygen deficiencies on thefilamentous bacteria proliferation in activated sludge [J]. Water Research,2003,37(9):1991-2000.
    [72] Martins A M P, Heijnen J J, van Loosdrecht M C M. Bulking sludge inbiological nutrient removal systems [J]. Biotechnology and bioengineering,2004,86(2):125-135
    [73] Li N, Wang X, Ren N, et al. Effects of solid retention time on sludgecharacteristics in enhanced biological phosphorus removal reactor [J].Chemical and Biochemical Engineering Quarterly,2008,22(4):453-458
    [74] Oehmen A, Vives M T, Lu H B, et al. The effect of pH on the competitionbetween polyphosphate-accumulating organisms and glycogen-accumulatingorganisms [J]. Water Research,2005,39(15):3727-3737
    [75] Seviour R J, Mino T, Onuki M. The microbiology of biological phosphorusremoval in activated sludge systems [J]. FEMS Microbiology Reviews,2003,27(1):99-127
    [76] Depoorter M P, Torfs F, Bogaert H, et al. The combined effect of influentquality and anoxic selector on activated-sludge settleability [J]. Environmentaltechnology,1994,15(10):957-967
    [77] Cao Y S, Teo K H, Yuen W A, et al. Performance analysis of anoxic selector inupgrading activated sludge process in tropical climate [J]. Water Science andTechnology,2005,52(4):27-37
    [78] Flores-Alsina X, Comas J, Roda IR, et al. Evaluation of plant-wide WWTPcontrol strategies including the effects of filamentous bulking sludge [J].Water Science and Technology,2009,60(8):2093-2103
    [79] Tampus M V, Martins A M P, van Loosdrecht M C M. The effect of anoxicselectors on sludge bulking [J]. Water Science and Technology,2004,50(6):261-268
    [80] Andreasen K, Agertved J, Petersen J, et al. Improvement of sludge settleabilityin activated sludge plants treating effluent frompulp and paper industries [J].Water Science and Technology,1999,40(11-12):215-222
    [81] Mino T, van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistryof the enhanced biological phosphate removal process [J]. Water Research,1998,32(11):3193-3207
    [82] Orhon D, Cokgor E U, Sozen S. Experimental basis for the hydrolysis ofslowly biodegradable substrate in different wastewaters [J]. Water Science andTechnology,1999,39(1):87-95
    [83] Bliss P, Barnes D. Modeling nitrification in plant scale activated sludge [J].Water Science and Technology,1986,18(6):139-148
    [84] Pochana K, Keller J. Study of factors affecting simultaneous nitrification anddenitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68
    [85]王赛,王淑莹,巩有奎,等.同步硝化反硝化工艺中DO浓度对N2O产生量的影响[J].环境工程学报,2011,5(1):33-37
    [86] Murnleitner E, Kuba T, van Loosdrecht M C M, et al. An integrated metabolicmodel for the aerobic and denitrifying biological phosphorus removal [J].Biotechnology and bioengineering,1997,54(5):434-450
    [87] Wang D B, Li X M, Zeng G M, et al. Biological phosphorus removal insequencing batch reactor with single-stage oxic process [J]. BioresourceTechnology,2008,99(13):5466-5473.
    [88] Wang D B, Li X M, Yang Q, et al. The probable metabolic relation betweenphosphate uptake and energy storages formations under single-stage oxiccondition [J]. Bioresource Technology,2009,100(17):4005-4011
    [89] Chudoba J, Ottova V, Madera V. Control of activated sludge filamentousbulking-ⅠEffect of the hydraulic regime or degree of mixing in an aerationtank [J]. Water Research,1973,7(9):1163-1182.
    [90]王淑莹,高春娣,彭永臻,等. SBR法处理工业废水中有机负荷对污泥膨胀的影响[J].环境科学学报,2000,20(2):129-133
    [91] Beccari M, Majone M, Massanisso P, et al. A bulking sludge with high storageresponse selected under intermittent feeding [J]. Water Research,1998,32(11):3403-3413.
    [92] Beun J J, Verhoef E V, Van Loosdrecht M C, et al. Stoichiometry and kineticsof poly-beta-hydroxybutyrate metabolism under denitrifying conditions inactivated sludge cultures [J]. Biotechnology Bioengineering,2000,68(5):496-507.
    [93] Mamais D, Jenkins D. The effects of MCRT and temperature on enhancedbiological phosphorus removal [J]. Water Science and Technology,1992,26(5-6):955-965.
    [94] Brdjanovic D, Logemann S, van Loosdrecht M C M, et al. Infuence oftemperature on biological phosphorus removal process and molecularecological studies [J]. Water Research,1998,32(4):1035-1048
    [95] Choi E, Rhu D, Zuwhan Y, et al. Temperature Effects on Biological NutrientRemoval System With Weak Municipal Wastewater [J]. Water Science andTechnology,1998,37(9):219-226.
    [96] Akila G, Chandra T S. A novel cold tolerant clostridium strain PXYL1isolatedfrom a psychrophilic cattle manure digester that secretes thermolabilexylanase and cellulose [J]. FEMS Microbiology letters,2003,219:63-67
    [97] Liao B Q, Allen D G, Droppo I G, et al. Surface property of sludge and theirrole in bioflocculation and settleability [J]. Water Research,2001,35(2):339-350
    [98] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for thetreatment of wastewater with high ammonia concentration [J]. Water Research,2003,37(6):1371-1377.
    [99] Kim D J, Chang J S, Lee D I, et al. Nitrification of high strength ammoniawastewater and nitrite accumulation characteristics [J]. Water Science andTechnology,2003,47(11):45-51.
    [100]Head M. A, Oleszkiewicz J. A. Bioaugmentation for Nitrification at ColdTemperatures [J]. Water Research,2004,38(3):523-520
    [101]Helmer C, Kunst S. Low Temperature Effects on Phosphorus Release andUptake by Microorganisms in Ebpr Plants [J]. Water Science and Technology,1998,37(4-5):531-539
    [102]白璐,王淑莹,宋乾武,等.不同温度低溶解氧条件下活性污泥法处理污水的效果研究[J].安全与环境工程,2006,13(4):39-42
    [103]李艳娜,周青.丝状菌污泥膨胀的生态学解析[J].中国生态农业学报,2008,16(3):794-798
    [104]杨庆,彭永臻,王淑莹,等. SBR法低温短程硝化实现与稳定的中试研究[J].化工学报,2007,58(11):2901-2905
    [105]Blackburne R, Yuan Z G, Keller J. Demonstration of nitrogen removal vianitrite in a sequencing reactor treating domesticwastewater [J]. WaterResearch,2008,42(8-9):2166-2176
    [106]Yang Q, Peng Y Z, Liu X H, et al. Nitrogen Removal via Nitrite fromMunicipal Wastewater at low Temperatures using Real-Time Control toOptimize Nitrifying Communities [J]. Environmental.Science and Technology,2007,41(23):8150-8164.
    [107]Lee Y, Oleszkiewicz J A. Effects of predation and ORP conditions on theperformance of nitrifiers in activated sludge systems [J]. Water Research,2003,37(17):4202-4210.
    [108]Marsili-libelli S. Control of SBR switching by fuzzy pattern recognition [J].Water Research,2006,40(5):1095-1107
    [109]Zhang C, Chen Y, Liu Y. Effect of pH on enzyme activity involved inenhanced biological phosphorus removal system [J]. Abstracts/Journal ofBiotechnology,2008(9),136:647-677.
    [110]Oehmen A, Vives M T, Lu H B, et al. The effect of pH on the competitionbetween polyphosphate-accumulating orgamisms and glycogen-accumulatingorganisms [J]. Water Research,2005,39(15):3727-3737
    [111]Rob M R, van D B, Jan F M, et al. Assessment of activated sludge stability inlab-scale experiments [J]. Journal of Biotechnology,2009,141(3-4):147-154.
    [112]Chen Y G, Gu G W. Effect of changes of pH on the anaerobic/aerobictransformations of biological phosphorus removal in wastewater fed with amixture of propionic and acetic acids [J]. Journal of Chemical Technology andBiotechnology,2006,81(6):1021-1028
    [113]Etterer T, Wilderer P A. Generation and properties of aerobic granular sludge[J]. Water Science and Technology.2001,43(3):19-26
    [114]彭永臻,吴学蕾,马勇. A/O中试工艺中亚硝酸氮积累现象的消失与重现[J],环境化学,2007,26(1):17-20
    [115]李军,彭永臻,顾国维,等. SBBR同步硝化反硝化处理生活污水的影响因素[J],环境科学学报,2006,26(5):728-733
    [116]Guo J H, Peng Y Z, Wang S Y, et al. Long-term effect of dissolved oxygen onpartial nitrification performance and microbial community structure [J],Bioresource Technology,2009,100(11):2796-2802
    [117]闫骏,王淑莹,高守有,等.低溶氧下低C/N值生活污水的同步硝化反硝化[J],中国给水排水,2007,23(3):44-48
    [118]Henze M, Gujer W, Mino T, et al. Activated sludge model NO.2D ASM2D [J].Water Science and Technology,1999,39(1):165-218
    [119]Guo J H, Yang Q, Peng Y Z., et al. Biological nitrogen removal with real-timecontrol using step-feed SBR technology [J]. Enzyme MicrobiologicalTechnology.2007,40(6):1564–1569,
    [120]Pav elj N, Hvala N, Kocijan J, et al. Experimental design of an optimal phaseduration control strategy used in batch biological wastewater treatment [J].ISA Trans,2001,40(1):41-56
    [121]王亚宜,王淑莹,彭永臻,等.污水有机碳源特征及温度对反硝化聚磷的影响[J],环境科学学报,2006.26(2):186-192
    [122]Kuba T, Van Loosdrecht M C M, Murnleitner E, et al. Kinetics andstoichiometry in the biological phosphorus removal process with short cycletimes [J]. Water Research,1997,31(4):918-928
    [123]Kuba T, Murnleitner E, Van Loosdrecht M C M, et al. A metabolic model forbiological phosphorus removal by denitrifying organisms [J]. Biotechnologyand Bioengineering,1996,52(6):685-695
    [124]Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake inbiological phosphorus removal activated sludge [J]. Water Research,1999,33(8):1871-1999
    [125]李勇智,彭永臻,张艳萍,等.硝酸盐浓度及投加方式对反硝化除磷的影响[J].环境污染与防治,2003,25(6):323-325
    [126]Martin-Cereceda M, Serrano S, Guinea A. A comparative study of ciliatedprotozoa communities in activated-sludge plants [J]. FEMS MicrobiologyEcology,1996,21(4):267-276.
    [127]Liao B Q, Allen D G, Leppard G G, et al. Interparticle interactions affectingthe stability of sludge flocs [J]. Journal of Colloid and Interface Science,2002,249(15):372-380
    [128]Rosenberger S, Witzig R, Manz W, et al. Operation of different membranebioreactors: Experimental results and physiological state of the micro-organisms[J]. Water Science and Technology,2000,41(10-11):269-277
    [129]Yoon S H, Kim H S, Yeom I T. The optimum opera-tional condition ofmembrane bioreactor (MBR): Cost estimation of aeration and sludge treatment[J].Water Research,2004,38(1):37-46
    [130]彭永臻.污泥龄与污泥膨胀及沉降性能的关系[J].中国给水排水.1996,12(4):24-26
    [131]Li X Y, Yuan Y, Wang H W. The hydrodynamics of biological aggregates ofdifferent sludge ages: an insight into the mass transport mechanism [J].Environment Science Technology,2003,37(2):292-299
    [132]Moussa M S, Hooijmans C M, Lubberding H J, et al. Modelling nitrification,heterotrophic growth and predation in activated sludge [J]. Water Research,2005,39(20):5080-5098
    [133]Lee D, Kim M, Chung J. Relationship between solid retetion time andphosphorus removal in anaerobic-intermittent aeration process [J]. Journal ofBioscience and Bioengineering,2007,103(4):338-344
    [134]Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model formolecular microbial ecology [J]. Annual Review of Microbiology,2001,55(1):485-529
    [135]Brown M J, Lester J N. Metal removal in activated sludge the role of bacterialextracellular polymers [J]. Water Research,1979,13(1):817-837.
    [136]Dirk R I, Ewing B B. Evaluation of activated sludge thickening theories [J].Journal of the Sanitary Engineering Division,1967,93(4):9-30
    [137]Dupont R, Dahl C. A one-dimensional model for a secondary settlingtankincluding density current and short-circuiting [J]. Water Science andTechnology,1995,31(2):215-224.
    [138]Vesiling P A. Theoretical consideration: Design of prototype thickeners frombatch settling test [J]. Water and Sewage Works,1968,115(7):302-307.
    [139]Cho S H, Colin F, Sardin M, et al. Settling velocity model of activated sludge[J]. Water Research,1993,27(7):1237-1242
    [140]Otterpohl R, Freund M. Dynamic models for clarifiers of activated sludgeplants with dry and wet weather flows [J]. Water Science and Technology,1992,26(5-6):1391-1400.
    [141]Wett B A. Straight interpretation of the solids flux theory for a three-layersedimentation model [J]. Water Research,2002,36(12):2949-2958.
    [142]Bye C M, Dold P L. Evaluation of correlations for zone settlingvelocityparameters based on sludge volume indextype measured and consequences insettlingtank design [J]. Water Environment Research1999,71(7):1333-1344.
    [143]Schuler A J, Jang H. Density effects on activated sludge zone settlingvelocities [J]. Water Research,2007,41(8):1814-1822
    [144]Bye C M, Dold P L. Sludge volume index settleability measures: effect ofsolids characteristics and test parameters [J]. Water Environment Research,1998,70(1):87-93.
    [145]Fuchs A, Staudinger G. Characterising the clarification of the supernatant ofactivated sludges [J]. Water Research,1999,33(11):2527-2534.
    [146]Majone M, Massanisso P, Carucci A, et al. Influence of storage on kineticselection to control aerobic filamentous bulking [J]. Water Science andTechnology,1996,34(5–6):223-232
    [147]Ciggin A S, Karahan O, Orhon D. Effect of high nitrate concentration on PHBstorage in sequencing batch reactor under anoxic conditions [J]. BioresourceTechnologh,2009,100(3):1376-1382
    [148]彭永臻.侯红勋.孙洪伟.等. A2/O氧化沟工艺中NO3--N对生物除磷影响[J].哈尔滨工业大学学报,2008,40(8):1311-1314
    [149]王亚宜,彭永臻,王淑莹,等.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J].环境科学,2004,25(4):54-58
    [150]吴昌永,彭永臻,彭轶. A2/O工艺的反硝化除磷特性研究[J].中国给水排水,2008,24(15):11-14
    [151]Hu L L, Wang J L, Wen X H, et al. Study on performance characteristics ofSBR under limited dissolved oxygen [J]. Process Biochemistry,2005,40(1):293-296
    [152]彭永臻,孙洪伟,杨庆.短程硝化的生化机理及其动力学[J].环境科学学报,2008,28(5):817-824
    [153]Dosta J. Gali A. El-Hadj B, et al. Operation and model description of asequencing batch reactor treating reject water for biological nitrogen removalvia nitrite [J]. Bioresource Technology,2007,98(11):2065-2075
    [154]Ma Y, Peng Y Z, Wang S Y, et al. Achieving nitrogen removal via nitrite in apilot-scale continuous pre-denitrification plant [J]. Water Research,2009,43(3):563-572
    [155]Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification anddenitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology Bioengineering,2003,83(6):706-720

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700