用户名: 密码: 验证码:
生物流化床养殖污水处理系统的设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,随着我国水资源越来越紧缺、加大环境污染控制力度以及人们对食品安全和品质的要求增高,为实现水产养殖的可持续发展战略,工厂化循环水养殖已成为一种趋势。养殖污水处理是工厂化循环水养殖的基础,而生物过滤是养殖污水处理的核心。其中生物过滤器的准确选择又至关重要。因此,开展生物过滤器的研究势在必行。生物流化床(CB FSB)是一种极具开发潜力和竞争力的生物过滤器。
     本文采用理论计算、实验测量以及数值模拟相结合的方法对CB FSB的流动特性展开研究,应用于CB FSB的结构优化以及放大研究。在此基础上设计一套实验室规模的模拟养殖污水处理系统。并分别研究CB FSB在淡水、海水系统中生物过滤功能的启动过程,以及操作条件对养殖污水处理效果的影响。期望数值模拟的应用可以在一定程度上代替传统的模型试验,达到节约研究成本、缩短试验周期目的;而实验研究为CB FSB在生产实践中的应用提供技术支撑。研究内容主要分为五部分:
     1采用理论计算和实验测量方法,研究CB FSB内部流态、最小流化速度以及流速与膨胀率的关系。研究表明:CB FSB正常运行时,床体内部处于散式流态化,滤料均匀分布,床层上界面平稳而清晰。滤料粒径控制在恰当范围内(0.1~0.7mm)时,Ergun方程可以较好的预测CB FSB的最小流化速度。表观水流流速与床层膨胀率的关系不受滤料静止高度的影响。滤料的大小、密度、硬度是影响流态化特性的主要参数。膨胀率随表观流速的增大呈非线性增长;滤料粒径和密度越大,达到相同流化状态所需要的流速越大,系统能耗越多。因此,在选择滤料时,要综合考虑污水处理的效率、系统能耗以及系统磨损。
     2为确保数值模拟与实际情况相符,采用数值模拟与实验验证相结合的方法,探讨模拟过程中理论模型的设置,包括:滤料在CB FSB中的受力、多相流模型、湍流模型。着重研究滤料粒径的确定和曳力模型的选择对模拟结果的影响。研究表明:在CB FSB液固两相流的数值模拟过程中,采用欧拉两相流模型为多相流模型,RNG k-ε模型为湍流模型,Gidaspow为曳力模型,Syamlal-Obrien为颗粒粘度系数,石英砂颗粒粒径设为0.55mm时,模拟结果与实际情况最相符。因此,将以上结果作为研究其他工况时数值模拟的基本设置。此外,将实验测量与数值模拟结果比较,还发现:在较低流速下,膨胀率实验值小于模拟值;在较高流速下,膨胀率实验值大于模拟值。因此,流量控制在离实测与模拟交叉点越近的范围,模拟与实测的误差越小。一般,流化床膨胀率的操作范围恰好分布在离交叉点最近的距离,模拟结果误差很小,在5-15%。
     3采用数值模拟与正交实验相结合的方法,对CB FSB的关键结构参数:锥高、锥距、缝宽进行调整,实现结构优化。在等比放大理论基础上对半工业化规模CB FSB的内部流动特性做出初步探讨。研究表明:各结构参数锥高、锥距、缝宽对膨胀率的影响程度依次减弱。将膨胀率作为评价指标时,结构参数的最佳组合为:锥高6cm、锥距1.5、缝宽0.1cm。优化后CB FSB结构设计更加合理,布水效果更好。石英砂颗粒不仅径向分布均匀,而且在轴向上也分布均匀。样机实验发现:结构优化后的CB FSB,性能明显提高,膨胀率平均提高约18.3%。半工业化CB FSB床层膨胀率随进水流量也呈线性关系,与实验室规模CB FSB中相似。通过预测放大装置的膨胀率与流量关系,可指导放大系统设计过程中流量的控制以及水泵的匹配。结合以上三章研究内容,设计了一套实验室规模的CB FSB模拟养殖污水处理系统,进行制作样机。进一步验证该系统的养殖污水处理效果。
     4采用实验测定的方法,研究CB FSB生物过滤功能启动过程中氨氮、亚硝态氮等指标的变化趋势以及系统启动完成的时间,并比较了淡水和海水系统的启动过程。为CB FSB在生产实践中的生物过滤功能的启动提供技术支撑。研究表明:结合氨氮去除率和亚硝态氮的变化趋势,作为判断CB FSB的生物过滤功能启动过程完成与否的标准。实验发现,淡水与海水养殖污水处理系统相比,CBFSB生物过滤功能的启动过程中各物质的变化趋势相似,只是时间上有差异,淡水和海水系统生物过滤功能启动完成的时间分别为54天(约8周)、73天(约10周)。同时,由于本研究中配置底物浓度较低,二者的最终处理效果也无明显差异。启动完成的生物过滤器的氨氮日均降解率达到823g/m~3.d。另外发现:系统生物除磷效果较弱,还有硝态氮积累现象,建议与其他类型的生物过滤器联合使用才能彻底体现系统的污水处理效果。
     5采用实验测定的方法,研究操作条件(膨胀率和C/N)对系统处理污水效果的影响。研究表明:膨胀率在50%-100%的范围内时,抗冲击负荷能力和污水处理效果均随着膨胀率的增大而增强。膨胀率为100%时,CB FSB的抗冲击负荷能力最强,此时系统对应的单位体积总氨氮转换率高达881.3g/m~3.d。随着C/N的增大,系统处理养殖污水能力降低;除无机磷外,出水中其他物质的浓度均升高,即水环境越来越不利于养殖对象的生长。膨胀率为100%,进水氨氮浓度为3.5mg/L,C/N在0~2时,单位体积氨氮去除率VTR达到823-881g/m~3.d。高于冷水养殖系统中同类型的实验室和工业化规模的生物过滤器。与实验条件类似的温水养殖系统的流化床相比,VTR也处于最大值附近。说明优化后的CB FSB的污水处理效果较高。达到了本次研究的目的。
In recent years, with increasingly lacking of water resources, highlightingenvironmental issues, and demand for food safety and quality, recirculatingaquaculture system will be more and more popular to realize the sustainabledevelopment strategy of aquaculture. The treatment of aquaculture wastewater is thebase of recirculating aquaculture system, and the biofiltration is the key of treatmentof aquaculture wastewater. The selection of biofilters is critical for recirculatingaquaculture system. So the study on biofilters will get more and more attention. Andthe Cyclo-Bio Fluidized Sand Beds (CB FSB) is developing potential andcompetitive.
     The dynamics of CB FSB was studied by the combination of theoreticalcalculation, experimental measurement and simulation. Further, the structure could beoptimized and the dynamics of large-scale CB FSB will be forecasted. The lab-scaleCB FSB recirculating aquaculture system was designed basing on the former study.The forming process of biofiltration in freshwater and seawater was studied. And theinfluence of operating condition on treatment of wastewater was studied. To a certainextent, model test could be instead by simulation, the cost and the time of study willbe cut down. The experimental study could guide the application of CB FSB inaquaculture. There were five parts of this study.
     1Flow pattern, minimum fluidization velocity, relationship between velocity andbed expansion of CB FSB were studied by the method of theoretical calculation andexperimental measurement. The results show that the CB FSB was in particulatefluidization; the particles were distributed uniformly; the interface was steady andclear. The minimum fluidization velocity of CB FSB was predicted by Ergun equationwhen the diameter of particles was in0.1-0.7mm. The relationship between velocityand bed expansion of CB FSB was in depended of static height of particles. The key parameters of influencing the dynamics in CB FSB included: diameter, density andhardness of particles.
     2The setting of models in simulation was studied to insure the anastomosis ofsimulation and actual situation, including force analysis of particles, multiphasemodel and turbulence model. The diameter of particle and the drag force in simulationwere emphatically studied. The results show that when Eulerian two-phases modelwas selected as multiphase model, RNG k-ε as turbulence, Gidaspow as drag forcecoefficient, Syamlal-Obrien as granular kinetics viscosity, the diameter of silica sandas0.55mm in simulation, the results of simulation was well consistent with theexperimental measurement. So they were as the basic setting in other conditions.Besides, the bed expansion at a lower flow rate was smaller in the experiment than inthe simulation; the opposite was true for a higher flow rate. If the flow rate was nearto the crossing point, the error was smaller. Generally, the bed expansion wascontrolled near the crossing point, the error was in the range of5%-15%.
     3The key parameters: cone height, cone diameter and slot width were adjustedto optimize the structure of CB FSB by the method of simulation and orthogonal test.The preliminary study of dynamics in pilot-scale CB FSB was done based on theup-scaling theory. The results show that the importance of cone height, cone diameterand slot width to bed expansion was less and less. The structure of optimized CB FSBwas more reasonable, particles distributed more uniformly, and the bed expansion waslarger than original by the experiment of prototype. The dynamics in pilot-scale wassimilar to the lab-scale CB FSB by simulation. A lab-scale CB FSB recirculatingaquaculture system was designed basing on the former study. And it was producedand was validated the effect of wastewater treatment.
     4The forming process of biofiltration in freshwater and seawater was studied.This part of experimental study could guide the application of CB FSB in aquaculture.The results show that the standard of complete of forming process of biofiltration wascombination of steady TAN remove rate and concentration of NO2-N. The trend ofdissolved waste was similar in freshwater and seawater during the forming process ofbiofiltration. However, the complete time was different, the freshwater54days (about 8weeks), the seawater73days (about10weeks). There was no significant differenceon the final effect of wastewater treatment. The reason maybe was that theconcentration of dissolved waste was low. Besides, the remove of phosphorus wasweak and the NO3-N was accumulated. The combination of other biofilters and CBFSB was proposed to treat the wastewater better.
     5The influence of operating condition (bed expansion and C/N) on treatment ofwastewater was studied. The results show that the anti-shock loading capability andthe effect of wastewater treatment were stronger as the increase of bed expansion,where the bed expansion was in the range of50%-100%. With the increase of C/N,the capacity of treat wastewater reduced. The effluent concentration of dissolvedwaste increased besides phosphorus, which was harmful to the growth of fish. Thevolumetric TAN convention rate of CB FSB system was823-881g/m~3.d with C/Nfrom0to2, when the bed expansion was100%and the influent concentration ofNH4-N was3.5mg/L. It was higher than the similar biofilters in cold water system.And it was also near to the maximum VTR in warm water system at the similarcondition. All of them indicated that the effect of waste water in optimized CB FSBwas quite high. The purpose of the study was achieved.
引文
[1]苗卫卫,江敏.我国水产养殖对环境的影响及其可持续发展.农业环境科学学报,2007,26(增刊):319~323
    [2]农业部渔业局养殖课题组.我国主要水产养殖方式研究.中国水产,2006,(2):11~13
    [3]丁勇良.世界工业化养育发展动向.河南水产,1999,(1):33~34
    [4]雷霁霖.关于当前我国北方沿海工厂化养鱼的一些问题和建设.现代渔业信息,2002,4(17):4~10
    [5] Lawson T B. Fundamentals of Aquacultural Engineering. Chapman&Hall,NY,1995
    [6] Bovendeur J, Eding E H, Henken A M. Design and performance of water recirculation systemsfor high-density culture of the African catfish. Aquaculture,1987,63:329~353
    [7]雷霁霖,杨永泉.我国海水封闭式工厂化养殖探讨.中国渔业经济研究,1999,5(1):20~21
    [8]刘鹰,王玲玲.集约化水产养殖污水处理技术及应用.淡水渔业,1999,29(10):22~24
    [9]孙国铭,万夕和.海水循环式养殖系统NH3-N、NO2-N转化及其水质管理.水产养殖,1999,6(4):12~14
    [10]刘晃.循环水养殖系统的水处理技术.渔业现代化,2005,1:30~32
    [11] Brock J A, Main K L. A guide to common problems and diseases of cultured penaeusvannamei. The World Aquaculture Society, Baton Rouge,1994,242
    [12] Hopkins J S, Sandifer P A, Browdy C L. A review of water management regimes which abatethe environmental impacts of shrimp farming. In: Browdy, C.L., Hopkins, J.S.Eds.,Skimming Through Tro Ubled Water Proceeding of the Special Session Shrimp Farming.The World Aquaculture Society,Baton Rouge,1995,157-166
    [13] Anthony D. Greiner, Michael B. Timmons. Evaluation of the nitrification rates of microbeadand trickling filters in an intensive recirculating tilapia production facility. AquaculturalEngineering,1998,(18):189–200
    [14] Ronald F. Malone, Lance E. Beecher. Use of floating bead filters to recondition recirculatingwaters in warm water aquaculture production systems. Aquacultural Engineering,2000,(22):57–73
    [15]曹涵.循环水养殖生物滤池滤料挂膜及其水处理效果研究:[硕士学位论文].青岛:中国海洋大学,2008
    [16] Timmons M B, Ebeling J M. The Role for Recirculating Aquaculture Systems. AES News,2007,10(1):2-9
    [17] Cripps S.J., Bergheim A. Solids management and removal for intensive land basedaquaculture systems. Aquacultural Engineering,2000,22:33–56
    [18] Bergheim A., Brinker A. Effluent treatment for flow through systems and EuropeanEnvironmental Regulations. Aquacultural Engineering,2003,27:61–77
    [19] Timmons M B,Losordo T M. Aquaculture water reuse sysrems: engineering design andmanagement.1994,Elsevier Science B.V.
    [20]张明华,杨著,王秉心等.工厂化海水养鱼循环系统的工艺流程研究.海洋水产研究,2004,25(4):65-70
    [21]李强.封闭式循环水系统养殖半滑舌鳎的研究:[硕士学位论文].青岛:中国海洋大学,2012
    [22] Heinen J.M., Hankins J.A., Adler P.R. Water quality and waste production in a recirculatingtrout culture system with feeding of a higher-energy or lower energy diet. AquacultureResearch,1996a,27:699–710
    [23] Losordo T. M. Tilapia culture in intensive recirculating systems. Tilapia Aquaculture in theAmericas. World Aquaculture Society,1997,(1):185~208
    [24] Hobbs A, Losordo T. M. A commercial public demonstration of recirculating aquaculturetechnology: The CP&L/EPRI Fish Barn at North Carolina State University.1997,151~158
    [25]梁友,王印庚,倪琦等.弧形筛在工厂化水产养殖系统中的应用及其净化效果.渔业科学进展,2011,32(3):116-120
    [26]宋德敬,尚静,姜辉等.蛋白质分离器中的不同臭氧浓度对工厂化养殖净水效果的试验.水产学报,2005,29(5):719-723
    [27] Rnadall D J, Wrihgt P A. Ammonia distribution and excretion in fish. Fish Physiol. Biochem,1987,3:107一120
    [28] Trussell R P. The percent un-ionized ammonia in aqueous ammonia solutions at different PHlevels and temperatures. J. Fish. Res. Board Canada,1972,29:1505-1507
    [29] Cheng.W, Chen.J.C. The virulence of Enterococcus to freshwater prawn Macrobrachiumrosenbergii and its immune resistance under ammonia stress. Fish&Shellfish Immunology,2002,12:97-109
    [30]高延耀,顾国维,周琪.水污染控制工程.高等教育出版社.2007
    [31] Cooper, P.F., Atkinson, B. Biological Fluidized Bed Treatment of Water and Wastewater.Water Research Centre Ellis Horwood, Chichester, UK.1981
    [32] Shieh, W. K., Sutton, P.M., Kos, P. Predicting reactor biomass concentration in afluidized-bed system. J. Water Pollut. Control Federation,1981,53:1574–1584
    [33] Chang, H.T., Rittman, B.E., Amar, D., Heim, R., Ehlinger, O., Lesty, Y. Biofilm detachmentmechanisms in a liquid-fluidized bed. Biotech. Bioeng,1991,38:499–506
    [34] Painter H.A. A review of literature on inorganic nitrogen metabolism in microorganisms. Wat.Res,1970,4:393一450
    [35]林海,李萍,陈月芳等.低碳源浓度条件下聚磷菌特性.北京科技大学学报,2009,31(6):679-683
    [36]郑士民,颜望明,钱新民.自养微生物.北京:科学出版社,1983
    [37] Zhu, S., Chen, S. The impact of temperature on nitrification rate in fixed film biofilters.Aquacult. Eng.,2002,26:221–237
    [38] S. Balakrishnan, W.W. Eckenfelder. Nitrogen relationships in biological treatmentprocesses—I. Nitrification in the activated sludge process. Water Research Volume3, Issue1,January1969, Pages73–74, IN11,75–81
    [39]张明.硝化细菌应用技术研究:[博士学位论文].上海:华东师范大学,2003
    [40] M Beccari, A.C.Di Pinto, R Ramadori, M.C Tomei. Effects of dissolved oxygen anddiffusion resistances on nitrification kinetics. Water Research,1992,26(8):1099–110423
    [41] Jian Ling, Shulin Chen. Impact of organic carbon on nitrification performance of differentbiofilters. Aquacultural Engineering,2005,33:150–162
    [42] Grady, C.P.L., Lim, H.C. Biological Wastewater Treatment: Theory and Applications.Marcel Dekker, New York.1980
    [43] Sharma, B., Ahlert, R.C. Nitrification and nitrogen removal. Water Res.,1977,11897–11925.
    [44] Gee C.S., Sudan, M.T., Pfeffer, J·T. Modeling of Nitrification under Substrate-InhibitingConditions. ASC Jomal of Environ. Engineering,1990,116,4
    [45]陈燕飞.渗透压对细菌的影响.太原师范学院学报(自然科学版),2012,11(1):136-139
    [46] Steven T. Summerfelt. Design and management of conventional fluidized-sand biofilters.Aquacultural Engineering,2006,34:275–302
    [47] Michael B. Timmons, Thomas M. Losordo. Aquaculture Water Reuse Systems: EngineeringDesign and Management. Amsterdam Lausanne, New York,1994.
    [48]朱松明.循环水养殖系统中生物过滤器技术简介.渔业现代化,2006,2:16-20
    [49] Spotte S. Fish and invertebrate culture: Water management in closed systems. John Wiley&Sons, New York, NY,1979
    [50] Grace, G.R., Piedrahita, R.H.,1993. Carbon dioxide control with a packed column aerator. In:Wang,J.K.(Ed.), Techniques for Modern Aquaculture. American Society of AgriculturalEngineers, Saint Joseph, MI, pp.496/505.
    [51] Grace, G.R., Piedrahita, R.H. Carbon dioxide control. In: Timmons, M.B., Losordo, T.M.(Eds.), Aquaculture Water Reuse Systems: Engineering Design and Management. ElsevierScience, New York, NY,1994,209-234.
    [52] Summerfelt S.T., Vinci B.J., Piedrahita R.H. Oxygenation and carbon dioxide control inwater reuse systems. Aquacultural Engineering,2000a,22:87-108
    [53] Steven T. Summerfelt, John Davidson, Thomas Waldrop. Evaluation of full-scale carbondioxide stripping columns in a coldwater recirculating system. Aquacultural Engineering,2003,28:155-169
    [54] Iván Andrés Sánchez O., Tsunao Matsumoto. Hydrodynamic characterization andperformance evaluation of an aerobic three phase airlift fluidized bed reactor in arecirculation aquaculture system for NileTilapia production. Aquacultural Engineering,2012,47:16–26
    [55] Timmons, M.B., Ebeling, J.M. Recirculating Aquaculture,2nd ed. Northeastern Regional,Aquaculture Center, Ithaca, NY,2010,948
    [56] Timmons, M.B., Helwig, N., Summerfelt, S.T. The Cyclone sand biofilter: a new designconcept and field evaluation. In: Libey, G.S., Timmons, M.B.(Eds.), Proceedings of theThird International Conference on Recirculating Aquaculture. Virginia Polytechnic Instituteand State University, Roanoke, VA,2000,222–226
    [57]李春华,张洪林.生物流化床处理废水的研究与应用进展.环境技术,2002,4(22):28~32
    [58]李娜.介孔生物填料流化床和蒙脱石吸附混凝工艺脱氮除酚效能:[博士学位论文].哈尔滨:哈尔滨工业大学,2008
    [59] Jewell, W.J. Fundamentals and advances in expanded bed reactors for wastewater treatment.In: Tyagi, R.D., Vembu, K.(Eds.), Wastewater Treatment by Immobilized Cells. CRC Press,Boca Raton, FL,1990,223–252
    [60] Cooper, P.F., Atkinson, B. Biological Fluidized Bed Treatment of Water and Wastewater.Water Research Centre, Ellis Horwood Limited, Chichester, England,1981
    [61] Sutton, P.M., Mishra, P.N. Biological fluidized beds forwastewater treatment: astate-of-the-art review. Water Environment and Technology,1991,3(8):52–56
    [62] Summerfelt, S.T., Cleasby, J.L. A review of hydraulics in fluidized-bed biological filters.Trans. Am. Soc. Agric. Eng.,1996,39(3):1161–1173
    [63] Summerfelt, S.T., Hankins, J.A., Durant, M.D., Goldman, J.N. Removing obstructions:modified pipe-lateral flow distribution mechanism reduces backflow in fluidized-sandbiofilters. Water Environ. Technol.,1996,8(11):39–49
    [64] Summerfelt, S.T., Davidson, J., Helwig, N. Evaluation of a full-scale CycloBio fluidized-sandbiofilter in a coldwater recirculating system. In: Rakestraw, T.T., Douglas, L.S., Correa, A.,Flick, G.J.(Eds.), Proceedings of the Fifth International Conference on RecirculatingAquaculture, Virginia Polytechnic Institute and State University, Roanoke, VA,2004b,227–237
    [65] Cleasby, J.L. Filtration. In: Pontius, F.W.(Ed.), Water Quality and Treatment.4th ed.American Water Works Association/McGraw-Hill, New York,1990,455–560
    [66] Sutton, P.M., Mishra, P.N. Biological fluidized beds for wastewater treatment: astate-of-the-art review. Water Environ. Technol.,1991,3(8):52–56
    [67] Malone, R.F., Burden, D.G. Design of Recirculating Soft Crawfish Shedding Systems.Louisiana Sea Grant College Program, Center for Wetland Resources, Louisiana StateUniversity, Baton Rouge, LA.,1988
    [68] Jewell, W.J. Fundamentals and advances in expanded bed reactors for wastewater treatment.In: Tyagi, R.D., Vembu, K.(Eds.),Wastewater Treatment by Immobilized Cells. CRC Press,Boca Raton, FL,1990,223–252
    [69] Cooper, P.F., Atkinson, B. Biological Fluidized Bed Treatment of Water and Wastewater.Water Research Centre Ellis Horwood, Chichester, UK.1981
    [70] Weaver, D.E. Design and operations of fine media fluidized bed biofilters for meetingoligotrophic water requirements. Aquacult. Eng.,2005,34(3):303–310
    [71] Summerfelt, S.T., Wilton, G., Roberts, D., Savage, T., Fonkalsrud, K. Developments inrecirculating systems for arctic char culture in North America. Aquacult. Eng.,2004a,30:31–71.
    [72] Summerfelt, S.T., Wade, E.M. Fluidized-sand biofilters installed at two farms. Recirc Today,1998,1(1):18–21
    [73] Forsythe, A., Hosler, K.C. Experiences in constructing and operating cold water recirculatingaquaculture facilities for salmon smolt production. In: Rakestraw, T.T., Douglas, L.S., Flick,G.J.(Eds.), Proceedings of the Fourth International Conference on Recirculating Aquaculture,Virginia Polytechnic Institute and State University, Roanoke, VA,2002,325–334
    [74] Holder, J. Retrofits of flow through to reuse/recirculation technology. In: Rakestraw, T.T.,Douglas, L.S., Flick, G.J.(Eds.), Proceedings of the Fourth International Conference onRecirculating Aquaculture, Virginia Polytechnic Institute and State University, Roanoke, VA,2002,335–345
    [75] Weber, W.J. Physicochemical Processes for Water Quality Control. John Wiley and Sons,New York,1972
    [76] Montgomery, J.M., Consulting Engineers, Inc. Water Treatment Principles and Design. JohnWiley and Sons, New York,1985
    [77] American Water Works Association (AWWA). Water Treatment Plant Design,2nd ed.McGraw-Hill, New York, NY,1990
    [78] Summerfelt, S.T., Vinci, B.J. Avoiding water quality failures. Part2. Recirculating systems.World Aquacult,2004,35(4)9–11,71
    [79] Nam, T.K., Timmons, M.B., Montemagno, C.D., Tsukuda, S.M. Biofilm characteristics asaffected by sand size and location in fluidized bed vessels. Aquacult. Eng.,2000,22:213–224
    [80] Tsukuda, S.M., Hankins, J.A., Marshall, C.P., Summerfelt, S.T., Bullock, G.L., Sawyer, T.K.Effects of sand size on fluidized-bed biofilter performance in cold water systems. In:Timmons, M.B., Losordo, T.(Eds.), Advances in Aquacultural Engineering, NRAES-105.Northeast Regional Agricultural Engineering Service, Ithaca, NY,1997,368–380
    [81] John Davidson, Neil Helwig, Steven T. Summerfelt. Fluidized sand biofilters used to removeammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from anintensive aquaculture effluent. Aquacultural Engineering,2008,39:6–15
    [82]岳湘安.液固两相流.石油工业出版社
    [83] Ding J. and Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow.A. I. Ch. E. Journal,1990,36:523–538
    [84] Wilhelm R H.Kwauk M.Chem Eng Prog,1948,44:201
    [85] Richardson J F, Zaki W N. Trans Inst Chem Eng.1954,32:22
    [86]郭幕孙,庄一安流态化-垂直系统中均匀球体和流体的运动.北京:科学出版社,1963,35~53
    [87]粱五更,张书良,俞芷青,金涌,吴群伟.液固循环流化床的研究(I)相含率及颗粒循环速率.化工学报,1993,44(6):666-671
    [88]粱五更,张书良,俞芷青,金涌.液固循环流化床的研究(Ⅱ)表观滑落速度及曳力系数.化工学报,1993,44(6):672-676
    [89] Wen C. Y., and Yu Y. H. Mechanics of fluidization. In: Chemical Engineering ProgressSymposium Series62, American Institute of Chemical Engineers, New York,1966
    [90] Dharmarajah A. H., and Cleasby, J. L. Predicting the expansion of filter media. Water WorksAssoc.,1986,78(12):66–76
    [91] J.A. Yasuna, H.R. Moyer, S. Elliott, J.L. Sinclair, Quantitative predictions of gas particleflow in a vertical pipe with particle–particle interactions, Powder Technol.,1995,84(1):23–34
    [92] H. Enwald, E. Peirano, A.-E. Almstedt, Eulerian two-phase flow theory applied to fluidization,Int. J. Multiphase Flow,1996,22:21–66
    [93] Rupesh K. Reddy, and Jyeshtharaj B. Josh. CFD modeling of solid–liquid fluidized beds ofmono and binary particle mixtures. Chemical Engineering Science,2009,64:3641-3658
    [94] Jie He&Kristina G ransson&Ulf S derlind&Wennan Zhang. Simulation of biomassgasification in a dual fluidized bed gasifier. Biomass Conv. Bio ref.,2012,2:1–10
    [95] Nikoo MB, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor usingASPEN PLUS. Biomass Bio energy,2008,32(12):1245–1254
    [96] Rupesh K. Reddy, Jyeshtharaj B. Joshi. CFD modeling of solid–liquid fluidized beds ofmono and binary particle mixtures. Chemical Engineering Science,2009,64:3641–3658
    [97] Jack T. Cornelissen, Fariborz Taghipour, Renaud Escudiéa,Naoko Ellis, John R. Grace.CFDmodelling of a liquid–solid fluidized bed. Chemical Engineering Science,2007,62:6334–6348
    [98] Rupa Vuthalurua, Moses Tadea, Hari Vuthalurua. Application of CFD modelling toinvestigate fluidized limestone reactors for the remediation of acidic drainage waters.Chemical Engineering Journal,2009,149:162–172
    [99] American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards, vol.04.02, Concrete and Mineral Aggregates ASTM, Philadelphia, PA,1985
    [100]陈甘棠,王樟茂.流态化技术的理论和应用.北京:中国石化出版社,1996
    [101]蒋维钧,戴猷元,顾惠君.化工原理.北京:清华大学出版社,2009:43-78
    [102] Wilhelm J H, Kwauk M. Chem. Eng. Progr.,1948,44:201
    [103]化学工程手册,第20篇流态化,化学工业出版社,1987,9
    [104] Dharmarajah A.H., Cleasby J.L. Predicting the expansion of filter media. J. Am. WaterWorks Assoc.,1986,78(12):66–76
    [105]董长银,栾万里,周生田等.牛顿流体中的固体颗粒运动模型分析及应用.中国石油大学学报(自然科学版),2007,31(5):55-63
    [106]韦鲁滨,边炳鑫,陈清如.运动物体在浓相流化床中的受力.中国矿业大学学报,2000,29(5):480-483
    [107] Wei Du, Xiaojun Bao, Jian Xu, Weisheng Wei. Computational fluid dynamics (CFD)modeling of spouted bed: Assessment of drag coefficient correlations. Chemical EngineeringScience,2006,61:1401–1420
    [108]贺杰,蒋明虎.水力旋流器.北京:石油工业出版社,1996
    [109]曲克明,杜守恩.海水工厂化高效养殖体系构建工程技术.北京:海洋出版社.2010
    [112] Whitson, J., Turk, P., Lee, P. Biological denitrification in a closed recirculating marineculture system. In: Wang, J.K.(Ed.), Techniques for Modern Aquaculture. American Societyof Agricultural Engineers, St Joseph, MI,1993,458–466
    [113] Songming Zhu, Shulin Chen. Effects of organic carbon on nitrification rate in fixed filmbiofilters. Aquacultural Engineering,2001,(25):1–11
    [114] Ohashi, A., Viraj de Silva, D.G., Mobarry, B. et al. Influence of substrate C/N ratio on thestructure of multispecies biofilms consisting of nitrifiers and heterotrophs. Water Sci.Technol.,1995,32:75–84
    [115] Liu, Y., Capdeville, B. Kinetic behaviors of nitrifying biofilm growth in wastewaternitrification process. Environ. Tech.,1994,15:1001–1013
    [116]王奕,张兴文,杨凤林.移动床生物膜反应器的研究及应用现状.环境污染治理技术与设备,2002,3(7):75-50
    [117]山形阳一(梅志平译).循环过滤装置的维护和管理.水产科技情报,1991,18(2):58~60
    [118]齐巨龙,赖铭勇,谭洪新等.预培养生物膜法在海水循环水养殖系统中的应用效果.渔业现代化,2010,37(2):14-18
    [119] Bower C, Turner D. Accelerated nitrification in new sea water culture systems:effectiveness of commercial additives and seed media from established systems. Aquaculture,1981,24:1—9
    [120]徐元勤,韩月玲.好氧生物膜滤床去除COD及NH3-N的研究.大连水产学院学报,1997,12(1):43—50
    [121]刘艳红,罗国芝,朱学宝.海水闭合循环系统生物滤器微生物特性研究.农业环境科学报,2004,23(3):540—544
    [122] Alderson R. The effect of ammonia on the growth of juvenile dover sole, Solea solea(L.)andturbot, Scophthalmus maximus(L). Aquaculture,1979,17:291-309
    [123]海洋调查规范.
    [124] M.T.马迪根,J.M.马丁克,J.帕克著.杨文博等译.微生物生物学(Brock Biology ofMicroorganisms).科学出版社,2001
    [125]滕济林,李星伟,殷杰等.废水处理新型填料的挂膜试验研究.电力建设,2002,23(2):54-57
    [126]张娇,徐晓军,宋任达等.生物滴滤池去除氨气的挂膜实验研究.北方环境,2005,30(1):19-21
    [127]杨书平,严煦世.软性填料用于膜法生物消化的性能研究.上海环境科学,1988,7(11):11-14
    [128]陈洪斌,梅翔,高廷耀等.受污染源水生物预处理挂膜过程研究.水处理技术,2001,27(4):196-199
    [129] Nijhof M B.Fixed film nitrification characteristics in sea-water recirculation fish culturesystems. Aquac,1990,87(2):133—143.
    [130] Kawai A, Yoshida Y, Kimata M.Biochemical studies on the bacteria in aquarium withcirculating systems.Changes of the qualities of breeding water and bacterial population ofthe aquarium during fish cultivation. Bull Jpn Soc Sci Fish,1964,30:65—71
    [131] Hirayama K.Water control by filtration in closed systems. Aquaculture,1974,4:369—385
    [132] Songming Zhu, Shulin Chen. An experimental study on nitrification biofilm performancesusing a series reactor system. Aquacultural Engineering,1999,20:245–259
    [133] Greiner, A.D., Timmons, M.B. Evaluation of the nitrification rates of microbead andtrickling filters in an intensive recirculating tilapia production facility. Aquacult. Eng.,1998,18:189–200
    [134] Timmons T.B, J. Ebeling, F. Wheaton, S. Summerfelt, B. Vinci. Recirculating AquacultureSystem2nd Edition.2002
    [135]罗国芝,谭洪新,齐巨龙等.盐度驯化对海水生物过滤器功能的影响.上海海洋大学学报,2010,19(4):540-546
    [136] Houghton W.H., Gottfried R.J., Sinclair N.A., Yall I. Metabolic factors affecting enhancedphosphorus uptake by activated sludge. Appl. Microbiol.,1971,22(4):571–577
    [137] Mark J. Sharrer, Yossi Tal, Drew Ferrier, Joseph A. Hankins,Steven T. Summerfel.Membrane biological reactor treatment of a saline backwash flow from a recirculatingaquaculture system. Aquacultural Engineering,2007,36:159–176
    [138] Kim S K,Kong I,Lee B H,et al.Removal of ammonium-N from a recirulation Aquaculturalsystem using an immobilized nitrifier.Aquacult.Eng.,2000,21:139-150
    [139]刘飞,胡光安,韩舞鹰.水力停留时间、水温与氨氮浓度对浸没式生物滤池氨氮去除速率的效应.淡水渔业,2004,34(1):3-5
    [140] Timmons, M.B., Summerfelt, S.T. Application of fluidized-sand biofilters. In: Libey, G.S.,Timmons, M.B.(Eds.), Proceedings of the Second International Conference on RecirculatingAquaculture, Virginia Polytechnic Institute and State University, Roanoke, VA,1998:342–354
    [141] Ester C.C., Novak, J.T., Libey, G.S., Boardman, G.R. Rotating biological contactorperformance in recirculating aquaculture systems. Cited in Wheaton et al.,1994
    [142] Thomasson,M.P. Nitrification in fluidized-bed sand filters for use in recirculatingaquaculture systems. Master’s Thesis. Louisiana State University, Baton Rouge, LA.,1991
    [143] Monaghan, T.J., Delos Reyes, A.A., Jeansonne, T.M., Malone, R.F. Effects of media size onnitrification in fluidized sand filters. In: Aquaculture America’96Book of Abstracts, WorldAquaculture Society, Baton Rouge, LA,1996,110
    [144] Shea, G.O., Timmons, M.B., Summerfelt, S.T., Tsukuda, S. Characterization of fluidizedsand beds for warm water systems. In: World Aquaculture’97Book of Abstracts, WorldAquaculture Society, Baton Rouge, LA,1997:421
    [145] Bower C. E., Turner D. T. Accelerated nitrification in newseawater culture systems:effectiveness of commercial additives and seed media from established systems. Aquaculture,1981,24:1-9
    [146] Nuhof M., Bovendeur J. Fixed film nitrification characteristics in sea water recirculationfish culture systems. Aquaculture,1990,87:133-143
    [147]宋奔奔,刘鹰.海水封闭循环水养殖系统中生物滤器填料的选择与应用.农业技术与设备,2008(12):4-6
    [148]任爱景,杨正勇,戴亚娟等.我国水产品需求预测研究.上海海洋大学学报.2012,21(1),145-149
    [149] Speece, R.E., N. Nirmalakhandan, Y Lee. Design for high purity oxygen absorption andnitrogen stripping for fish culture. Aquacultural Engineering,1988,7(3):201~210
    [150] Page J.W, J. W. Andrew. Chemical composition of effluent nitrogen high density culture ofcatfish. Water, Air and Soil Pollution,1974,3:365-369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700